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Abstract: Photons are considered to be elementary bosons in the Standard Model. The assumption
that photons are not elementary particles is assessed from an outlook of computational statistical
mechanics. A prediction of variations in the shape of the blackbody radiation spectrum with polariza-
tion is made. A better understanding of the origins of quantum statistics could be crucial for theories
beyond the Standard Model.
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1. Introduction
1.1. Motivation

In the last third of the nineteenth century Maxwell, Lord Kelvin, and Boltzmann
came to the understanding of how irreversible macroscopic behavior arises from the time-
reversible laws of microscopic physics. Though this was a great accomplishment, the
resolution of apparent paradoxes remained controversial, and the foundations of statistical
mechanics are still debated today [1]. At least some difficulties in the comprehension of
how the logic of the micro level could be related to the macroscopic behavior were due to
limitations of the mathematical/computational framework available at that time. This is
where computer simulation of a system consisting of multiple identical elements could be
helpful. If microdynamics is adequately defined, everything else would follow from it.

The second law of thermodynamics and the origins of the arrow of time have been
illustrated with a reversible lattice gas cellular automata (CA) simulation. The substitution
of individual atoms or molecules with one-bit objects on a discrete grid is simplistic, but
the ability to provide a detailed description of a system—to keep track of every element
without an information loss and actually reverse the evolution of the entire system—is
quite unique. An expansion of such toy models can contribute to understanding more
sophisticated statistical behavior [2]. CA are seen as a promising avenue to explore the roots
of quantum mechanics [3,4] and build a deterministic underlying theory. As a step in this
direction, an assumption that quantum statistics can be obtained without any fundamental
randomness deserves to be examined.

The objective of this investigation was to construct a reversible working model from
the bottom up that would exhibit the statistical behavior of massless bosons and generate the
blackbody radiation (BBR) spectrum. It is widely believed that the time reversal invariance
plays essentially the same role in classical and quantum theories. Some statistical features
of Planck’s quanta have been replicated by reversible CA [2], and it was expected that
elements of Bose–Einstein (B–E) statistics could be implemented in the same method.
However, the phase space of photons in B–E statistics—with a different number of cells
for each species of quanta—cannot provide a uniform background required for a bijective
function (would it be a unitary transformation or a reversible CA rule) and by that, it is
not compatible with reversible time evolution. This was an obstacle that motivated the
search for an alternative solution. One of the possible alternatives was to look at photons
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as composite particles instead and generate energy distributions for anticipated structures
utilizing the same CA simulation base as in [2]. This approach is presented below.

The first theory of composite photons was proposed by de Broglie in 1932 [5]. It
was a call for the reconciliation of photons with Maxwell’s electrodynamics. Some of the
latest fundamental unified theories beyond the Standard Model consider only fermions as
fundamental particles [6,7] and all bosons to be composite.

Another reason to look at boson statistics from a different perspective came from
ontology. According to Leibniz’s Principle of the Identity of Indiscernibles (PII), there
cannot be separate objects with all the same properties. In physics, classical particles
are impenetrable and can be identified by trajectories. Fermions obey Pauli’s Exclusion
Principle and cannot have all their quantum numbers in common. They are “weakly
discernible”, and the PII still can apply [8,9]. On the contrary, the elementary bosons can
have completely the same sets of properties and can be impossible to tell apart and defy the
PII. Even so, individual photons are registered in experiments routinely the same way as
other neutral composite particles—fermions or bosons. Are photons a good counterexample
to the PII as elementary bosons? To what degree should Leibniz’s principle be abandoned?
Or, should B–E statistics be reevaluated? The lack of identity for quantum particles does
not persuade philosophers. They are engaged in debates [10], and some are calling for a
reinterpretation of the concepts [11,12].

1.2. Historical Annotations

In the derivation of his formula, Planck utilized the product of two factors: the spatial
density of radiation energy (in parentheses) and the mean energy Uν for “monochromati-
cally vibrating resonators” of frequency ν [13,14]:

uνdν =

(
8πν2

c3

)
Uνdν (1)

The resonators can accommodate an integer number of “energy elements” hν, so the mean
energy at temperature T is

Uν =
hν

ehν/kBT − 1
(2)

The constants above are Boltzmann’s kB′ , Planck’s h, and the speed of light c. While the
quantization ideas had flourished in a variety of physical applications, the indistinguisha-
bility of quanta as elements of energy brought questions [15], and the radiation density
(number of resonators for each “spectral range”) had not been understood in the same
statistical terms as the mean energy.

It took more than 20 years before Bose invented new statistics with “different species
of quanta each characterized by the number Ns and energy hvs (s = 0 to s = ∞)” [16,17]. He
associated the quanta with frequency vs with “a cylindrical surface” in a phase space and
divided “the total phase space volume into cells of magnitude h3” to obtain the number of
cells for each frequency interval dv. Bose had arrived at the radiation density in (1) after
multiplying the number of cells by a factor of 2 to take into account the polarization. Bose’s
derivation of Planck’s formula was “obscure” and “only a posteriori justified” in Einstein’s
words [18], and Bose himself was not fully aware of his departure from classical statistics:

I was not a statistician to the extent of really knowing that I was doing some-
thing which was really different from what Boltzmann would have done, from
Boltzmann statistics. (as quoted in [18])

The desire to find the “real essence” of B–E statistics was one of the primary moti-
vations behind Schrödinger’s development of wave mechanics [19]. In 1926, Dirac incor-
porated B–E statistics into quantum mechanics and linked it with symmetric eigenfunc-
tions [20]. Fowler offered a general form of statistical mechanics in which classical, B–E,
and Fermi–Dirac statistics are special cases [21]. The term photon was coined the same
year [22] and quickly became popular.
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Pauli’s Exclusion Principle was formulated for electrons in 1925. Later, Weyl recog-
nized a connection between Pauli’s principle and the PII. Pauli rejected Weyl’s idea:

This sounds like a philosophical principle and then, it seems to me, there are only
two possibilities: a) as such it is wrong; b) it is correct, but nothing follows from
it for physics . . . This would really be a strange principle in the philosophy of
Leibniz, which does not hold for all objects (e.g., not for photons, as Weyl explicitly
states) but only for some (as quoted in [23])

The history of quantum statistics and related philosophical questions are well pre-
sented in [24,25].

Quantum mechanics was extremely successful in calculating probabilities, but does it
point to deterministic or random underlying processes? The Schrödinger equation describes
the wave function evolution as deterministic and reversible. Nonetheless, the standard
Copenhagen interpretation of quantum mechanics adopted a probabilistic explanation of
the wave function (the Born rule, 1926) and its indeterministic and irreversible collapse on
measurement. Lacking rationale for probabilistic rules was profoundly unsatisfying for
some physicists. In Schrödinger’s words, “everything ironed out and the true problems
concealed” (as quoted in [26]). With the quick development of quantum theories, the
physics community became more acceptive of new probabilistic/statistical ideas, and new
suggestions could be postulated and used without strict causal vetting. When probabilities
are primarily measured in experiments, it could be too difficult to recognize what is actually
happening in the quantum world, and heuristic rules can be adopted. For example, in
quantum electrodynamics:

. . . the price of this great advancement of science is a retreat by physics to the
position of being able to calculate only the probability that a photon will hit a
detector, without offering a good model of how it actually happens . . . theoretical
physics has given up on that [27]

The connection between spin (symmetrization of wavefunction) and statistics is seen
as an empirical fact in non-relativistic quantum mechanics. In the pursuit of understanding
the origins of quantum statistics, Fierz and Pauli came up with a justification in relativistic
theory in 1939–40 [28]. However, as it was stated by Feynman,

It appears to be one of the few places in physics where there is a rule which
can be stated very simply, but for which no one has found a simple and easy
explanation. The explanation is deep down in relativistic quantum mechanics.
This probably means that we do not have a complete understanding of the
fundamental principle involved. [29]

De Broglie pioneered the theory of composite photons in 1932. His photon consisted
of two, then hypothetical, corpuscles: a neutrino and an anti-neutrino. Initially, several
researchers went after the idea, but it did not find much traction afterward (see [5] and
references therein). In quantum electrodynamics, which is now integrated into a more
comprehensive theoretical set of the Standard Model, the photon is still elementary with no
known persistent constituents. (Due to the uncertainty principle, any elementary particle
in the quantum field theory, including a photon, can fluctuate into a variety of short-lived
virtual states. If a virtual particle interacts with another object, it could expose the structure.
The existence of such structure has been well established for photons experimentally at
high energies [30].) However, de Broglie’s idea may be reintroduced to reconsider the role
that gauge bosons are playing within quantum field theory [31].

Different interpretations of quantum mechanics were developed over time (from de
Broglie’s pilot wave theory in 1927 to the modern versions of superdeterminism [3]). The
quest for understanding quantum foundations is not over. In Einstein’s belief, quantum
mechanics is incomplete and should be revised:

the statistical quantum theory would, within the framework of future physics,
take an approximately analogous position to the statistical mechanics within the
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framework of classical mechanics . . . it appears impracticable to give up this
program in the “microscopic” alone. Nor can I see any occasion anywhere within
the observable facts of the quantum-field for doing so, unless, indeed, one clings
a priori to the thesis that the description of nature by the statistical scheme of
quantum-mechanics is final. [32]

Computer simulation could be instrumental in connecting hypothetical microscopic
structures with statistical distributions that can be measured experimentally.

2. Simulation of BBR

Massive particles of classical ideal gas exchange momentum and energy in reversible
elastic collisions. These collisions alone can bring an isolated system to equilibrium. On
the other hand, photons do not interact with each other under normal conditions. The
mechanism of establishing equilibrium for BBR is emission and absorption of photons
in cavity walls (equilibrium with matter). The walls could be regarded as a heat bath
for radiation. The number of photons in a cavity at equilibrium can be considered to be
constant. The preferred framework for the photon gas to explain BBR is B–E phase space,
and thermalization redistributes photons between the phase space cells. Could this process
be reversible like the collisions in an ideal gas and be in agreement with Boltzmann’s
ideas [1]?

2.1. The CA Model Where Particles Are Photons

The integer lattice gas automaton utilized in this investigation (see details in [2]) is
based on ideas of continuation of motion (a particle moves in the same direction until it
experiences a collision) and detailed balancing (in a head-on collision, particles are deflected
perpendicularly). The output of such simulation is defined by initial conditions. Three
parameters characterize the system as a whole and come from initialization: zero-point
energy z, the mean occupation number n (n > z), and the step in occupation numbers s. If
the lattice sites are initialized with “elements of disorder”, the evolution leads to statistical
equilibrium, and the most probable exponential distribution is expected for the integer
characteristics of the lattice sites.

In this model, structureless gas particles can be seen as photons of the same frequency
(a single species of quanta). They are massless and have an assigned fixed energy. For
a two-dimensional rectangular CA lattice, each lattice site contains four integers. Each
integer accommodates a number of photons moving in one of four possible directions and
can be identified with the resonator and/or phase space cell. The automaton redistributes
the photons between the resonators/cells. There is no need for intermediate emission
and absorption or cavity walls to thermalize photons. Such an isolated system is fully
reversible and can be brought to equilibrium by itself. Planck’s mean energy factor (2) is
applicable to it.

If such a system could be expanded for multiple species of quanta, one could obtain
a BBR spectrum. However, a necessary condition for reversibility is the conservation of
information. It implies bijective uniform mapping from input lattice sites to the same
number of output sites in the CA model. Such symmetrical one-to-one mapping cannot
be performed between different numbers of phase space cells for two or more species of
quanta. It would not be possible to establish bijective mapping through any intermediary
either—like the cavity walls in the traditional understanding of photon thermalization.
Thus, the B–E phase space logic for multiple species of quanta is not reversible and could
not assist in building a reversible CA.

Indivisible energy is a property of the particle in the CA model and in order to comply
with conservation of energy/momentum in each collision, the same value of energy should
be assigned to all the particles. This is another restriction of the model that makes energy
exchange impossible between different species of quanta.

With these two restrictions in mind, one can still extend the reversible integer lattice
gas model. The lattice can be expanded from two into three dimensions (with six integer
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characteristics in each lattice site instead of four), or another set of four integers can be
added to each site in a two-dimensional lattice. The added integers can be assigned to
another “breed” of particles with the same energy to make an exchange with the first set
possible. All the lattice sites are still uniformly connected with their neighbors, but the
elements of the lattice gas model could obtain a different interpretation. The lattice site
attributes can be treated as components of a composite structure. As an example, the
next section describes how Einstein’s theory of specific heat can be imitated with such a
CA model.

2.2. Einstein’s Specific Heat and Wien’s Formula for BBR

Einstein made use of Planck’s discontinuity of energy in his theory of specific heat.
In his model of a solid, atoms oscillate independently with the same frequency in the
three-dimensional lattice. Each of the three degrees of freedom in the oscillations can
be associated with a resonator and corresponding mean energy (2). As a result, at low
temperatures, the heat capacity is decreasing but at high temperatures, the mean energy
per atom is still coming to the classical limit ε = 3kBT (kBT per degree of freedom).

The detailed energy distribution for atoms (triplets of resonators) in a solid is interest-
ing in the context of this paper. It can be obtained from the integer lattice gas simulation
(see Appendix A in [2]) or by using other methods, and it is shaped as Wien’s distribu-
tion. (Wien came up with his empirical formula in 1896 to describe the BBR spectrum.
With quick experimental progress, a call for reassessment came to Planck in 1900, and
he improved Wien’s formula.) To obtain the distribution from the CA simulation, all the
integer characteristics of the three-dimensional lattice sites can be divided into three subsets:
E = {e1, e2, . . . , eN}, M = {m1, m2, . . . , mN}, and L = {l1, l2, . . . , lN}, with N integers in
each one. If the demonstration of reversibility is not a priority, a simple stochastic tech-
nique can be used instead of a CA simulation to generate the subsets (see Appendix A).
While the integer lattice gas provides a working model of a system and the automaton is a
reflection of microdynamics, it requires more computational resources and could have a
long relaxation time. On the other hand, the Monte Carlo approach is a fast way of obtaining
specific distributions while disregarding the cause. Either way, one can produce elements to
assemble the composite structures. By combining integers from the subsets, a new variable,
εi, can be introduced as follows:

εi = ei + mi + li (3)

The energy of the triplets (3) produces Wien’s distribution. The triplet can be seen
as a composite structure with the elements of subsets E, M, L as constituents. In this
interpretation, the lattice gas particles are not complete physical objects anymore (like the
photons as they were interpreted in the previous section) but simple energy bits for the
constituents. Each integer in (3) can be associated with a translational degree of freedom
in Einstein’s model of a solid. Every energy bit has the sole energy εz. Table 1 provides a
short summary of the two interpretations of the lattice gas in Sections 2.1 and 2.2.

Table 1. Two interpretations of the integer lattice gas.

Caption Section 2.1 (Basic) Section 2.2 (Composite Structures)

particle elementary photon energy bit

integer characteristic of
lattice site resonator or phase space cell resonator or a constituent of a

composite object

number of particles in
integer characteristic

number of photons associated with
the resonator or phase space cell energy of the resonator or constituent

good for single mode of radiation;
most probable distributions

detailed look at
Einstein’s specific heat;

Wien’s distribution

what is problematic
B–E phase space is not suitable for a

reversible system;
not consistent with the PII
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3. Photon Structure

The triplets (3) can generate Wien’s distribution. Could a similar structure bring
the energy distribution closer to the Planckian spectrum with the corresponding average
energy per photon, ε ≈ 2.7kBT? It is only about 10% less than for the triplet. A duplet of
noninteracting constituents would not have sufficient average energy for BBR.

By examining statistics for different combinations of two numbers—one from each of
the subsets, E and M—this study has found that the sum of both plus the geometric mean,

εi = ei + mi +
√

eimi, (4)

produces a distribution that is close in shape to Planck’s law. It is presented in Figure 1.
Planck’s law function graph is for the fixed number of photons (Appendix B) to make a
proper comparison to the energy spectrum of the same number of constructed photons (4).
The temperature is the same in simulated exponential distributions for the subsets, E and
M, and in function (A5). The units of energy (εz = 1) are the same for both.
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are composed of 𝑁~12 × 10  integers each. The simulation parameters are the mean occupation 
number 𝑛  ≈  𝑘 𝑇 𝜀 = 600⁄ , zero-point energy  𝑧 = 1, and the step in occupation numbers  𝑠 = 1. 

The energy quantization for the constituents would cause degradation of the energy 
distribution for composite photons at low mean occupation numbers that would become 
pronounced at 𝑛 < 30. Such degradation is not foreseen in the standard BBR explanation. 
To avoid this effect, the presented computations are for 𝑛 ≈  𝑘 𝑇 𝜀 = 600⁄ . Other 
simulation parameters are 𝑧 = 1 and 𝑠 = 1. It is assumed that each constituent holds at 
least one energy bit (zero-point energy is equal to unity—no emptiness). 

The two independent variables in (4) can be understood as two constituents of a 
photon for which energy can vary. The geometric mean can be seen as interaction energy 
between the two or as rotational energy. It is fully defined by the energy of two 
constituents and does not come as another degree of freedom. From the perspective of the 
structure, the average energy per photon in the BBR spectrum, 𝜀 ̅≈ 2.7𝑘 𝑇, comprises the 
average energy of two constituents, 2𝑘 𝑇, and the interaction/rotation, ~0.7𝑘 𝑇. If energy 
is defined as the total number of particles in the CA system, like was done before this 
section, the conservation of energy is not in question. On the other hand, the total 
interaction/rotational energy for the system in this section,  ∑ 𝑒 𝑚 , will fluctuate with 
evolution steps. 

The CA rule updates all cells in one step, and the steps form a succession. It can be 
seen as working in the discrete time domain where the logic of events is not spatial. The 
CA grid is organized into a number of dimensions but does not provide continuous 
symmetries or other features one would expect from a fully-fledged continuous space or 
spacetime. The Monte Carlo simulation (Appendix A) ignores any spatial ideas altogether. 
However, the physical phenomenon of BBR and Planck’s law defines not only the shape 
of energy distribution but the number of photons in the unit volume for the temperature 

Figure 1. The number of combinations (εi = ei + mi +
√

eimi) in the distribution is N. Planck’s law
function graph is for the same number of photons. Two arrays of constituents used in this simulation
are composed of N ∼ 12 × 106 integers each. The simulation parameters are the mean occupation
number n ≈ kBT/εz = 600, zero-point energy z = 1, and the step in occupation numbers s = 1.

The energy quantization for the constituents would cause degradation of the energy
distribution for composite photons at low mean occupation numbers that would become
pronounced at n < 30. Such degradation is not foreseen in the standard BBR explanation.
To avoid this effect, the presented computations are for n ≈ kBT/εz = 600. Other simulation
parameters are z = 1 and s = 1. It is assumed that each constituent holds at least one
energy bit (zero-point energy is equal to unity—no emptiness).

The two independent variables in (4) can be understood as two constituents of a
photon for which energy can vary. The geometric mean can be seen as interaction energy
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between the two or as rotational energy. It is fully defined by the energy of two constituents
and does not come as another degree of freedom. From the perspective of the structure,
the average energy per photon in the BBR spectrum, ε ≈ 2.7kBT, comprises the average
energy of two constituents, 2kBT, and the interaction/rotation, ~0.7kBT. If energy is defined
as the total number of particles in the CA system, like was done before this section, the
conservation of energy is not in question. On the other hand, the total interaction/rotational
energy for the system in this section, ∑N

√
eimi, will fluctuate with evolution steps.

The CA rule updates all cells in one step, and the steps form a succession. It can be
seen as working in the discrete time domain where the logic of events is not spatial. The CA
grid is organized into a number of dimensions but does not provide continuous symmetries
or other features one would expect from a fully-fledged continuous space or spacetime.
The Monte Carlo simulation (Appendix A) ignores any spatial ideas altogether. However,
the physical phenomenon of BBR and Planck’s law defines not only the shape of energy
distribution but the number of photons in the unit volume for the temperature (A4). It can
be used to introduce distance and volume as secondary attributes into the system.

The introduction of spatial elements into the CA model was not the goal of this
investigation, and such a possibility is discussed only in this paragraph. The system can
be “spatially extended” [33] by assigning length to connections to neighboring cells in the
CA grid. According to (A4), one photon on average takes the volume of a cubic box with a
side length proportional to hc

kBT . The length (distance between cells) can be attributed to a
photon in this model and defined as the function—d = w

εi
, where w is a constant—to satisfy

spatial requirements of BBR. This function is analogous to the photon’s wavelength–energy
relationship in conventional terms: λ = hc

ε . The spatial locations of cells in such a system
are relative and would fluctuate with changes in the energy of each cell with evolution
steps. The assumption of nonzero positive minimal energy for photons is required for
this distance function. Physical space in this model is curved by radiation like it is curved
by masses in General Relativity, and there is no “empty” space. A similar assumption
of positive minimal energy was made for the constituents to form energy distribution in
Figure 1. The CA models are considered as candidates for emergent space of fundamental
physics [3,4].

The two constituents, with a quite arbitrarily injected interaction/rotation, bring
the energy distribution close to Planck’s radiation law over a broad spectral range. The
interaction could point to a force between the constituents but it does not originate from the
generic microdynamics used to produce the constituents. This structure is reminiscent of
mesons in the Standard Model: one quark and one antiquark bound together by the strong
interaction. De Broglie’s attempt to reconcile photons with Maxwell’s electrodynamics
brought him to the first composite photon theory. This paper represents another search for
continuity, now in statistics, but again, points to a structure that is akin to de Broglie’s.

4. Polarization and a Hypothetical Experiment

BBR, in general, is unpolarized. In the conventional explanation of the BBR spectrum,
spin or polarization is taken into account as a factor that doubles the number of photons but
does not affect the shape of energy distribution. On the other hand, the composite structure
(4) has two components (like the electromagnetic field in classical electrodynamics) and, in
addition, it incorporates interaction/rotational energy that affects the shape of distribution
without bringing in another degree of freedom, like spin or polarization.

However, it makes sense to consider an additional degree of freedom for the rotation
of a composite photon. It has been shown, for example, in optomechanical measurements
of photon spin angular momentum and optical torque [34], that the sign and magnitude of
optical torque are determined by the photon polarization states. The effective spin angular
momentum of a photon is equal to zero for linearly polarized light and is significant when
the polarization is circular or elliptical. The same impact from polarization can be expected
on the rotational energy of photons. In (4),

√
eimi would represent the mean rotational

energy for a subset of unpolarized photons with specific energy of the constituents, ei and
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mi. The rotational energy could vary with polarization and, for linearly polarized light,
would be always zero. If polarization is constrained, the shape of energy distribution
would differ from Planckian as well. For linearly polarized light (a duplet εi = ei + mi with
no rotation), the energy distribution would be shaped as A ε2

eε/kBT , where A is a constant.
This prediction for the shape of the energy spectrum could be tested experimentally.

One of the hypothetical experiments to detect the composite structure of photons
could be similar to a measurement of the BBR spectrum in a well-controlled laboratory
environment. The typical system consists of a BBR source, a spectrometer, and a detector
(a photo sensor to measure the light intensity). It can be supplemented with a polarizer
installed between the BBR source and the spectrometer. With the polarizer, the shape of
the measured distribution would differ from Planckian as predicted above—this would
support the suggestion of this paper. An optical setup in [35] can be seen as an example
of a system for precisely measuring thermal radiation spectra. Additional experimental
details on how to integrate a polarizer into such a system can be found in [36].

5. Conclusions

B–E statistics was first introduced specifically to explain Planck’s law. Further ad-
vances in particle physics discovered multiple other bosons in addition to photons. The ma-
jority of all bosons are believed to be constructed from an even number of quarks/antiquarks
or other particles, while photons, along with other gauge bosons and Higgs bosons, are still
regarded as elementary particles in the Standard Model. A possible alternative justification
of the Planckian spectrum can come from the intrinsic structure. If one accepts the BBR
spectrum as a manifestation of the photon’s structure, one might also infer that other
fundamental bosons have a similar intrinsic organization and are not elementary.

If all bosons were not elementary, Leibniz’s Principle of the Identity of Indiscernibles
would be vindicated in particle physics since “the only cases in which the status of quantum
particles as objects is seriously in question are . . . elementary bosons – bosons (supposedly)
with no internal fermionic structure” [8].

The understanding of quantum statistics’ origins plays a key role in building fun-
damental unified theories beyond the Standard Model. In supersymmetry, bosons and
fermions are treated as fundamental particles. Each fundamental particle from one group
has an associated so-called “superpartner” in another group. Supersymmetry predicts a
large number of undiscovered elementary particles. With no fundamental bosons, there
would not be a rationale for this kind of symmetry. Some alternative theories (like Spinor
Gravity [6] and Causal Fermion Systems [7]) see the fermions as fundamental particles
and the bosons as composite objects. Accelerator experiments in high energy physics
are costly and take years. Any other experimental methods to test these theories should
be considered.
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Appendix A. Stochastic Simulation

A Monte Carlo technique similar to the one used in numerical integration can be
deployed to populate arrays (or sets) of N integers and obtain the distribution of a given
shape y = f (x) for those numbers. To do so, pairs of real pseudorandom numbers (Rx and
Ry) can be generated as points in the rectangular region that entirely covers the function
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graph y = f (x). If Ry falls below f (Rx), the value Rx is rounded up to the nearest integer
and populates one element in the array of integers. Otherwise, the pair of pseudorandom
numbers is discarded. The cycle is repeated until all elements of the array are filled.

Each array would form a most probable (Boltzmann) distribution defined by the
exponential function y = f (x) = e−xεz/kBT. The integer would stand for the number of
energy bits in the constituent of the composite structure. The rounding up makes the
spectrum discrete and sets its minimum to unity.

Appendix B. Planck’s Radiation Law for a Fixed Number of Photons

With photon energy ε instead of hv, Planck’s law for a unit volume can be written as
follows:

u(T, ε) =
8π

(hc)3
ε3

eε/kBT − 1
(A1)

The corresponding number of photons is distributed with energy as follows:

n(T, ε) =
u(T, ε)

ε
=

8π

(hc)3
ε2

eε/kBT − 1
(A2)

The total number of photons in the unit volume at temperature T can be found from
integration

N0 =
∫ ∞

0
n(T, ε)dε =

8π

(hc)3

∫ ∞

0

ε2dε

eε/kBT − 1

Let x = ε/kBT and take into account that∫ ∞

0

x2dx
ex − 1

= 2ζ(3) ≈ 2.404 (A3)

where ζ(3) is the Riemann zeta function, also known as Apéry’s constant. (The stochastic
procedure, like the one in Appendix A, could be utilized to compute this integral as well).
This results in the spatial factor in Planck’s law

N0 ≈ 2.404
8π(kBT)3

(hc)3 (A4)

with the fixed number of photons, N, distributed by energy as follows:

f (T, ε) =
N
N0

n(T, ε) ≈ N

2.404(kBT)3
ε2

eε/kBT − 1
(A5)
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