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Abstract: In this work, the author employs the quantum hydrodynamic formalism to achieve the
geometrization of spacetime for describing the gravitational interaction within the framework of quan-
tum theory. This approach allows for the development of an equation of gravity that is mathematically
connected to the fermion and boson fields. This achievement is accomplished by incorporating two
fundamental principles: covariance of the quantum field equations and the principle of least action.
By considering these principles, a theory is established that enables the calculation of gravitational
corrections to quantum electrodynamics and, potentially, to the standard model of particle physics as
well. The theory also provides an explanation for two phenomena: the existence of a cosmological
pressure density similar to quintessence, which is compatible with the small value of the observed
cosmological constant, and the breaking of matter–antimatter symmetry at high energies, offering
insights into why there is an imbalance between the two in the early universe. In the cosmological
modeling of the theory, there exists a proposal to account for the formation of supermassive black
holes that are accompanied by their own surrounding galaxies, without relying on the process of
mass accretion. The model, in accordance with recent observations conducted by the James Webb
Space Telescope, supports the notion that galactic configurations were established relatively early in
the history of the universe, shortly after the occurrence of the Big Bang.

Keywords: quantum gravity; quantum electrodynamics; quantum cosmology

1. Introduction

Physics faces a major challenge in unifying general relativity and quantum theory,
which are fundamentally different in their approaches. General relativity explains gravity
as the curvature of spacetime due to matter and energy, while quantum theory describes
the behavior of matter and energy at very small scales. However, attempts to merge
these two theories have been unsuccessful so far. There have been various proposals
for reconciling general relativity and quantum theory, such as string theory [1–3], loop
quantum gravity [4–6], and causal dynamical triangulation [7–9], but none have yet been
confirmed by experimental evidence. The search for a unified theory of physics remains an
active area of research in theoretical physics.

Despite its progress and successes, loop quantum gravity (LQG) also has some limita-
tions and shortcomings, as follows:

1. Lack of a complete formulation. Currently, LQG does not have a complete and
well-defined formulation. There is no unified and coherent description that covers
all spatial and temporal scales. This limits the theory’s ability to provide definitive
answers to important questions about the nature of quantum gravity.

2. Problems with Newtonian gravity and general relativity. LQG fails to directly recover
Newtonian gravity or Einstein’s general relativity in the classical limit. Although it is
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desirable for a theory of quantum gravity to include general relativity as a limiting
case, it has not been fully demonstrated how this occurs in LQG.

3. Ambiguity in the quantization of continuous geometries. In LQG, the geometry of
space is quantized, but the approach used to carry out this quantization can lead to
ambiguities and uncertainties. This can affect the precision of theoretical predictions
and the consistency of the theory itself.

4. Challenges in comparison with experimental observations. LQG is still in a devel-
opment phase and has not yet produced specific predictions that can be directly
compared with experimental observations. This makes it difficult to verify the validity
or invalidity of the theory through current experimental methods.

String theory attempts to unify all the fundamental forces and particles of nature by
describing them as vibrating strings, but it faces several challenges and shortcomings:

1. Lack of experimental confirmation. One of the significant challenges facing string
theory is the lack of direct experimental evidence. Due to the extremely high energies
required to observe string-like behavior, it has been challenging to test the theory
through experiments. As a result, it has not yet made specific predictions that can be
validated or refuted by experimental data.

2. Landscape problem and vacuum solutions. String theory predicts the existence of a
vast landscape of possible vacuum solutions, each representing a different physical
universe. However, identifying the specific vacuum solution that corresponds to
our observed universe remains an open question. This raises concerns about the
uniqueness and predictability of the theory.

3. Fine-tuning and naturalness. String theory often requires fine-tuning of parameters
to match the observed values of fundamental constants in our universe. This fine-
tuning can be seen as a drawback, as it raises questions about the naturalness and
predictability of the theory. Additionally, the precise mechanisms that select the
particular vacuum state and fix the parameters are not yet fully understood.

4. Emergence of spacetime and gravity. String theory suggests that spacetime and
gravity emerge from underlying microscopic degrees of freedom. However, the exact
mechanism of this emergence is still not well understood. The transition from a
fundamental string theory to a macroscopic, four-dimensional spacetime with gravity
is a challenging problem that requires further development.

Quantum field theory in curved spacetime of general relativity has been successful in
various contexts, such as the semiclassical approximation, but it also faces certain challenges
and limitations:

1. Lack of a complete and consistent formulation. Quantum field theory in curved space-
time does not have a unique and fully consistent formulation that covers all possible
curved spacetimes. The theory encounters conceptual and technical difficulties when
applied to highly curved or dynamically changing spacetimes, such as those near
black holes or during the early universe. This makes it challenging to obtain precise
and reliable predictions in such regimes.

2. Renormalization issues. Renormalization, a procedure used to remove infinities
from calculations in quantum field theory, becomes more complicated in curved
spacetime. The presence of curved backgrounds introduces additional divergences
and ambiguities, making the renormalization process more involved and less well-
understood. This can limit the predictive power and precision of the theory.

3. Backreaction problem. In quantum field theory in curved spacetime, the backreaction
of the quantum fields on the geometry of spacetime is often neglected or treated in
a simplified manner. This neglecting of the backreaction can lead to inconsistencies
and limitations in the theory (in high gravity, at the Big Bang, and in the early uni-
verse). Properly accounting for the backreaction in a self-consistent manner remains
a challenge.
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4. Ultraviolet divergences and quantum gravity. The presence of ultraviolet divergences
(infinities arising at very high energies) in quantum field theory can be incompatible
with the quantization of gravity. This indicates that a more fundamental theory, such
as a theory of quantum gravity, might be necessary to consistently describe physics in
highly curved spacetimes.

5. Limited applicability beyond perturbative regimes. Quantum field theory in curved
spacetime is often formulated and applied within the framework of perturbation
theory, which assumes that the spacetime curvature is small compared to a flat
background. This limits its applicability to situations where the gravitational fields
are weak and the deviations from flat spacetime are small. Exploring quantum field
theory in strongly curved or highly dynamical spacetimes remains a challenge.

On the other hand, there are several problems of general relativity with respect to
the quantum nature of the matter, which is believed to be inadequate in fully explaining
some observed phenomena in the universe. One of its shortcomings comes from the fact
that in general relativity, the energy–momentum tensor density, Tµν for massive bodies
depends on the point-dependent mass density and is limited to the reductive classical
expression, while the general form: Tµν = (p + ε)uµuν + pgµν, that can host quantum
effects remains undefined. The semiempirical inclusion of the cosmological constant
within general relativity exemplifies the necessity to address this deficiency in the theory.
However, akin to any semiempirical approach, the parameters involved are not derived
from fundamental physics but rather considered as constants to be measured. Consequently,
this fundamentally renders it impossible to rationalize the remarkably low measured
cosmological constant in comparison to the vacuum’s zero-point energy.

Moreover, in classical general relativity, the energy–momentum tensor that describes
the distribution of energy and momentum in spacetime is a symmetric tensor with the
off-diagonal terms are zero. This symmetry is a consequence of assuming a smooth
and continuous geometry of the spacetime. The non-commutativity of spatial rotations
in three or more dimensions serves as a prevalent example of non-commutative opera-
tions. Non-commutativity stands as a key mathematical concept that articulates uncer-
tainty in quantum mechanics, manifesting in any pair of conjugate variables, such as
position and momentum. In the presence of a magnetic field, even momenta no longer
mutually commute.

Building on this foundation, when exploring the impacts of quantum mechanics and
the potential non-commutative properties of spacetime, some theories propose that the
geometry of spacetime could become non-commutative.

Moreover, one can just imagine that position measurements might fail to commute
and describe this using non-commutativity of the coordinates. Building upon this concept,
a straightforward modification to quantum fields, involving coordinates satisfying non-
commutation relations, allows the definition of a broad class of non-commutative field
theories. This idea has spurred extensive research in recent decades [10].

The resulting non-commutativity is evident in the presence of off-diagonal terms in
the energy–momentum tensor.

In a recent study [11], the author showcased that by postulating the covariance of
quantum mechanical field equations and employing their quantum hydrodynamic por-
trayal, it becomes feasible to delineate the spacetime geometry via a gravity equation
that encompasses quantum mechanics. This accomplishment is realized by employing a
generalized least-action principle, yielding a set of equations that characterizes the evolu-
tion of quantum–gravitational interactions. The resulting system intertwines the gravity
equation with the quantum equation of bosonic or fermionic fields. The theory, based on
the covariance of quantum mechanics, naturally introduces non-commutative terms into
the energy–momentum tensor, generating a self-defined (quintessence-like) cosmological
energy pressure density that is not reliant on a field of elusive physical origin, but rather
emerges from the quantum nature of spacetime. This cosmological energy pressure density
exhibits a significant magnitude in compact objects, such as black holes and supermassive
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black holes, while vanishing in macroscopic, weak gravitational matter. As a result, this
naturally leads to an average value throughout the universe that aligns with the observed
extremely low value.

Additionally, the theory incorporates an analytical relationship between gravity and
the fields, capturing the field backreaction on gravity and enabling the description of
field evolution across various physical scales, including high-gravity regimes. The model
possesses several noteworthy advantages.

It resolves the issue of point singularities present in general relativity [12] through the
repulsive force exerted by the quantum potential, which embodies quantum physics within
the framework of quantum hydrodynamic representation.

It also explains repulsive Newtonian gravity at large distances, as generated by the
cosmological pressure density tensor in the presence of a background of stochastic gravita-
tional noise (dark energy).

The theoretical investigation put forth in this paper holds the promise of advancing
quantum electrodynamics (QED) for high-energy fermionic states and exploring gravi-
tational corrections to Minkowskian theory. The theory reveals symmetry-breaking in
gravitational fermion–antifermion interactions, as well as the potential discrepancy in the
magnetic moments of leptons and antileptons, which could serve as a possible test for
the theory.

2. The Charged Fermion Field Coupled to the Gravity Equation

In a recent paper [11], the author demonstrated that it is possible to define the ge-
ometry of the spacetime induced by fermion and boson fields by utilizing the covariance
condition and the least-action principle. This achievement is accomplished by employing
the Madelung quantum hydrodynamic description, where the field equation for the com-
plex field: Ψ = |Ψ|exp[i S

} ], is transformed into a system of differential equations in terms of
the real variables |ψ|2 and S [11]. Namely, applying this procedure for the Dirac equation
in curved spacetime: (

i}γµ

(
∂µ −

i
4

σabωabµ +
ie
} Aµ

)
−mc

)
Ψ = 0, (1)

where:
σab =

i
2
[γa, γb] (2)

ωabµ = f α
b eaβΓβ

µα − f α
b ∂µeaα, (3)

where eα
b and f α

b are the vielbein and the inverse vielbein, respectively, and Γβ
µα is the

Christoffel matrix, which reads:

Γβ
µα =

1
2

gβγ
(
∂αgγµ + ∂µgγα − ∂γgµα

)
, (4)

by utilizing the substitution:

ψ± =
ψ1 ± ψ2√

2
=

(
ψ±1
ψ±2

)
=

(
|ψ±1|exp[i S±1

} ]

|ψ±2|exp[i S±2
} ]

)
=

 ∑
k=0

α±1kexp[−i S±1k
} ] + β†

±1kexp[i S±1k
} ]

∑
k=0

α±2kexp[−i S±2k
} ] + β†

±2kexp[i S±2k
} ]

, (5)

where
(

ψ1
ψ2

)
= Ψ, the system of four differential equations in terms of the real variables

|ψ±1|2, |ψ±2|2, S±1 and S±2 [11] follows.
By assuming the covariant derivative for affine and spinor connections:

Dµ = ∂µ −
i
4

σabωabµ. (6)



Quantum Rep. 2024, 6 18

Equation (1) more simply reads:(
i}γµ

(
Dµ +

ie
} Aµ

)
−mc

)
Ψ = 0, (7)

which by utilizing Equation (5) leads to:

i}
mc

σµ

(
Dµ +

ie
} Aµ

)
ψ+ = ψ−, (8)

i}
mc

σ̃µ

(
Dµ +

ie
} Aµ

)
ψ− = ψ+, (9)

from which the covariant form of the Dirac equation, as a function of the fields ψ±, reads:

(
gµν + α

µν
±

)(
∂µ −

i
4

σabωabµ +
ie
} Aµ

)(
∂ν −

i
4

σabωabν +
ie
} Aν

)
ψ± = −m2c2

}2 ψ±, (10)

which, after some manipulation, leads to [11]: (
∂µ − i

4 σabωabµ + ie
} Aµ

)(
gµν
(

∂ν − i
4 σabωabν +

ie
} Aν

))
+gµβgναα±βα

(
ie
2}Fµν − i

4 σab
(

ωabµ∂ν + ∂µωabν

)) ψ± = −m2c2

}2 ψ±. (11)

Moreover, by equating the real and imaginary parts, respectively, of Equation (11),
the four hydrodynamic quantum equations are obtained. The real part leads to the
Hamilton–Jacobi hydrodynamic motion equation in curved spacetime, which reads [11]:(

∂µS± −
(

Re
{

}
4 σabωabµ

}
− eAµ

))
gµν
(

∂νS± −
(

Re
{

}
4 σabωabν

}
− eAν

))
=
(
m2c2 −mVqu±

) , (12)

where the quantum potential, Vqu±, reads [11]:

Vqu± = − }2

m


 ∂µ( gµν∂ν |ψ±1|)

|ψ±1|
∂µ( gµν∂ν |ψ±2|)

|ψ±2|

+ }2

2 Im
{

σabωabµ

}
gµν

 ∂ν |ψ±1|
|ψ±1|

∂ν |ψ±2|
|ψ±2|


+∂µgµν

(
Im{σabωabν}

4

)
+ gµν Im

{
1
4 σabωabµ

}
Im
{

1
4 σabωabν

}


+Re


gµβgνα


ie
2}

 α±βα1j
|ψ± j|
|ψ±1|

α±βα2j
|ψ± j|
|ψ±2|

Fµν

− i
4 α±βασab

ωabµ

 ∂ν |ψ±1|
|ψ±1|

∂ν |ψ±2|
|ψ±2|

+

 ∂µωabν|ψ±1|
|ψ±1|

∂µωabν|ψ±2|
|ψ±2|







. (13)

Afterward, the equation of gravity:

Rµν −
1
2

Rgµν =
8πG

c4

(
Tr
(

τµνclass −ΛQ gµν + ∆τµνstress

)
+ Tνµem

)
, (14)

is obtained by employing the principle of least action, generalized within the framework of
quantum hydrodynamics [11], applied to the motion Equation (12) governing the quantum
mass densities.

By following this methodology, the set of equations for gravitationally coupled quan-
tum electrodynamics (G-QED) is accomplished with the following equations [11]:

Tνµem
=

1
4π

(
−FµλFν

λ +
1
4

FλγFλγgµν

)
, (15)
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Fµν =
(

Aν;µ − Aµ;ν
)
=
(
∂µ Aν − ∂ν Aµ

)
, (16)

Fµν
;ν = −4π Jµ

em, (17)

Jµ
em = − e}

im
ΨγµΨ, (18)

(
i}γµ

(
∂µ −

i
4

σabωabµ +
ie
} Aµ

)
−mc

)
Ψ = 0, (19)

where Tνµem
is the electromagnetic tensor and Aµ is the related vector potential. The

tensorial term:

Tr
(

τµνclass −ΛQ gµν + ∆τµνstress

)
, (20)

in Equation (14) is the energy impulse tensor of the fermion field (Equation (11)) [11],
where the terms −ΛQ gµν + ∆τµνstress , whose detail is provided in [11], contain the quantum
contribution encoded into the quantum potential (Equation (13)).

2.1. Formal Analysis of Gravity Equation

One of the primary challenges in general relativity is that the energy–momentum
tensor density for massive bodies depends on the point-dependent mass density and is
limited to the classical expression:

Tµν =
mc2

γ(k)
uµuν, (21)

where (uµ = γ
c

.
qµ). Consequently, the general form: Tµν = (p + ε)uµuν + pgµν, remains

undefined.
Non-commutative geometry addresses this issue by suggesting that the general form

of the energy–momentum tensor density can introduce quantum properties into general
relativity, such as the minimum uncertainty. However, the resulting uncertainty relations
are not generally equivalent to those provided by quantum mechanics and depend on the
definition of Tµν. Therefore, a degree of freedom needs to be determined.

To overcome this problem, the Tolman–Oppenheimer–Volkov equation is semiempiri-
cal assumed.

In this study, we derived the energy–momentum tensor on the right side of
Equation (14) using the quantum hydrodynamic formalism. We accomplished this by
imposing the covariance of the quantum mechanical field equations and utilizing the prin-
ciple of least action. The derived energy–momentum tensor in Equation (14) plays the same
role as the Tolman–Oppenheimer–Volkov equation.

The energy–momentum tensor in Equation (20) determines the undefined terms into
the energy–momentum tensor of classical general relativity, bringing the quantum physics
with it. The correct dilatative action of quantum mechanics is provided through the quan-
tum potential that generates repulsive force against the mass concentration through the term
−ΛQ gµν + ∆τµνstress in Equation (14). Since the quantum potential action is brought about
in the quantum energy–momentum tensor density, consequently, the energy–momentum
tensor accurately reproduces the uncertainty relations provided by quantum mechanics.

In principle, the quantum energy tensor density, derived using the quantum hy-
drodynamic formulation of quantum mechanics, can be considered a specific case of
non-commutative geometry. Nevertheless, it worth noting that the formulation of non-
commutative geometry is based on semiempirical assumptions, and its constants do not
contain the explicit dependence by the fields, but rather require experimental measurements.
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On the other hand, the proposed model shows the theoretical connection between the
gravitational field of spacetime and the fields residing within it. This feature of the theory
offers several advantages, including:

1. Introduction and the possibility to describe the backreaction of fields on gravity from
the field dependence of their energy impulse tensor.

2. Description of physical laws at any scale, including scenarios near the Big Bang or
within primordial Pre-Big Bang Black Holes.

3. Prediction of small values for the cosmological constant.
4. Self-defined (quintessence-like) cosmological energy pressure density, ΛQ , that emerges

from the quantum properties of spacetime.
5. Resolution of the point singularity problem encountered in general relativity [12].

2.2. Classical and Quantum Spacetime Geometrization

If we assume that the ST (spacetime) follows the classical equation of motion, without
the presence of a quantum potential, we can distribute mass density locally within it,
attributing classical characteristics to ST. Conversely, if we assume that the mass distribution
in ST is influenced by the quantum potential force, it becomes impossible to freely distribute
mass locally, as it becomes coupled to the mass present in the surrounding area, resulting
in a quantum mechanical ST. Thus, the properties of ST are determined by the governing
law of mass density motion within it.

Since the quantum potential energy contributes to the determination of the curvature
of ST, the associated geometry of ST differs from the classical one of the general relativity.

In this regard, it is worth mentioning that since the classical and quantum equations
of motion for photons are identical, classical and quantum general relativity coincide in
this scenario. This particular characteristic of the electromagnetic field enables the explicit
coupling of the photon field to the equation of gravity within the framework of classical
general relativity.

For massive bosons and fermions, the complete mathematical coupling between the
curvature tensor and the fields can be achieved in the frame of quantum mechanical spacetime
geometrization through the covariance condition of the quantum mechanical equations.

When massive particles are present, quantum mechanical spacetime (ST) gives rise to
a gravity equation that interacts with the boson and fermion fields of these particles. This
gravity equation differs from the classical one due to the inclusion of new effects arising
from the presence of the quantum potential.

These effects can encompass several phenomena, such as the absence of a point-like
mass density within a black hole, the emergence of a repulsive gravitational force at cosmo-
logical distances from a black hole, and the existence of a physically stable vacuum [13].
The presence of cosmological pressure density offers the potential to explain the observed
cosmological constant as an indication of the quantum mechanical characteristics of the
vacuum, eliminating the need to introduce it as an arbitrary parameter in classical general
relativity. Consequently, the cosmological constant lies beyond the classical framework of
general relativity, and its existence can be attributed to the quantum mechanical properties
of the vacuum.

2.3. Discussion

When we transition to curved spacetime, we encounter the following levels
of understanding.

Macroscopic classical physics: We encounter the law of evolution of general relativity
since general relativity is derived by imposing the covariance of the classical equation of
motion (gravitational-inertial mass equivalence) and the least-action condition. Through
this approach, we define the gravity of spacetime with classical properties.

In a similar fashion, we define the gravity of spacetime with quantum mechanical
properties by leveraging the covariance of the evolution of quantum mechanical fields. This
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is equivalent to determining how quantum mechanical mass densities generate gravity
within spacetime.

It is important to note that it is not enough to write equations, such as the Klein–
Gordon equation, in a generic curved spacetime:

ψ
;µ
;µ = (gµν∂νψ);µ =

1√−g
∂µ

√
−g(gµν∂νψ) = −m2c2

}2 ψ, (22)

or to claim that gµν is defined by classical general relativity in which semiclassical means
are introduced. Such an approach is contradictory and does not lead to a self-consistent
theory (for instance, the back effect of the field onto the gravity is undefined).

To derive the quantum mechanics in curved spacetime, we must analogously use the
covariance of the quantum mechanical equation of evolution and the least-action principle.
This allows us to define the gravity of spacetime with quantum mechanical properties (see
Table 1).

Table 1. The parallelism between classical covariant general relativity and quantum covariant
general relativity.

Classical Equation of Evolution Covariance of Classical Equation
of Evolution ⇒ Classical General Gravity

(macroscopic scale with Vqu = 0) + ⇒
Covariant classical evolution:
spacetime geometry is associated with
the dynamics of classical mass densities

Least Action ⇑
(
Vqu = 0

)
Quantum Equation of Fields’ Evolution

Covariance of Quantum Equation
of Evolution ⇒ ⇑

+ Quantum Mechanical Gravity

Least Action ⇒
Covariant quantum evolution:
spacetime geometry is associated with
the dynamics of quantum mass fields

Commutation rules for quantum
fields’ quantization Quantization rules

⇓ ⇓
QFT
In flat spacetime

QFT
In curved spacetime

This procedure leads to quantum mechanics in a spacetime whose curvature is defined
by the quantum mechanical fields present within it. In this case, Equation (22) is coupled
to the gravity equation, defining a spacetime whose curvature is determined by the field
itself. This detail is crucial, as it allows for the description of the backreaction of the fields
on gravity, which the semiclassical approximation fails to capture.

The choice between classical spacetime and quantum mechanical spacetime is crucial.
The equations governing the evolution of mass densities, which are used to derive the
corresponding gravity, are based on either classical mechanics or quantum mechanics
covariance. Therefore, if we aim to self-consistently describe quantum mechanics in
curved spacetime, we must use covariance conditions applied to the equations of quantum
mechanics to define the curvature of quantum mechanical spacetime.

Finally, we can proceed with the second quantization of these fields, treating them as
quantum operators based on the field equations of quantum mechanics in curved spacetime.

The main objective of this work was to define the second level of understanding
by defining a gravity equation that depends on the quantum mechanical fields present
in spacetime.

In conclusion, this paper seeks to establish a theory that aligns quantum mechanics
and gravity by considering the intrinsic quantum nature of spacetime. This approach
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allows for a consistent treatment of quantum gravity, accounting for the influence of fields
on the gravitational field.

3. First-Order Gravitationally Coupled QED

The system of G-QED (Equations (14)–(19)) is extremely difficult to handle, but for
the specific physical scenario of interest (which involves mass distributions far from the
Planckian mass densities), a simplifying perturbative approach can be employed.

The zero-order gravity QGE (Minkowskian spacetime) leads to the ordinary QED.
The first-order G-QED reads [11]:

Fµν
;ν = −4π Jµ

em, (23)

Jµ
em = − e}

im
ΨγµΨ, (24)

Fµν =
(

Aν;µ − Aµ;ν
)
=
(
∂µ Aν − ∂ν Aµ

)
, (25)

Tνµem
=

1
4π

(
−FµλFν

λ +
1
4

FλγFλγgµν

)
, (26)

(
i}γµ

(
∂µ +

ie
} Aµ

)
−mc

)
Ψ =

}
8

γασµν
(
∂αhµν

)
, (27)

where the weak gravity perturbation, hµν, to the Minkowskian metric tensor:

gνµ = ηνµ + hµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

+ hµν, (28)

is given by the solution of the first-order GE:

R(1)
µν
− 1

2
R(1)

µν
gµν =

8πG
c4

(
Tr
(

τ(0)
µνclass

)
+ Tνµem

)
, (29)

where the Christoffel symbols reads: Γβ
µα = 1

2 ηβγ
(
∂αhγµ + ∂µhγα − ∂γhµα

)
, and where for

the k-th eigenstate [11]:

Tr
(

τ(0)
µνclass

)
=

mc2

γ
|ψ(0)
±i(k)|

2u(0)
µ
±i(k)

(
uν

(0)
±i(k)
− 1

mc

(
Re
{
}
4

σabωabν

}
− eAν

))
, (30)

where:

u(0)
µ
±i(k)

=

i}
2 gµα∂αln[

ψ
(0)
±i(k)

ψ
(0)
±i(k)∗

] + Re
{

}
4 σabωabµ

}
− eAµ

mc

√
1−

Vqu±
(ψ

(0)
±i(k))

mc2

, (31)

where ψ
(0)
±i(k) is the zero-order (flat spacetime) field of the Dirac equation:(

i}γµ

(
∂µ +

ie
} Aµ

)
−mc

)
Ψ(0) = 0 (32)

4. Discussion: Semi-Quantitative Analysis—Matter–Antimatter Symmetry-Breaking,
Quantum Decoherence, Primordial Black Hole Fragmentation, and Mass Expulsion

In the realm of the quantum gravitational equation, the existence of a singularity
within a black hole is rendered impossible, making the concept of a point-like mass density
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invalid. Consequently, the initial universe system must have possessed a finite initial
volume. However, due to the high concentration of mass, it would have given rise to a
massive black hole, referred to as the Pre-Big Bang Black Hole (PBBH). The PBBH state
was not stationary, and the quantum arrow of time, exemplified by matter–antimatter
asymmetry, was, in effect, leading to an irreversible relaxation process that ultimately
culminated in the Big Bang.

In the subsequent analysis, we investigate the progression of the Pre-Big Bang Black
Hole (PBBH) utilizing the quantum gravitational equation (QGE) coupled with the boson
and fermion fields.

4.1. CPT Inversion and Lepton–Antilepton Symmetry-Breaking in Curved ST

If we consider the Dirac equation for the fermion field, it is well known that the
CPT transformation: t→ −t ∪ e→ −e ∪ σi → −σi , leads to the same Dirac equation for
the field of the antiparticle, Ψ. The formal invariance of the Dirac equation, under CPT
inversion, expresses the matter–antimatter symmetry in the Minkowskian spacetime.

If we analyze the gravitational interaction described by the Lagrangian Equation (34),
we can see that under the CPT inversion (for which it holds Ψ→ Ψ and γµγ0 → −γµγ0 ),
the fermion current transforms as:

Jµ = − }
im ΨγµΨ = − }

im Ψ†γ0γµΨ→
→ − }

im Ψ
(
−γ0γµ

)
Ψ† = }

im ΨγµΨ = −Jµ , (33)

while the electromagnetic (EM) current: eJµ → (−e)(−Jµ) = eJµ , remains unchanged, so
that the gravity interaction Lagrangian under CPT inversion changes as:

LI =
}
8

σµν Jκ
[
∂κhµν

]
→ −}

8
σµν Jκ

[
∂κhµν

]
= −LI , (34)

and weakly breaks the matter–antimatter symmetry (the Greek spacetime indices range
from 0 to 3). It is worth noting that, at the first order (light particles and Newtonian gravity),
the correction to the fermion field due to gravity (in Equation (27)) and the breaking of CPT
symmetry is practically null since the antisymmetry of σµν coupled to the symmetry of the
Newtonian metric tensor hµν. Therefore, the difference in mass/energy between a fermion
and its antiparticle becomes significant only for very heavy fermions, which are sources of
strong gravitational fields (such as those present in PBBH) with masses of the order of the
Planck mass or even bigger.

Furthermore, since the magnetic moment of leptons is dependent on their masses, it
follows that the slight difference in the magnetic moment of a lepton and its corresponding
antiparticle becomes increasingly larger as the mass of the lepton increases. This provides a
potential means of testing the theory.

When considering only the dynamics of electro-gravity, in which only gravity and
electromagnetic forces are considered, the presence of the electro-gravity coupling term in
Equation (34) requires us to consider the theoretical possibility that a graviton (which is
very light) may be released/absorbed in the process of lepton–antilepton annihilation, as
well as in the inverse process. This is necessary in order to account for the difference in
gravitational mass between fermions and antifermions.

The matter–antimatter (fermion–antifermion) asymmetry induced by gravity allows
the formulation of a mechanism for the realization of baryonic asymmetry in the early
universe. Generally speaking, the gravitational generation of baryonic asymmetry in the
high-energy states of PBBH is produced by the gravitational interaction with all the fields
of bosons and fermions.

The physical imbalance between matter and antimatter in the quantum PBBH imme-
diately leads to the breaking of time inversion symmetry in the QGE–fermion–boson fields
system of equations. Consequently, the highly ordered quantum configuration of PBBH
undergoes a time-directional, irreversible evolution toward a less ordered conformation,
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leading to the appearance of the quantum arrow of time and the irreversible randomization
of energy that generated the Big Bang. The production of many residual light particles,
which constitute the mass difference in the annihilation of high-energy matter–antimatter
states, makes the inverse process highly unlikely, requiring the simultaneous grouping of
many product particles.

4.2. Cosmological Constant, Fermion–Antifermion Annihilation, and Matter–Antimatter Asymmetry

As illustrated by Equation (20), particles possessing rest mass exhibit a non-zero
cosmological pressure density (CPD), ΛQ . Consequently, when a fermion and its corre-
sponding antiparticle annihilate, the gravitational field undergoes a transition from one
characterized by a non-zero CPD to one featuring a zero CPD, since the emitted photons
possess a zero CTD. The absence of a CPD for photons can be attributed to the fact that
the QGE governing the electromagnetic photon field simplifies to the classical expression
found in general relativity.

Conversely, when a photon generates an electron–positron pair, the gravitational field
associated with the resulting massive particle and antiparticle is formed. If the photon
possesses a null scalar Ricci curvature, R [14], and CPD, then the scalar curvature of the
electron and positron’s gravitational field is non-zero, along with a non-zero CPD.

The formation of an electron–positron pair and the subsequent alteration of the gravi-
tational field lead to an energy change, attributing a gravitational contribution to the masses
of both the particle and the antiparticle. Hence, during their annihilation, it is anticipated
that a low-energy graviton will be emitted.

Furthermore, considering that the energy (as indicated in Equation (34)) has opposite
signs for particles and antiparticles, there exists a slight disparity in their masses.

For light fermions, the disparity in mass mentioned earlier is insignificant since they
serve as sources for the Newtonian gravity field. As we approach the Minkowskian
limit, the symmetry between matter and antimatter becomes asymptotically established.
Consequently, the discrepancy in mass between particles and antiparticles diminishes
progressively as we transition from heavier to lighter particles within each particle family.

This pattern of behavior implies that the asymmetry between matter and antimatter
could have been notable in the vacuum states of extremely high energy prior to the Big
Bang. Within the pre-Big Bang horizon, the high-energy fermion state, surpassing the
Planck mass, comprised black holes formed by fermions and antifermions. Through their
annihilation, these black holes emitted a burst of lighter fermions that accounted for the
disparity in mass between them.

If we consider, by assuming a contrary position, that the matter–antimatter symmetry
was preserved within the PBBH, it implies that the subsequent universe following the Big
Bang would possess a cosmological constant of zero. This is because in the absence of
massive particles (given that photons have a cosmological pressure tensor density of zero),
there would be no contribution to the cosmological constant and the vacuum state would
have collapsed into the polymer branched phase [15].

Nevertheless, according to the quantum gravity equation, the existence of a non-zero
cosmological constant, which we observe in the present-day universe, serves as evidence for
the matter–antimatter asymmetry within the initial PBBH and the quantum properties of
spacetime gravity. In this context, the cosmological pressure density represents a quantum
contribution to the gravitational field.

4.3. High-Temperature Quantum Decoherence, PBBH Fragmentation, and Mass Expulsion

The annihilation of very heavy PBBH massive vacuum states (consisting of high-
energy fermions and massive bosons), with their respective non-symmetric antimatter
states during the Big Bang, should have resulted in:

1. The emission of gravitational boson waves, which contribute to the content of dark
energy in the present universe.

2. The production of fragments of SMBHs from the initial PBBH.
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3. The release of residual low-energy fermions, which constitute the baryonic and dark
matter of the present universe.

All of these leftover parts can be considered as the “ashes of the Big Bang”.
Since the matter–antimatter annihilation is irreversible (meaning the backward pro-

cess of fermion–antifermion formation is not as likely as annihilation due to the very
large number of products), the energy, associated with the products of the annihilation,
undergoes randomization. This results in an increase of the fluctuation amplitude up to a
temperature of:

mPBBHκRg

√
kT
2} �

∣∣∣∣∂Vqu(n)

∂qi

∣∣∣∣, (35)

at which the quantum potential force,
∂Vqu(n)

∂qi
, is deeply perturbed and the quantum co-

herence breaks down [13] (Rg and mPBBH are the gravitational radius of the PBBH and
its mass, respectively, k is the Boltzmann constant, T is the temperature, } is the Planck
constant, and κ is the inverse of the quantum friction coefficient [13]).

Thus, as the PBBH experiences quantum decoherence and transitions into a classical
entity, it breaks apart and releases supermassive black hole (SMBH) snippets with surplus
matter around them.

The fragmentation of the PBBH and the ejection of mass into the expanded spacetime
with low curvature outside the gravitational radius of each SMBH are two interconnected
stages of a unified process. As the temperature of the PBBH increases due to matter–
antimatter annihilation, the expanding force of the quantum potential, Vqu:

−∂µVqu ∼
}2

m
∂µ

∂ν∂ν|ψ|
|ψ| , (36)

supported by the thermal expansive force due to the thermodynamic potential, Vtherm:

−∂µVtherm ∼ −D
1
|ψ|∂µ|ψ|, (37)

produces the mass expansion (with the decrease of its mean density inside the sphere of
the PBBH gravitational radius) far below the critical value:

3mPBBH

4πRg
3 =

3c6

32πG3mPBBH2 , (38)

producing expulsion of mass in the form of a SMBH and in the low-gravity space between
the fragments of the SMBH.

As each fragment of a SMBH possesses a lower gravitational pull compared to the
original PBBH, the mass within each fragment continues to disperse further. Throughout
this progression, the gravitational radius of each SMBH diminishes, resulting in more mass
being located outside of it. This external mass then undergoes rotational motion within the
gravitational well of the SMBH.

The process of SMBHs contracting in size, accompanied by mass expulsion, concludes
when a new state of equilibrium is achieved between the gravitational force and the
repulsive quantum force. This equilibrium is attained due to the decrease in temperature
caused by the expulsion of matter.

This process gives rise to SMBHs harboring external mass that orbits within their
gravitational wells, thereby providing an explanation for the formation of observed galaxies.
Additionally, it elucidates how SMBHs represent a prevalent cosmological configuration
and how they could form without the need for mass accretion.

This model is consistent with recent findings from the James Webb Space Telescope [16,17],
which detected galaxies at far redshifts hosting SMBHs at their centers shortly after the Big
Bang, within the first billion years. The observation extends progressively from just under
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one billion years to 0.7–0.6 billion years. There were challenges faced by astrophysics in
explaining the formation and rapid growth of these SMBHs during that early epoch, as
well as attempts to identify specific phenomena accelerating their mass increase [18,19]. To
attain BH masses <∼ 109M� within the typical star formation duration of <∼ 1 Gyr of
the host galaxy without the dynamical friction process is challenging, especially at high
redshifts of z > 6 or for over-massive BHs that are upper outliers of the average Magorrian
relationship. In such a case, the BH growth must proceed at appreciably high Eddington
ratios of λ >∼ 1 or starting from heavy BH seeds of M• ∼ 103−5M�. This instance can be
partially justified theoretically but struggles somewhat against the present observational
estimates. This defies expectations of the mass accretion mechanism, which would need a
decrease in mass content as we approach the moment of the Big Bang.

As we trace our steps backward in time toward this pivotal moment, astrophysicists
may encounter the compelling need to reconsider the prevailing mass accretion hypoth-
esis. Embracing this evolving perspective could benefit from exploring new theoretical
frameworks that might offer valuable insights and enrich our understanding of SMBH
formation.

5. Discussion

According to reference [13], non-commutative gravity emerges from the covariance
of quantum mechanics, incorporating uncertainty relations and the maximum speed of
light and information transmission. This concept aligns with the stochastic quantum
hydrodynamic model (SQHM) [20], elucidating how the gravitational background in-
duces quantum decoherence and possibly gives rise to a macroscopic “coarse-grained”
classical reality.

Within the framework of this unified approach, where the maximum attainable velocity
cannot exceed the speed of light, such as

·
x ≤ c, (39)

coupled with the uncertainty relations that necessitate

·
x ≥ ∆

·
x =

∆p
m

=
}

2m∆x
, (40)

Leads to }
2m∆x ≤ c and, consequently, to:

∆x >
}

2mc
=

Rc

2
, (41)

where Rc is the Compton length.
Identity Equation (41) shows that the minimum dimension of a body is half of its

Compton length. Transferring this output to BH we find that, since, in order to form a BH,
all the mass must be inside the gravitational radius, Rg, we must have that:

Rg =
2Gm

c2 >
∆x
2

= rmin =
Rc

4
, (42)

and thus, that:

Rc

4Rg
=

}
8mcRg

=
}c

8m2G
= π

mp
2

m2 < 1 (43)

leading to the condition for the black hole mass, mp, is the minimum one possible for BHs
at T = 0.

For temperatures greater than zero, the Planck mass black hole becomes unstable.
This instability arises as the expansive thermal force combines with the quantum force,
pushing a portion of the mass beyond the gravitational radius. Consequently, the residual
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mass inside is unable to generate sufficient gravitational potential to form the black hole,
ultimately resulting in its evaporation.

The validity of the result in Equation (41) is supported by quantum mechanical
gravity [13], which demonstrates that when mass density is compressed into a sphere
with a diameter equal to the Compton length, it generates a quantum potential force
that precisely counteracts the compressive gravitational force. As the BH of Planck mass
represents the lightest configuration, with its mass compressed within a sphere of half
the Compton wavelength, it follows that black holes of higher mass exhibit their mass
compressed into a sphere of smaller diameter. Consequently, the theory raises concerns
regarding the consideration of the Planck length as the smallest discrete elemental volume
of spacetime.

This output holds significant importance, as it forms the basis for both loop quantum
gravity and non-commutative string theories. These theories rely on the theory that
there exists an absolute limitation on length measurements in quantum gravity. While, in
principle, it is correct to steer clear of theoretically unrealizable infinite and infinitesimal
concepts, the fundamental arguments of these theories assume that to pinpoint a particle
within a sphere of a Planck length radius, an energy greater than the Planck mass is
required that shields whatever occurs within the Schwarzschild radius. Consequently, this
represents the smallest ‘quanta’ of space and time. The critical aspect is that a black hole of
Planck mass stands as the lightest, and any existing black hole compresses its mass into a
nucleus smaller than the Planck length [13].

Since, from a discretization standpoint, it is not possible to compress anything in a
volume smaller than the elemental one, this makes it impossible to compress the mass of
large black holes within a sphere of half the Compton diameter, consequently preventing
the achievement of gravitational equilibrium.

This compression is only feasible if spacetime discretization allows elemental cells of
smaller volume. In my opinion, the solution lies in avoiding the confusion between the
minimum measurable distance and the minimum texture length of spacetime.

Finally, it is worth noting that the current theory leads to the assumption that the
minimum texture length of spacetime corresponds to the Compton length of the maximum
possible mass, which is the mass of the universe. Consequently, we have a criterion to
rationalize the mass of the universe—why it is not higher than its value—and it is intricately
linked to the minimum length of the discrete spacetime texture.

6. Conclusions

The quantum spacetime geometrization has the capability to give rise to a gravity
equation that is analytically coupled to the fermion and boson fields. This achievement is
made possible by incorporating two fundamental principles in the process of generalization:
field equation covariance and the least-action principle.

The theory establishes the reciprocal influence of fields on the gravitational equation,
thereby defining the impact of fields on gravity. The gravitational backreaction of the
fields is determined through the energy tensor density of the fields, resulting in a non-
commutative model. The coupled system of gravity–field equations does not rely on
semiclassical approximations or weak gravity conditions. The backreaction of the fields
is accounted for at any level of approximation, enabling the description of gravity and
physical laws across all distance scales and under conditions of high gravity, including
the Big Bang scenario. On a cosmological scale, the model resolves the point singularity
issue associated with black holes. At the scale of elementary particles, the quantization of
the field variables gives rise to an operational system of gravity–field equations capable
of describing high-energy excited states of the vacuum, leading to significant spacetime
curvature. The weak gravity limit enables the calculation of gravitational corrections to
QED and, potentially, to the standard model as well.

Furthermore, it offers an explanation for the presence of the quintessence-like cosmo-
logical pressure density and the breaking of matter–antimatter symmetry at high energies.
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In the cosmological model, the theory provides an explanation for the formation of
supermassive black holes, surrounded by their own galaxy, directly from the Big Bang
dynamics without the need for mass accretion. This model also aligns with the recent
observations made by the James Webb Space Telescope, which provide support for the
early formation of galactic configurations shortly after the Big Bang.

It is noteworthy to observe that, similarly to classical general relativity, which couples
with the electromagnetic field and is formally unified in the context of five-dimensional
gravity, as proposed by Theodor Kaluza [21], the system of equations for the Quantum
Gravity Extension of the Standard Model establishes the mathematical groundwork for
developing a unique, multi-dimensional gravity-like equation, which encompasses the
description of fundamental interactions and particle fields.
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