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Abstract: The load-bearing capacity of a CC(T) specimen (Center-Cracked Tension) in the ductile
fracture regime is usually controlled by plastic collapse. If the material’s tearing resistance is suffi-
ciently low, the load-bearing capacity can drop below the plastic collapse value. Here, a recently
developed simple fracture mechanics-based Charpy-V impact energy criterion for plastic collapse
was used to provide a best estimate assessment of the CC(T) specimen load-bearing capacity.

Keywords: structural assessment; fracture mechanics; impact fracture; limit load; CC(T) specimen

1. Introduction

Fracture mechanics is usually used mainly to ensure that a structure will not fail
due to possible flaws. Normal engineering methods such as the one in Eurocode 3 focus
mainly on avoidance of brittle fracture. If brittle fracture can be ruled out, it is commonly
assumed that the structure will fail by plastic collapse and a limit load dimensioning is
considered sufficient. However, if the material’s ductile tearing resistance is sufficiently
low, it is possible that ductile crack growth lowers the maximum load-bearing capacity
below the plastic limit load. To safeguard against such events, a criterion for the ductile
tearing resistance is also needed.

In a recent publication, a simple criterion for plastic collapse was developed based on
the Kr/Lr ratio [1]. It postulates that if the Kr/Lr ratio is less than 0.4, the failure will be
controlled by plastic collapse. Kr represents the ratio between the elastic crack driving force
and the material’s fracture toughness, corresponding to a specific fracture definition [1]. Lr
represents the ratio between primary load and plastic limit load corresponding to yield
strength [1]. The function relating Kr to Lr represents the reciprocal of a plasticity correction
on the elastic crack driving force. The criterion results in a simple Charpy-V requirement
to ensure that the maximum load will be controlled by the limit load.

The Charpy-V impact energy requirement is conservative as it is based on a conserva-
tive estimate of the crack driving force and it is based on a lower bound-type correlation
between J1mm (J-integral value corresponding to 1 mm crack extension) and KVus (Charpy-
V impact energy at upper shelf), and the correlations have been developed for highly
constrained bend specimens (SE(B) (single-edged bend) and C(T) (compact tension)). The
requirement is not intended to provide a best estimate of the Charpy-V impact energy
required to ensure plastic collapse. It is a general screening criterion for plastic collapse.
When the requirement is fulfilled, the likelihood of reaching the plastic limit load is high.
In the original publication [1], there was a lack of experimental validation of the developed
requirement. The goal of this work was to validate the requirement using actual test
data. The CC(T) specimen geometry was chosen because it mimics structures with mainly
tension loading as is the basic assumption in Eurocode 3 (EN 1993-1-10).

Here, the method was used to assess the maximum load values of CC(T) speci-
mens. When the method is used to make a best estimate assessment of lowly constrained
CC(T) specimens, many of the aspects of the requirement need to be considered
and modified.
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1.1. The Basis of the Criteria

The Kr/Lr = 0.4 criterion allows the definition of a simple fracture toughness criterion
for plastic collapse. The stress intensity factor in terms of load P can be expressed in the form
of Equation (1) and the plastic limit load can be expressed in the form of Equation (2) [1],

KI =
P

B ·W1/2 · f(a/W) (1)

PL = σY · B ·W · F(a/W) (2)

where KI is the stress intensity factor, PL is the limit load, P is the load, B is the specimen
thickness, W is the specimen height, and σY is the yield stress.

The functions f(a/W) and F(a/W) are application-specific geometry functions that can
be found from various handbooks [2,3].

The ratio Kr/Lr corresponding to the limit load (Lr = 1) can then be written in the
form of Equation (3) by inserting PL from Equation (2) into Equation (1) [1]. The fracture
toughness KIC represents the true material’s fracture toughness, not the linear-elastic
fracture toughness. This means that KIC can correspond to J-integral-based KJC or to a
point on the tearing resistance curve, expressed in the same units as the stress intensity
factor, K. Equation (3) can be used for any geometry.

Kr(Lr=1)

Lr
=

σY ·W1/2 · f(a/W) · F(a/W)

KIC
(3)

Applying simplified equations for the stress intensity factor and the limit load and
replacing the yield strength with the material’s flow strength (σf), an upper bound estimate
of the required fracture toughness to achieve plastic collapse is given by Equation (4) [1]. It
is based on the maximum of Equation (3) for several different crack and loading geometries
and contains a plasticity correction equal to 2.5, which corresponds to the typical level of
plasticity at Lr = 1 [1].

KIC

σf ·
√

W
≥ 2⇒ plastic collapse (4)

Equation (4) gives a conservative estimate of the crack driving force close to the plastic
limit load. This needs to be matched with the material’s tearing resistance. The publica-
tion [1] favored the use of the tearing resistance corresponding to 1 mm ductile crack growth
(J1mm). The use of an initiation definition, such as JIc, is considered overly conservative.

The value of J1mm was estimated from a well validated J1mm −KVus correlation [1,4]. The
previous work [1] made use of the 5% lower bound correlation in the form of Equation (5).
The J-integral values need to be written in the form of KIC, Equation (6), where E is the
modulus of elasticity and ν is Poisson’s ratio.

J1mm−5% = 193 ·
(

KVUS

100

)1.28
(5)

KIC =

√
J · E

(1− ν)2 (6)

The publication [1] ended up with a simple Charpy-V impact energy requirement in
the form of Equation (7).

KV(J1mm) ≥ exp
{

0.59 + 0.78 · ln(W) +

√
σY

343

}
(7)

1.2. Modifications Specific to CC(T) Specimen

The CC(T) specimen has a very simple geometry (Figure 1). There are several stress
intensity factor solutions for the CC(T) specimen [2]. Equation (8) is supposed to have
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an accuracy of 0.1% for any proportional crack length a/W [2]. The corresponding limit
load equation is very simple, due to the extremely low constraint of the specimen. It can
simply be expressed in terms of a constant net section stress, Equation (9) [3]. The crack
driving force equation corresponding to limit load thus becomes Equation (10). It includes
the plasticity correction of approximately 2.5, as used in the original simplified method
described above. Equation (10) is shown graphically in Figure 2. As seen from the figure,
the maximum crack driving force is close to 2, as assumed in Equation (4).

KI = σ ·
√
π · a ·

(
1− 0.025 ·

( a
W

)2
+ 0.06 ·

( a
W

)4
·
√

sec
(π

2
· a

W

))
(8)

σL = σf ·
(

1− a
W

)
(9)

KI(Lr=1)

σf ·
√

W
=

√
π · a

W
·
(

1− 0.025 ·
( a

W

)2
+ 0.06 ·

( a
W

)4
·
√

sec
(π

2
· a

W

))
·
(

1− a
W

)
· 2.5 (10)
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Figure 2. Plasticity-corrected crack driving force at limit load

KI(Lr=1)

σf·
√

W
for a CC(T) specimen, as a

function of relative crack length a/W.

The J1mm–CVNus correlation that is based on the 5% lower bound is not applicable
for a best estimate. Instead, the median correlation should be used. This has the form of
Equation (11) [1,4].

J1mm = 269 ·
(

KVUS

100

)1.28
(11)
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The above-described energy requirement does not account for constraint differences.
Deeply cracked bend specimens experience a high stress triaxiality or constraint, because
the yielding is contained due to the compressive stresses opposite of the crack. Single-
cracked-tension-loaded specimens experience an uncontained yielding because the whole
ligament is in tension and, thus, the stress triaxiality or constraint is much lower. The
CC(T) specimen thus has a much lower constraint than the bend specimens used for the
Charpy-V correlation, and this has a pronounced effect on the tearing resistance curve.

The T-stress, which is an elastic parameter, corresponds to the higher-order nonsin-
gular term in the series expansion of the stress field equation. Even though the T-stress
describes the nonsingular stress component in the direction of the crack plane, it also gives
an approximation of the opening stress in the loading direction.

Figure 3 shows the effect of constraint, expressed in the form of T-stress at limit load,
on the J-integral for a specific crack growth compared to a high-constraint configuration [5].
Deeply cracked bend specimens have positive T-stresses, whereas the CC(T) specimens
have strongly negative T-stresses, as seen from Figure 4 [5]. The T-stress effect on the
tearing resistance can be approximated by Equation (12) [5]. The accuracy of the constraint
effect description is of the order of ±15%.

J
JT>0

≈
{

exp−
(

T-stress− 100 MPa
1500 MPa

)}2
. . . T-stress ≤ 100 MPa (12)
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Figure 4 contains a fit to the individual T-stress data. It has the form of Equation (13) [5].

T-stress
σY

≈ −1.14 + 0.89 · a
W

+ 0.152 ·
( a

W

)2
− 0.495 ·

( a
W

)3
(13)

It is important to note that Equation (13) corresponds to limit load. If the net sec-
tion stress (σnet) is below the flow stress, Equation (13) needs to be multiplied by the
ratio σnet/σf.

The Q parameter is an elastic–plastic constraint parameter. A definition, in line with
the T-stress, refers to the normalized distance between the actual tensile stress σyy at a
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specified location in front of the crack and the matching value corresponding to the small-
scale yielding solution for T = 0 [6]. It can be expressed in the form of Equation (14) [6].

Q ≡
σyy −

(
σyy
)

T=0
σY

at θ = 0,
r · σY

J
= 2 (14)
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Figure 4. T-stress at limit load, normalized by yield strength, for a CC(T) specimen, as a function of
relative crack length a/W [5].

Figure 5 shows a comparison of the yield stress-normalized elastic T-stress correspond-
ing to limit load and the Q value corresponding to the load at JIC, where the Q values
have been collected from the references leading to Figure 3. Overall, the two parameters
follow an approximate offset of 0.15. The T-stress underestimates very low Q values and
overestimates very high values, but in the range Q = −1 to 0, the estimates generally differ
less than 0.2, which is of the same order as the uncertainty in the parameter estimates.
This provides validation for the use of Equation (12) to describe the constraint effect for
ductile fracture.

Appl. Mech. 2021, 2, FOR PEER REVIEW 6 
 

 

 
Figure 5. Relation between elastic T-stress at limit load (T/σY) and elastic–plastic Q parameter at JIc 
[5]. 

The constraint effect data in Figure 3 are verified only to a J/JT>0 ratio of 2. Due to this, 
the constraint correction for the CC(T) specimens is limited to 2. This is in line with actual 
tearing resistance data for CC(T) specimens, as compared to C(T) specimen tearing re-
sistance data shown in Figure 6 [7]. 

 
Figure 6. Comparison of CC(T) and C(T) specimen tearing resistance (J-integral versus crack exten-
sion Δa) for a medium-strength steel [7]. 

2. Materials and Methods 
The data for the CC(T) tests were taken from [8–10]. Nine different steels with differ-

ent mechanical properties were covered. Their mechanical properties are given in Table 
1. The strength levels varied from moderate (325 MPa) to extra high (988 MPa). The 
Charpy-V upper-shelf energies, measured at ambient temperature, were in the range 85 J 
to 250 J. The specimens were CC(T) specimens with W = 150 mm and having varying crack 
lengths. The plate thickness varied between 20 and 40 mm, being in most cases 30 mm. 
The thickness dimension was not significant for the CC(T) specimens, when assessed in 
terms of nominal and net section stress. The first four steels had specimens with pre-fa-
tigue cracks, whereas the other steels had specimens with narrow Electric Discharge Ma-
chining (EDM) notches. All tests were performed at room temperature. The specimens 
were loaded in tension under displacement control and, for this work, the maximum load 

Figure 5. Relation between elastic T-stress at limit load (T/σY) and elastic–plastic Q parameter
at JIc [5].



Appl. Mech. 2021, 2 671

The constraint effect data in Figure 3 are verified only to a J/JT>0 ratio of 2. Due to
this, the constraint correction for the CC(T) specimens is limited to 2. This is in line with
actual tearing resistance data for CC(T) specimens, as compared to C(T) specimen tearing
resistance data shown in Figure 6 [7].
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2. Materials and Methods

The data for the CC(T) tests were taken from [8–10]. Nine different steels with different
mechanical properties were covered. Their mechanical properties are given in Table 1. The
strength levels varied from moderate (325 MPa) to extra high (988 MPa). The Charpy-V
upper-shelf energies, measured at ambient temperature, were in the range 85 J to 250 J. The
specimens were CC(T) specimens with W = 150 mm and having varying crack lengths. The
plate thickness varied between 20 and 40 mm, being in most cases 30 mm. The thickness
dimension was not significant for the CC(T) specimens, when assessed in terms of nominal
and net section stress. The first four steels had specimens with pre-fatigue cracks, whereas
the other steels had specimens with narrow Electric Discharge Machining (EDM) notches.
All tests were performed at room temperature. The specimens were loaded in tension
under displacement control and, for this work, the maximum load during the test was used
in the analysis. None of the specimens experienced unstable fracture prior to maximum
load during the tests.

Table 1. Mechanical properties of the materials [8–10].

Material σY MPa σU MPa KVus J Ref.

S355N 364 526 250 [8]
S500M 584 639 227 [8]
S690QL 845 884 192 [8]
S960QL 988 1055 125 [8]
St52-3 403 594 200 [9]
St52-3 325 490 85 [9]
Steel A 420 640 200 [10]
Steel B 565 715 200 [10]
Steel C 755 835 120 [10]



Appl. Mech. 2021, 2 672

The CC(T) test results for the three sets of steels are shown compiled in Figures 7–9, in
the form of nominal stress at load maximum.
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Figure 9. CC(T) test maximum load (nominal stress) values divided by flow stress for three different
steels, as a function of relative crack length a/W [10].

3. Results

The individual test results were analyzed with Equations (10)–(13), to estimate the
required Charpy-V impact energy to achieve the plastic limit load in terms of Equation (9).
In cases when Equation (12) indicated a larger constraint effect on J than 2, the adjustment
was limited to 2. This only occurred with the smallest crack length and higher-strength
steels. Figures 10–12 show the measured proportional maximum net section stresses as a
function of relative crack length. The results are comparable as all specimens had a width
(2W) of 300 mm. The crack length does seem to have a pronounced effect on the maximum
net section stress.
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Figure 12. Proportional net section stress values divided by flow stress for the data in Figure 9 as
a function of relative crack length and related to ratio between the Charpy-V impact energy and
estimated required impact energy to obtain the plastic limit load.

The figures include the ratio between the Charpy-V impact energy and estimated
required impact energy to obtain the plastic limit load. With some exceptions, there is a
trend that a low maximum net section stress is related to a low ratio between the Charpy-V
impact energy and estimated required impact energy.

This effect is examined more closely in Figure 13. With one exception, the results
show a positive trend between proportional maximum net section stress and the ratio
between real and required impact energy. The second St52-3 steel appears to differ from
the general trend. Generally, considering that the estimates are average best estimates,
the data tend to confirm that when the material’s impact energy matches or is above the
required value, the maximum net section stress equals or is above the plastic limit load
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value, based on flow stress. The variation in the results can be attributed to the scatter in
the J-integral—Charpy-V correlation and to small (±5%) deviations in the flow strength.

Appl. Mech. 2021, 2, FOR PEER REVIEW 10 
 

 

 
Figure 12. Proportional net section stress values divided by flow stress for the data in Figure 9 as a 
function of relative crack length and related to ratio between the Charpy-V impact energy and esti-
mated required impact energy to obtain the plastic limit load. 

 
Figure 13. Compilation of proportional net section stress divided by flow stress as a function of ratio 
between the Charpy-V impact energy and estimated required impact energy to obtain the plastic 
limit load. 

4. Discussion 
The load-bearing capacity of CC(T) specimens is seen to be controlled by the mate-

rial’s flow stress, based on the net section stress in the ligament, provided the material’s 
upper-shelf impact energy is sufficient. The second St52-3 steel seems to deviate from the 
general trend. For this steel, there are more test results from different-size CC(T) speci-
mens [11]. The results refer to specimen widths in the range 2W = 120–600 mm and a va-
riety of relative crack lengths. The material and plate thickness (30 mm) are the same as 
for the second St52-3. Most 300 mm test results are the same as in Figure 8. The nominal 
stress at load maximum, as a function of relative crack length for the different specimen 

Figure 13. Compilation of proportional net section stress divided by flow stress as a function of ratio
between the Charpy-V impact energy and estimated required impact energy to obtain the plastic
limit load.

4. Discussion

The load-bearing capacity of CC(T) specimens is seen to be controlled by the material’s
flow stress, based on the net section stress in the ligament, provided the material’s upper-
shelf impact energy is sufficient. The second St52-3 steel seems to deviate from the general
trend. For this steel, there are more test results from different-size CC(T) specimens [11].
The results refer to specimen widths in the range 2W = 120–600 mm and a variety of relative
crack lengths. The material and plate thickness (30 mm) are the same as for the second
St52-3. Most 300 mm test results are the same as in Figure 8. The nominal stress at load
maximum, as a function of relative crack length for the different specimen widths, is shown
in Figure 14 [11]. The maximum nominal stress is clearly both dependent on the relative
crack length and the specimen width.

The data in Figure 14 were analyzed similarly to the data for a constant specimen
width. The result, in the form of the ratio between the Charpy-V impact energy and
estimated required impact energy to obtain the plastic limit load, is shown in Figure 15.
The results confirm that the crack driving force directly affects the maximum net section
stress. It is unlikely that the Charpy-V energy would be much lower than 85 J. Even
though the correlation between J-integral and Charpy-V energy is based on the median
correlation, the trend with low net section stress values in Figure 15 cannot be explained by
the uncertainty in the correlation alone, as seen from Figure 16. The calculation in this case
is performed using the 5% lower-bound Charpy-V–J correlation, as given in Equation (5).
The constraint correction is also conservatively taken as 1. Even for this conservative
estimate, the net section stress values are low with respect to the expectations. One possible
explanation is that the true flow stress of this St52-3 is 10–15% lower than assumed based
on the reported tensile test results.
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Figure 15. Compilation of proportional net section stress divided by flow stress as a function of ratio
between the Charpy-V impact energy and estimated required impact energy to obtain the plastic
limit load for the second St52-3 steel.

The assumption of a lower-than-assumed flow stress is strengthened by a second set
of test results for the same St52-3 steel [11]. These test results correspond to a 15 mm plate
thickness. The mechanical properties are higher than for the 30 mm plate, but the steel
composition is identical. The material’s impact energy is not known, but from experience,
it is expected to be higher than for the 30 mm plate. The data are comprised of a set of
different-width CC(T) specimens with a constant initial flaw with 2a = 15 mm. The data, in
the form of a maximum net section stress in relation to the flow stress, are reproduced in
Figure 17, as a function of specimen width [11]. In addition, in this case, the maximum net
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section stress is lower than expected, similar to the 30 mm-thick plate data. For comparison,
a test result for a similar-strength Fe510 steel with identical flaw size (2a = 15 mm) and
plate thickness (15 mm) [12] is included in Figure 17. The behavior of the Fe510 steel is
similar to those of all the other steels in the study. This is an additional indication that the
true flow stress of this St52-3 is 10–15% lower than assumed based on the reported tensile
test results.
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limit load for the second St52-3 steel. Calculation based on conservative correlation, Equation (5),
and omitting constraint correction.
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Figure 17. Proportional net section stress as a function of specimen width for 15 mm thick specimens
with fixed flaw size, 2a = 15 mm [11,12].

Overall, the present work provides an experimental validation of the criterion and
methodology developed previously [1].
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The original Charpy-V criterion for the limit load [1] assumes a high-constraint ge-
ometry. If the principle is applied to simple tension-loaded surface-cracked structures,
the criterion can be relaxed. Figure 18 shows the Q-parameter values for shallow surface-
cracked tension specimens [5,13,14]. Except for the crack ends, the stress-normalized Q is
close to −0.5. This enables a constraint correction to the criterion given in [1]. Following
the same calculations as in [1] but correcting the crack driving force for constraint leads to
a new criterion for the Charpy-V energy. The J1mm criterion was used because it proved to
describe the CC(T) specimens well. The resulting criterion is shown in Figure 19.
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of section thickness for tension-loaded surface flaws. The estimate is based on the 5% lower-bound
Charpy-V correlation and accounting for the lower constraint.
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The curves in Figure 19 can be approximated by Equation (15), which is a fit to the
data in the figure.

KV(J1mm) ≥ exp

{
2.69 + 0.78 · ln(W)−

√
480
σy

}
(15)

The previous criterion [1] also has a requirement for temperature. Equation (16). This
too can be adjusted for constraint, simply by adjusting the temperature by Equation (17) [5],
where ∆TPC corresponds to the temperature shift due to T-stress.

TPC ≥ TKV27J − 536 +
9742
σY

+ 40.31 · ln(W) + 65.28 · ln(σY)−
71452
W · σY

(16)

∆TPC =
T-stress

12 MPa/◦C
(17)

The temperature TPC gives the lowest temperature where plastic collapse is predicted,
provided that the Charpy-V impact energy at TPC (or lower) fulfils Equation (15). The
Charpy-V data do not need to correspond to the upper shelf, as the plastic collapse criterion
does not intend to guarantee upper-shelf behavior of the structure. It only guarantees
plastic collapse prior to any possible brittle fracture. If the low-constraint condition of the
application cannot be guaranteed, the criterion in [1] should be used.

The above criteria regarding impact energy and temperature are valid for structures
in quasistatic loading, even though based on a correlation between impact energy from
a dynamic test. The correlation is only used to estimate the quasistatic tearing resistance
of the material. Dynamic loading as in the case of an earthquake requires additional
corrections both for impact energy and temperature.

It should be noted that the present criterion is aimed at low-constraint steel structures
covered by Eurocode 3 and is not intended for pressure equipment, such as piping or
pressure vessels, or steel structures where large thermal or residual stresses are present. It
can only be used if residual stresses and constraints can be ruled out.

5. Conclusions

The load-bearing capacity of a CC(T) specimen in the ductile fracture regime is usually
controlled by plastic collapse. If the material’s tearing resistance is sufficiently low, the
load-bearing capacity can drop below the plastic collapse value. Here, a recently developed
simple fracture mechanics-based Charpy-V impact energy criterion for plastic collapse was
used to provide a best estimate assessment of CC(T) specimen load-bearing capacity. The
previous criterion was modified to specifically address the CC(T) specimen geometry with
respect to crack driving force and limit load. In addition, the effect of the low constraint
connected to the CC(T) specimen was accounted for with respect to ductile tearing. Because
the goal was a best estimate, the mean J1mm–CVNus correlation was used. It was shown
that if the material’s Charpy-V impact energy in relation to the material’s yield strength is
below a specific value, the load-bearing capacity will be less than the plastic limit load. This
result verifies the previously developed simple fracture mechanics-based Charpy-V impact
energy criterion for plastic collapse. A new criterion, specifically for tension-loaded surface
flaws, was developed, in line with the previous high-constraint criterion. The present
criterion is limited to steel structures covered by Eurocode 3. It is not intended for pressure
equipment such as piping or pressure vessels, or steel structures where large thermal or
residual stresses are present. It cannot be used if residual stresses and constraints may
be present in the structure. If the low-constraint condition of the application cannot be
guaranteed, the high-constraint criterion should be used.
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