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Abstract: The effect of the width to thickness ratio on the bendability of sheet metal is investigated
using the finite element method (FEM) employing the Gurson–Tvergaard–Needleman (GTN) model.
Strain path changes in the sheet with change in the width/thickness ratio. It is shown that bendability
and fracture strain increase significantly by decrease in the width/thickness ratio. The stress state is
almost uniaxial when the stress ratio (α) is close to zero for narrow sheets. Stress ratio is nothing
but the major stress to minor stress ratio. This delays the growth and coalescence of micro-voids
as the volumetric strain and stress triaxiality (pressure/effective stress) decrease. On the other
hand, ductility decreases with increase in α for wider sheets. Fracture bending strain is calculated
and, as expected, it increases with decrease in the width/thickness ratio. Furthermore, a brief
study is performed to understand the effect of superimposed hydrostatic pressure on fracture strain
for various sheet metals with different width/thickness ratios. It is found that the superimposed
hydrostatic pressure increases the ductility, and that the effect of the width/thickness ratio in metals
on ductility is as significant as the effect of superimposed hydrostatic pressure. Numerical results are
found to be in good agreement with experimental observations.
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1. Introduction

Bending is an important property in sheet metals as bending occurs as a part of several
forming operations, such as in deep drawing in auto industry [1–4]. In [5–7], the bending
properties of various materials have been studied, and in [8,9] bending performance was
studied using the three-point bend test. On the other hand, there exist several methods to
enhance the ductility of sheet metals under bending, such as superimposing hydrostatic
pressure [10], cladding [11] and reducing the width/thickness of metals [12]. The strain
state in sheet metals changes with changing the width/thickness of a specimen and the
fracture strain increases with decreasing this ratio. However, to the best of our knowledge,
the effect of width/thickness of a specimen on bendability is not considered numerically in
detail elsewhere.

It is explained in [1,2] that bendability of sheet metals is dependent on the width to
thickness ratio of sheet metals. In fact, the fracture strain in metals is dependent on stress
triaxiality [13,14]. Figure 1 shows the dependency of fracture strain on stress triaxiality for
a typical steel material. It is observed that the fracture strain increases from plain strain
state to the uniaxial state when the stress triaxiality decreases. The uniaxial and plain strain
state are marked with arrows. The stress state of a material changes with changing the
width to thickness ratio. For narrow sheets, the stress state is almost uniaxial when stress
ratio (α) is close to zero and the ductility decreases with increase in α for wider sheets. The
maximum achievable α is 0.5 for the plane strain state where the ductility is a minimum.
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Figure 1. Dependency of fracture strain on stress triaxiality under various stress states for a typical
steel material.

It is observed in [15] through quantitative metallography and fractography that a
significant increase in ductility happens with the suppression of micro-void development.
Overall, it is generally accepted that a superimposed hydrostatic pressure increases ductility
as it delays or completely eliminates the void growth and nucleation [12,16–21]. Kao
et al. [12] presented the forming limit diagrams (surface tensile strain vs. compressive
strain at fracture) for sheets under various hydrostatic pressures, and it was found that
fracture under bending increased with increase in hydrostatic pressure and caused the
forming limit diagram to increase, which was attributed to suppression of void growth.
However, the ductility enhancement in [12] for sheet metals under hydrostatic pressure
to reach the fracture point required excessive deformation which was beyond the testing
capacity of their available equipment. Therefore, they used a different approach in which
rectangular specimens with various width/thickness ratios were tested under bending and
three different levels of hydrostatic pressure. They investigated the effect of superimposed
hydrostatic pressure on the workability and ductility of 1045 spheroidized steel in three-
point bending with various width/thickness ratios. The Gurson-Tvergaard-Needleman
(GTN) model [22–24] considers the effect of micro-voids that limit the formability of sheet
metals. The GTN model as an improvement of the original Gurson model [25] considers
void nucleation and coalescence that lead to fracture. The effect of pre-strain on bendability
has been studied by Shahzamanian et al. [26] using the GTN model and it was observed
that the pre-strain decreases the fracture strain in sheet metals under bending. Schowtjak
et al. [27] used a machine learning approach to predict the void volume fraction in the
GTN model for sheet metals under bending. Anderson et al. [28] used the GTN model
to study and compare the ductility in sheet metals under plain strain bending and far-
field plain strain tension. It was shown by Anderson et al. [28] that ductility in sheet
metals under bending is higher than that under plain strain tension. Achineethongkham
and Uthaisangsuk [29] analyzed the forming behavior of high strength steels using the
GTN model. Additionally, the GTN model has been extended suitably for anisotropic
materials, and the results were verified and used for a typical aluminum alloy in [30]. It
is to be noted that the conventional GTN model is not dependent on stress state [31], and
void growth under compression is not considered in this model [10–37]. Although the
GTN model has these limitations, overall the GTN model has been used frequently to
simulate the deformation process including fracture for different materials and in various
applications [32–36].

The effect of superimposed hydrostatic pressure on the bendability of sheet metals
using the GTN model in ABAQUS is investigated in [10]. In this study, it is discussed
how hydrostatic pressure suppresses the void growth leading to increase in ductility.
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The pressure and stress triaxiality decrease with an increase in superimposed hydrostatic
pressure. Then, the void growth decreases, and it causes the fracture strain to increase. In
another study [11], the effect of cladding on the ductility of sheet metals is investigated
using the GTN model. A softer material is clad to a base metal with a perfect bonding. The
fracture strain of the cladding material is higher than that in the base metal. Consequently,
this matter helps increase the ductility in metals. Furthermore, there exists a fracture
initiation transition from the interface between the core and base metals to the outer surface
of the sheet with increasing the clad thickness percentage. This phenomenon has been
successfully shown in [11] as observed in experiments. From [10,11], it is clear that the
FEM using the GTN model is a useful and successful approach to perform various analyses
and to understand various effects on the ductility of metals in three-point bending tests.

The aim of this study is to perform a numerical study of the effect of the width/thickness
ratio on fracture in sheet metal under three-point bending. In fact, it is shown how the width
to thickness ratio affects the bendability in sheet metals and we attempted to explain this
matter in detail. This effect is explained in a stepwise manner through modeling of various
bending tests with different width values. The finite element (FE) modeling is performed to
understand the reason for increasing fracture strain with decreasing width in a sheet metal.
All the simulations presented in this study are performed using ABAQUS/Explicit [37]
based on the GTN model. Additionally, the effect of hydrostatic pressure on the ductility
of sheet metals with various widths is discussed. The numerical results are found to be in
good agreement with experimental observations in [12].

2. Constitutive Model

The Gurson-Tvergaard-Needleman (GTN) model [22–24] is used in this study, which
is on the basis of damage growth in metals due to nucleation, void growth and coalescence;
this model was originally developed by Gurson [25]. The void growth is a function of the
plastic strain rate DP: ( .

f
)

growth
= (1− f )I : DP (1)

and the void nucleation in ABAQUS is assumed to be strain controlled as follows:

.
f = A

.
ε

P
(2)

where
.
ε

P
is the effective plastic strain rate, and the parameter A is chosen so that nucleation

follows a normal distribution, as suggested by Chu and Needleman [38]:
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here, εN is the average void nucleating strain, fN is the volume fraction of void nucleating
particles, and SN is the standard deviation of void nucleating strain.

The growth of existing voids and the nucleation of new voids are considered in the
evolution of void volume fraction as follows:

.
f =

( .
f
)

growth
+
( .

f
)

nucleation
(4)

and the function of void volume fraction ( f ∗( f )) is defined to consider coalescence as follows:

f ∗ =

{
f f ≤ fc

fc +
f ∗u− fc
f f− fc

( f − fc) f > fc
(5)

where fc is the critical void volume fraction when coalescence happens and f f is the void
volume fraction at failure. Lastly, the parameter f ∗u = 1

q1
is defined. It should be mentioned
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that void growth and nucleation do not happen when the stress state of an element is
compressive in ABAQUS, and that void growth and nucleation only happen in tension.

Finally, the approximate yield function to be used in which f ∗ is distributed randomly
is as follows:

Φ(σ, σ, f ) =
σ2

e

σ2 + 2 f ∗q1cosh
(

3q2σH
2σ

)
−
[
1.0 + (q1 f ∗)2

]
= 0 (6)

where σ is the macroscopic Cauchy stress tensor and σe, σH and σ are equivalent stress,
hydrostatic stress and matrix stress, respectively. Additionally, q1 and q2 are calibrated
parameters.

The uniaxial elastic–plastic undamaged stress–strain curve for the matrix material is
provided by the following power-law form:

ε =

{
σ
E σ ≤ σy
σy
E

(
σ
σy

)n
σ > σy

(7)

3. Problem Formulation and Method of Solution

Simulation of a three-dimensional (3D) bending test, using ABAQUS software, is
performed in this study. A schematic presentation of a metal sheet with length Lo and
thickness t is shown in Figure 2. Rigid bodies are considered for both punch and mandrel
with radii Rp and Rm, respectively. The mandrel is stationary with a length span of Lm
when the punch applies a force in the middle section of the sheet. The sheet rests on the
two mandrel and punch motion deforms the sheet.

Figure 2. Schematic of three-point bending test.

4. Results and Discussion

These values of mechanical properties are taken from Tvergaard and Needleman [22];
material properties are presented in Table 1. Three-dimensional fully reduced integration
element C3D8R in ABAQUS/Explicit is considered and length of sheet (L) and thickness
(to) are 20 mm and 2.5 mm, respectively. Additionally, Rm, Rp and Lm are 0.25 mm, 0.2 mm
and 11 mm, respectively.



Appl. Mech. 2021, 2 546

Table 1. Material properties for the sheet metal.

E (GPa) ν σy (MPa) n q1 q2 fN εN SN fc ff

Matrix
material 71 0.3 234.3 10 1.5 1.0 0.04 0.3 0.1 0.15 0.25

It should be mentioned that although the three-point bending test is a static analysis,
ABAQUS/Explicit is used in this study as ABAQUS/Standard is not able to provide the
failure in the GTN model. However, a mass scaling method with sufficient low target time
increment is used to minimize the dynamic effect of the sample.

The FE configuration of the 3D three-point bending test in ABAQUS is shown in
Figure 3. Due to the symmetry, only half of the sheet is investigated. 110 × 60 × 12 C3D8R
elements (110 elements in length direction, 60 elements in thickness direction and width
elements in Z direction) in ABAQUS/Explicit is used. Mesh sensitivity on prediction of
fracture strain in tensile tests simulation using FEM is reported in [38–42]. The effect of
mesh sensitivity on the force-displacement curve is shown in Figure 4 for three different
meshes. It is found that the size of elements has an insignificant effect on the fracture
initiation. Additionally, fracture strains for different meshes are calculated and shown in
Table 2. Fracture strain is εc = ln

(
to
t f

)
, where to and t f are the initial and final thickness of

sheet in the middle section of specimen, respectively.

Figure 3. A typical mesh with 110 × 60 × 12 3D elements (C3D8R in ABAQUS/Explicit).

Table 2. Effect of mesh on facture strain.

Mesh distribution 60× 110× 4 60× 110× 8 60× 110× 12

Fracture strain 0.279 0.288 0.283
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Figure 4. Effect of mesh sensitivity on force-displacement curve.

The deformation steps for a sheet with 10 mm width are shown in Figure 5 step-by-
step up to complete fracture. The steps are marked on the force-displacement curve in
Figure 4. Force increases linearly up to step “b” when the sheet is in the elastic region.
Then, it reaches the maximum value with advancement of punch in step “c”. Fracture
initiates in step “d” with further punch advancement, and eventually complete failure in
step “e” happens when the load drops and it reaches zero value.

4.1. Effect of Width to Thickness Ratio on Bendability

The effect of specimen width on the force-displacement curve and bendability is
shown in Figure 6, while the thickness is constant for all cases. It is found that the force-
displacement curve rises with increasing width because the volume of material increases,
and it takes more force to bend the specimen. However, the ductility decreases with an
increase in width as the stress ratio increases and the stress state changes from uniaxial
tensile to in-plane plane strain. Additionally, it must be mentioned that fracture does not
happen for the sheet with 2.5 mm width. Later in this section, the strain path for each
case will be shown and it will be understood how strain path affects the fracture strain
and ductility.
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Figure 5. Deformation steps in a sheet metal with 10 mm width under bending (the steps (a–e) are marked on the
force-displacement curve in Figure 4).
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Figure 6. Force-displacement curves in metal sheets with various widths.

The stress ratio at the outer surface in the middle section of a sheet metal changes with
change of width/thickness ratio. The strain state accordingly on the outer surface at the
middle section of the specimen changes with changing width in sheet metals. For the wide
specimen, the stress ratio is close to 0.5 corresponding to in-plane plane strain state, and
for a narrow specimen the stress ratio is close to zero corresponding to a uniaxial tensile
state [1]. The major and minor strains at point A (see Figure 2) for six different sheets with
different widths are shown in Figure 7 with the same thickness value. Here, ε11 and ε22 are
the major and minor strains, respectively. As shown in Figure 7, minor strain is almost zero
for wide sheets and its absolute value starts to increase with decreasing the sheet width.
It is clearly shown in Figure 7e,f that the strain ratio for sheets with widths 5 and 2.5 mm
reaches a negative value, close to what happens in the uniaxial tension test. Figure 8 shows
the volumetric strain (ε11 + ε22 + ε33) at point A for these six cases and it is found that this
value decreases with decreasing width/thickness ratio as shown in Figure 8. This helps
decrease the void growth following Equation (1) and it leads to higher bendability. It is to
be noted that fracture does not occur for the sheet with a width of 2.5 mm; this is why the
volumetric strain increases and then decreases when it only slides over the mandrel with
less force.
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Figure 7. Major and minor strain in metal sheets with various width/thickness ratios; (a) width = 100 mm, (b) width
= 60 mm, (c) width = 20 mm, (d) width = 10 mm, (e) width = 5 mm, and (f) width = 2.5 mm.
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Figure 8. Volumetric strain in metal sheets with various widths.

Figure 9 presents the hydrostatic pressure σH = (1/3)
(
σxx + σyy + σzz

)
and stress

triaxiality σH
σ at point A (see Figure 2), where fracture initiates as a function of punch stroke

under various widths. It is found that stress triaxiality and hydrostatic pressure decrease
with increased pressure, helping to delay void growth (Equation (6)). Stress triaxiality and
the hydrostatic pressure do not vary uniformly, which is a result of too few elements in
the Z direction. It must be emphasized that the computational time and effort increase
significantly with increasing the element in the Z direction.

Figure 10 shows the total void volume fraction ( f ) at point A, and it demonstrates that
the growth of f decreases with a decrease in specimen width. As mentioned previously,
the change in strain path as well as decrease in stress triaxiality are the main reasons for
the decreased void growth.

The ductility of the sheet is measured in terms of the fracture strain
(

εc = ln
(

to
t f

))
,

where to and t f are the initial and final thickness of sheet in the middle section of specimen,
respectively. Figure 11 shows the fracture strain of specimen with various widths and it
is observed that the fracture strain decreases with an increase of width. The decrease in
fracture strain can be explained by considering the variation in void volume fraction of
specimens with various widths. Void volume fraction decreases with decreasing width
and this causes an increase in ductility. It is to be noted that fracture does not occur for the
sheet with a width of 2.5 mm.
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Figure 9. Effect of width on (a) hydrostatic pressure and (b) stress triaxiality at point A.
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Figure 10. Void volume fractions at point A in metal sheets with various widths.

4.2. Effect of Pressure on Bendability

The effect of superimposed hydrostatic pressure
(

p = −ασy
)

on bendability in sheet
metals under in-plane plane strain condition using ABAQUS is studied in [10]. The GTN
model is used in this study and shows that void growth decreases with increased pressure
while void nucleation remains constant as a result of the constant nucleation strain in the
GTN model. As observed, ductility increases with increased pressure. In this study the
effect of superimposed hydrostatic pressure on a 10 mm-wide sheet of constant thickness
is examined using ABAQUS. The superimposed pressure is examined in two steps. First
the pressure is applied to all surfaces from zero to p = −ασy, then the punch is advanced
through the middle section of the sheet keeping the pressure constant. Figure 12 shows the
volumetric strain at point A in the sheet for different superimposed pressures and clearly
the strain path changes with pressure. It needs to be emphasized that the effect of pressure
on surfaces perpendicular to the Z direction is considered contrary to the simulation in [10],
where a 2D plain strain element was considered. The changes in the volumetric strain lead
to a decrease in the tendency for fracture from void growth, and this delays the fracture
process. Fracture does not occur for α = 0.1 and 0.2. The volumetric strain in these cases
increases and then decreases as the sheet slides over the mandrel, similar to what happened
for the 2.5 mm sheet shown in Figure 8.
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Figure 11. Fracture bending strain in metal sheets with various widths.

Figure 12. Volumetric strain in metal sheet with 10 mm width under various pressures.

Figure 13 presents the hydrostatic pressure and stress triaxiality at point A (see
Figure 2), where fracture initiates as a function of punch stroke under various pressures.
It is found that stress-triaxiality and hydrostatic pressure decrease with increasing the
pressure and this helps delay void growth following Equation (6).
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Figure 13. Effect of superimposed hydrostatic pressure on (a) hydrostatic pressure and (b) stress
triaxiality at point A for a sheet with width = 10 mm.

The fracture strains calculated for different width sheets under various pressures are
shown in Figure 14. Fracture does not occur under superimposed pressure in most cases.
However, for those cases where fracture does occur the results show that the fracture strain
increases with decreasing width as well as increasing pressure. This numerical study shows
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that the ductility enhancement through decreasing specimen width is somewhat similar to
increasing the pressure. It has a similar effect up to pressure of α = 0.2.

Figure 14. Fracture bending strain in metal sheets with different widths under various pressures.

5. Conclusions

In this study a FE analysis of the three-point bend test for sheet metal with various
width/thickness ratios is carried out. It is found that a lower width/thickness ratio im-
proves bendability significantly as the stress triaxiality decreases in the sheet, leading to
lower fracture strain. The volumetric strain and stress triaxiality decrease with decrease
in width/thickness ratio, and this delays void growth and coalescence. Thus, the fracture
strain increases with decreasing width/thickness ratio. Moreover, the effect of superim-
posed hydrostatic pressure of sheet metals on fracture strain is studied. The hydrostatic
pressure increases the fracture strain. It is observed numerically in this study that the effect
of width/thickness ratio in increasing the fracture strain is similar to that which happens
under applied pressure. Fracture does not happen in narrow sheets under superimposed
pressure and the effect of pressure on fracture strain cannot be measured. On the contrary,
the numerical results show that the effect of superimposed hydrostatic pressure on fracture
strain can be measured by increasing the width/thickness ratio in sheets.
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