
Citation: Tanaka, S.; Sawachika, M.;

Yoshida, N.; Futani, K.; Murata, H.;

Okada, H. IL17A Suppresses IGFBP1

in Human Endometrial Stromal Cells.

Reprod. Med. 2024, 5, 43–56. https://

doi.org/10.3390/reprodmed5020006

Academic Editor: Berthold

Huppertz

Received: 6 March 2024

Revised: 22 April 2024

Accepted: 24 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

reproductive
medicine

Article

IL17A Suppresses IGFBP1 in Human Endometrial Stromal Cells
Susumu Tanaka 1,* , Misa Sawachika 1, Namika Yoshida 1, Kensuke Futani 1, Hiromi Murata 2

and Hidetaka Okada 2

1 Department of Nutrition Science, University of Nagasaki, Siebold, Nagasaki 851-2195, Japan
2 Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata 573-1010, Japan
* Correspondence: tanakass@sun.ac.jp; Tel.: +81-95-813-5212

Abstract: Interleukin (IL) 17A has been implicated in preeclampsia, preterm labor, and miscarriage.
IL17A production in non-lymphoid tissues is mainly carried out by unconventional γδ17T cells. Innate
lymphoid cells (ILCs) 3, a subgroup of innate lymphocytes, can also be a source of IL17A in the
endometrium and are required from implantation to early pregnancy, with their regulation ensuring
that pregnancy continues. Herein, we examined the expression of γδ17T cells and ILC3 regulators IL1B,
IL23A, and IL17D and IL17A receptors (IL17RA/IL17RC) in human endometrial stromal cells (EnSCs)
and cell lines (KC02-44D). Accordingly, quantitative polymerase chain reaction and immunoblotting
were employed. IL1B, IL23A, and IL17D were significantly upregulated in decidualized EnSCs and
KC02-44D cells. A significant augmentation in IL17RA/IL17RC was also observed in decidualization.
IL17A stimulation of KC02-44D cells during decidualization suppressed the decidualization marker
IGFBP1. The involvement of transcription factor Forkhead box protein O1 (FOXO1) in this repression
was reflected by its translocation from the nucleus into the cytoplasm. A role for IkB kinase alpha in
FOXO1 phosphorylation-mediated migration was also suggested. Taken together, our findings indicate
that the secretion of IL17A by γδ17T and ILC3 cells in the uterus contributes to EnSCs function and may
play critical roles in regulating IGFBP1-mediated implantation and fetal growth.
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1. Introduction

The human menstrual cycle takes approximately 28 days, during which the proliferation
of the functional layer, secretory changes in epithelial cells, stromal cell decidualization, and
menstruation occur periodically within the endometrium [1]. After the follicle transforms into
the corpus luteum, the uterine gland secretion is activated by progesterone, which is produced
by the corpus luteum. Progesterone also acts on endometrial stromal cells (EnSCs) to induce
morphological and functional differentiation, known as decidualization, thus providing a
microenvironment suitable for implantation of the embryo in humans. Upon decidualization,
EnSCs produce and secrete cytokines, chemokines, and growth factors, such as insulin-
like growth factor binding protein 1 (IGFBP1), angiogenic factors, and prolactin (PRL) [2].
Abnormal decidualization leads to placental dysplasia and underdevelopment of the spiral
artery, which can cause subsequent implantation failure and miscarriage [2–4].

In early pregnancy, the embryonic and maternal cells have been found to interact [5].
The prediction of receptor–ligand molecular pairs in the placenta and decidua of women
at 6–14 weeks of gestation indicated the presence of pregnancy-specific cell subsets and
revealed that EnSCs and immune cells in the decidua interact with embryo-derived ex-
travillous trophoblasts. Data suggest that the inflammatory cytokine interleukin (IL)17A
may have a pathological role in preeclampsia, premature birth, and miscarriage, with
previous studies having focused on IL17A produced by immune cells at the maternal–fetal
interface [6–8]. IL17A is part of the IL17 family, which plays important roles in immune
responses and host defense [9,10]. Interestingly, members of this family have been proposed
to have unique and non-overlapping functions against cancer, autoimmune disease, and
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infection. IL17A, the first member of this family to be identified, plays a critical role during
infection. Persistently high levels of IL17A and homologous proteinIL17F induce inflam-
mation. Meanwhile, IL17B has been implicated in tumorigenesis [11]. IL17C influences
mucosal barrier integrity and is implicated in autoimmune diseases [12,13]. IL-17D is a
newly identified cytokine, whose receptor was recently identified as CD93 [14,15]. IL-17E
(IL-25) enhances allergic inflammatory responses and is involved in host defense [16–18]. A
dysregulation of IL17A has been reported in unexplained recurrent pregnancy loss [19–22].
There are emerging reports that endometrial IL17A promotes trophoblast migration [23,24].

Originally, IL17A was thought to be produced mainly by Th17 cells, with a subsequent
report showing that IL17A-secreting Th17 cells induced human trophocyte invasion in
first-trimester trophocytes [25]. However, γδ17T cells have recently attracted attention as an
alternative source of IL17A in non-lymphoid tissues, including the uterus [26–28]. Murine
uterine γδT cells produce high levels of IL17A; therefore, they are called γδ17T cells [23].
Further, the reduction of Th17 cell reactivity and reversal of the Th17/Treg imbalance
did not improve pregnancy outcomes in recurrent implantation failure, suggesting that
Th17 cell-derived IL17A exerts minimal effects in the endometrium. Innate lymphoid cells
(ILCs) 3 are another potential source of IL17A within the endometrium, as they express
ROR7t [29–32]. Although ILC3 almost disappear from the decidua in late pregnancy [30,33],
an increase in ILC3 numbers in the decidua causes early delivery [34], suggesting the need
for ILC3 production between implantation and early pregnancy as well as its suppression
during continued pregnancy. Decreased ILC production or abnormal functional interactions
of ILCs with the human decidua may cause fetal death [35]. Despite a marked increase
in ILC3 within the endometrium during the implantation window being associated with
autoimmune thyroid disease and female infertility, the function of ILC3 has been reported
to be suppressed in that period [36]. Thus, we hypothesized that γδ17T cells and ILC3
may be regulated by endometrium-derived cells, as well as other immune cells, including
uterine natural killer (uNK) cells specifically found in the endometrium [33,37].

In this study, we observed for the first time the upregulation of IL1B, IL23A (which
enhances the production of IL17A by γδ17T [38–40] and ILC3 [41]), and IL17D (which
specifically regulates ILC3 function via the CD93 receptor [14,15]) in decidualized EnSCs.
Based on the increase in IL17A receptor expression during decidualization, we investi-
gated whether IL17A secreted by activated-γδ17T and ILC3 could affect decidualization
through a feedback mechanism. IL17A downregulated decidualization marker IGFBP1 in
decidualized EnSCs and the KC02-44D cell line and regulatory mechanisms for IGFBP1
downregulation by Forkhead box protein O1 (FOXO1) phosphorylation.

2. Materials and Methods
2.1. Ethical Statement

The study was explained to all eligible patients, and we obtained informed consent
from all participants. The Kansai Medical University review board approved this study
(ID: 2006101), and it was conducted in accordance with the Helsinki Declaration. Human
uteri with a benign myoma were donated by six patients (42–50 years) with regular men-
strual cycles (Table 1). Patients who received preoperative hormone therapies were not
included in this study. Histologically normal endometria were obtained from all subjects.

Table 1. Patient information.

Sample No. Materials Methods Age, Years Menstrual Cycle Phase
at the Time of Collection

1 Primary culture EnSCs Treated with E2 + MPA for 12 days RT-qPCR 50 Proliferative
2 Primary culture EnSCs Treated with E2 + MPA for 12 days RT-qPCR 45 Mid-secretory
3 Primary culture EnSCs Treated with E2 + MPA for 12 days RT-qPCR 48 Late secretory
4 Primary culture EnSCs Treated with E2 + MPA for 12 days RT-qPCR 50 Mid-secretory
5 Primary culture EnSCs Treated with E2 + MPA for 12 days RT-qPCR 44 Late secretory
6 Primary culture EnSCs Treated with E2 + MPA for 12 days RT-qPCR 49 Proliferative

RT-qPCR, reverse transcription–quantitative polymerase chain reaction; E2, estradiol; MPA, medroxyprogesterone
acetate; EnSC, endometrial stromal cells.
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2.2. Decidualization of Human EnSCs

Human EnSCs were purified from the endometrium through a previously described
method [42]. For EnSCs culture, DMEM-F12 medium without phenol red was purchased
from Thermo Fisher Scientific (Waltham, MA, USA) and supplemented with Glutamax
(2 mmol/L, Thermo Fisher Scientific), 10% Charcoal Stripped-Fetal Bovine Serum(CS-FBS;
Biowest, Nuaillé, France), streptomycin (100 µg/mL), and penicillin (100 IU/mL) (DMEM-
F12/CS-FBS medium). The cells were then cultured in a 37 ◦C humidified environment
with 5% CO2 until near confluence, changing the medium every 3 days. EnSCs were seeded
anew, and grown until confluence prior to experiments. EnSCs were then stimulated with
10−8 mol/L estradiol (E2) and 10−7 mol/L medroxyprogesterone acetate (MPA) for up to
2 weeks for induction of decidualization [43,44]. Unstimulated cells were prepared as a
control group.

2.3. Human EnSC Cell Line KC02-44D and Treatment

Because patient-derived EnSCs can vary greatly in their responsiveness to stimulation,
owing to the influence of many confounding factors, including differences in the timing
of collection during the menstrual cycle, the expression of cytokines that may regulate
IL17A-producing cells was examined using KC02-44D cells (American Type Culture Col-
lection, Manassas, VA, USA), an established human EnSCs cell line [45]. KC02-44D were
cultured in DMEM medium without phenol red containing Glutamax (2 mmol/L, Thermo
Fisher Scientific), 10% Fetal Bovine Serum (EU Origin), Charcoal Stripped (CS-FBS, Biow-
est, France), streptomycin (100 µg/mL), and penicillin (100 IU/mL). Cells were cultured
until near confluence, changing the medium every 3 days. KC02-44D were treated with
10−8 mol/L E2, 10−7 mol/L MPA, and 0.5 mM 8-Bromo-cAMP (Sigma-Aldrich Co., LLC,
St. Louis, CO, USA) (E2 + MPA + cAMP treatment) for up to 6 days for the induction
of decidualization [46]. Unstimulated cells were prepared as a control group. To test the
effects of IL17A on decidualization, in addition to the control and E2 + MPA + cAMP
treatments, 10 ng/mL IL17A (Recombinant Human IL-17A, Fujifilm Corp., Tokyo, Japan)
or E2 + MPA + cAMP + 10 ng/mL IL17A stimulations were conducted for up to 6 days.

2.4. Quantitative Polymerase Chain Reaction (qPCR)

The extraction of total RNA from EnSCs or KC02-44D cells with or without treatment was
conducted using the Sepasol®-RNA I Super G (Nacalai Tesque Inc., Kyoto, Japan). Reverse
transcription was performed using a ReverTraAce qPCR RT master mix with gDNA remover
(Toyobo, Osaka, Japan). qPCR analysis was conducted on a LightCycler96 (Roche Diagnostics
K.K., Tokyo, Japan) and Thunderbird Next qPCR Mix (Toyobo). The qPCR primers are
presented in Table 2. Relative expression was calculated using the 2−∆∆Ct method [47].
Hypoxanthine-phospho-ribosyl-transferase 1 (HPRT1) was used as a housekeeping gene.

Table 2. Primers for qPCR.

Gene
Symbol Definition Primer Name Sequence (5′-3′)

HPRT1
Hypoxanthine
Phosphoribosyltransferase 1

895F CTAGTTCTGTGGCCATCTGCTTAG
1034R GGGAACTGATAGTCTATAGGCTCATAGTG

PRL Prolactin
374F ATTCGATAAACGGTATACCCATGGC
623R TTGCTCCTCAATCTCTACAGCTTTG

IGFBP1
Insulin-like Growth
Factor Binding Protein 1

636F CTATGATGGCTCGAAGGCTC
791R TTCTTGTTGCAGTTTGGCAG

HAND2
Heart and Neural Crest
Derivatives expressed 2

1479F AGAGGAAGAAGGAGCTGAACGA
1552R CGTCCGGCCTTTGGTTTT

IL15 Interleukin 15
165F GTTCACCCCAGTTGCAAAGT
351R CCTCCAGTTCCTCACATTC
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Table 2. Cont.

Gene
Symbol Definition Primer Name Sequence (5′-3′)

IL1B Interleukin 1 beta
162F AGCTGATGGCCCTAAACAGATG
305R TTGTCCATGGCCACAACAAC

IL23A
Interleukin23,
alpha subunit p19

71F ATCAGGCTCAAAGCAAGTGG
196R AGCAACAGCAGCATTACAGC

IL17A Interleukin 17A
1685F TCTCTTCCTCAAGCAACACTCC
1777R AAAGTTCGTTCTGCCCCATC

IL17B Interleukin 17B
594F GCACCTGCATCTTCTGAATCAC
667R ACAAAGGTGCAAGGAGGATG

IL17C Interleukin 17C
883F TGCAGAAAAGGTGTCACACG
1012R AAACAGGGGTACTTCCAAGGAG

IL17D Interleukin 17D
1791F TGGAACGTGACATCTTTGCC
1925R AAGCCTCCAGATTGATCTCTGC

IL17E (IL25) Interleukin 17E
736F AGGCTGTACCGTGTTTCCTTAG
862R CCTTCATGGCAAGTGGTTGTAC

IL17F Interleukin 17F
259F ATGAAAACCAGCGCGTTTCC
398R ATTGATGCAGCCCAAGTTCC

IL17RA Interleukin 17 Receptor A 793F TGACCAGTTTTCCGCACATG
923R ACAGCACCCTTTAAGGTTGC

IL17RC Interleukin 17 Receptor C 877F TGCAGTTTGGTCAGTCTGTG
1000R TGCTGTGTGTGGTTGAGTTC

IL22RA1
Interleukin 22 Receptor
Subunit Alpha 1

652F TGGCACCATCATGATTTGCG
780R AAGCCCATGGAGAACAGGAAG

2.5. Western Blotting

To determine whether IL17A stimulation led to FOXO1 phosphorylation, we exam-
ined the downstream pathways of IL17A. IL17A binds to the IL17RA homodimer, IL17RC
homodimer, and/or IL17RA-IL17RC heterodimer [48] and activates intracellular ACT1
by changing its steric structure, subsequently transmitting the signal to IkB kinase alpha
(IKKA)/IKKB [49]. In contrast, the downstream regulation of Akt and FOXO1 phosphory-
lation by IKKA has been previously described [50].

The soluble fraction was prepared from KC02-44D cells cultured with or without
stimulation using MPER reagent (Thermo Fisher Scientific) and protease inhibitors (Roche
Diagnostics K.K.). Western blotting was conducted to quantify IKKA and IKKB protein
levels. Proteins were separated on a 10% sodium dodecyl sulfate (SDS)–polyacrylamide
gel and transferred onto a PVDF membrane, which was then blocked using Blocking One
(Nacalai Tesque Inc.). The membrane was then incubated with 1/1000 IKKβ (D30C6) rabbit
mAb (#8943, Cell Signaling Tech, Danvers, MA, USA, RRID: AB_11024092), 1/1000 IKKα

(D3W6N) rabbit mAb (#61294, Cell Signaling Tech, RRID: AB_2799606), or 1/10,000 mouse
β-actin antibody (Sigma-Aldrich, RRID: AB_476743, Cat# A5316) in TBS containing 5%
Blocking One and 0.1% Tween-20 overnight at 4 ◦C. After washing, the membrane was
incubated with 1:5000 Goat anti-rabbit-HRP (RRID: AB_2336198, VECTOR Laboratories,
Burlingame, CA, USA, Cat# PI-1000) or 1:10,000 sheep anti-mouse-HRP (RRID: AB_772210,
GE Healthcare Life Science, Chicago, IL, USA, Cat# NA931). The resulting complexes were
visualized using Chemi-Lumi One L (Nacalai Tesque Inc.) and LAS 4000 (GE Healthcare
Life Science). ImageJ 1.54g software (National Institutes of Health, Maryland, MD, USA)
was used to determine band intensity as previously described [51]. ACTB was used as a
loading control.
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2.6. Immunocytochemistry

The sterilized cover glass was laid on a 6-well plate, and 0.3 × 106 KC02-44D cells
were seeded onto it. Three groups were studied: (I) control, (II) E2 + MPA + cAMP-treated,
and (III) E2 + MPA + cAMP + 10 ng/mL IL17A-treated groups. After 6 days with medium
change every 3 days, cultured KC02-44D were subjected to formaldehyde fixation for 5 min at
22 ◦C and were then permeabilized with methanol for 5 min at 4 ◦C. KC02-44D were then
incubated with a primary antibody (Foxo1-rabbit-mAb (C29H4) #2880 diluted to 1/1000,
Cell Signaling Tech, RRID: AB_2106495) overnight at 4 ◦C, followed by incubation with a
goat anti-rabbit-Alexa488 (# A-11008, Molecular Probes, US-OR, RRID: AB_143165) diluted
1/3000 and 1 µg/mL propidium iodide. LSM700 (Carl Zeiss Co., Ltd., Tokyo, Japan) was
used to observe the stained cells. Positive staining rates in the nucleus and cytoplasm were
calculated and averaged by visually counting the cytoplasm-stained, nucleus-localized, and
cytoplasm-localized FOXO1 in images obtained from two independent individuals. In total,
15 images (945 cells) were taken in group I, 15 images (552 cells) in group II, and 15 images
(552 cells) in group III of an area covering 1 mm2. These images were used for analysis.

2.7. Statistical Analyses

The normality of data was confirmed using the Shapiro–Wilk test. Welch’s t-test was
used to compare the means of the two groups with the Bonferroni correction. p-values of
< 0.05 were considered as indicative of statistical significance. SPSS software was used for
all statistical analyses (version 22.0; IBM Corp., Armonk, NY, USA).

3. Results
3.1. Elevations in IL1B, IL23A, and IL17D in Decidualized EnSCs

After 12 days of decidualization treatment of primary culture EnSCs, IL1B and IL23A
were significantly upregulated compared with their levels in unstimulated cells (control)
(p < 0.05) (Figure 1). Further examination of changes in the expression of IL17 gene
family members revealed no expression of IL17A, IL17E (IL25), or IL17F in EnSCs. In
contrast, IL17B, IL17C, and IL17D were detected, and a significant upregulation of IL17D
was observed during decidualization (p < 0.05, Figure 1).
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Figure 1. Changes in IL1B, IL23A, and IL17D expression in decidualized endometrial stromal cells
(EnSCs). The significant increases in IL1B ((A), p < 0.05), IL23A ((B), p < 0.05), and IL17D ((F), p < 0.05)
were observed in decidualized EnSCs. No significant differences in IL17A (C), IL17B (D), IL17C (E),
IL17E (G), and IL17F (H). * significantly different from the control (p < 0.05). HPRT1, hypoxanthine
phosphoribosyltransferase 1; E2, estradiol; MPA, medroxyprogesterone acetate; IL, interleukin; IL1B,
interleukin 1 beta; IL23A, interleukin 23 subunit alpha.

3.2. Cytokines in KC02-44D Cells

Significant upregulation of IL1B and IL23A was shown in decidualized KC02-44D
compared with their levels in control cells (p < 0.05, Figure 2). Meanwhile, there was no
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change in IL17A, IL17B, IL17C, IL17E, or IL17F (Figure 2). IL17D, however, was significantly
upregulated in KC02-44D cells during decidualization (p < 0.05; Figure 2).
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Figure 2. Cytokine expression in KC02-44D cells. Significant increases in IL1B ((A), p < 0.05), IL23A
((B), p < 0.05), and IL17D ((F), p < 0.05) were observed in decidualized KC02-44D cells. No significant
differences were noted in IL17A (C), IL17B (D), IL17C (E), IL17E (G), and IL17F (H). * significantly
different from control (p < 0.05). HPRT1, hypoxanthine phosphoribosyltransferase 1; E2, estradiol;
MPA, medroxyprogesterone acetate; IL, interleukin; IL1B, interleukin 1 beta; IL23A, interleukin
23 subunit alpha.

3.3. Responsiveness of EnSCs to γδ17T and ILC3-Derived Cytokines

Activated γδ17T and ILC3 cells secrete IL17A and IL22. IL17A receptor-encoding genes
IL17RA and IL17RC [48] were significantly upregulated in decidualized EnSCs (Figure 3,
p < 0.05). Meanwhile, there was no expression of IL22RA1, which encodes an IL22 receptor, in
the EnSCs (Figure 3). Receptor gene expression was confirmed in human endometrial tissue.
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Figure 3. Responsiveness of decidualized endometrial stromal cells (EnSCs) and KC02-44D cells
to ILC3-derived cytokines. Significant increases in IL17RA [(A,D), p < 0.05] and IL17RC [(B,E),
p < 0.05] and no significant differences in IL22RA1C (C,F) were observed in decidualized EnSCs and
KC02-44D cells. * p < 0.05 vs. control using Welch’s t-test. PCR and agarose gel electrophoresis
were performed using distilled water as a negative control to confirm their presence or absence,
and IL17RA and IL17RC signals were con-firmed to have specific sample-dependent amplifications
(G). HPRT1, hypoxanthine phosphoribosyltransferase 1; E2, estradiol; MPA, medroxyprogesterone
acetate; IL17RA, interleukin 17 receptor A; IL17RC, interleukin 17 receptor C; IL22RA1, interleukin
22 receptor subunit alpha 1; N.D., no detection.
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Subsequently, KC02-44D cells were subjected to a 6-day decidualization treatment to
examine changes in interleukin receptor expression. qPCR analysis confirmed a signifi-
cant upregulation of IL17RA and IL17RC in decidualized KC02-44D (p < 0.05). IL22RA1
expression was not detected (Figure 3).

3.4. IL17A Treatment of KC02-44D Cells

As IL17RA and IL17RC expression was detected in EnSCs, IL17A secreted from ac-
tivated γδ17T and ILC3 cells might have some effect on decidualization. Therefore, we
treated KC02-44D cells for 6 days with 0, 0.1, 1.0, 10, or 100 ng/mL IL17A, based on previ-
ous studies [37] to examine changes in PRL. A significant increase in PRL was observed
in the decidualized group relative to the control group. However, no effect of IL17A was
observed. Because there was no clear difference in the effect of IL17A concentration on
PRL, we examined its effect on other genes using concentrations from previous studies
(10 ng/mL) [52].

3.5. Effect of IL17A on Decidualization Markers in KC02-44D Cells

Next, we examined the decidualization markers [53] in decidualized KC02-44D cells
treated with 10 ng/mL IL17A. Although IGFBP1 was significantly upregulated in de-
cidualized KC02-44D (p < 0.05), significant suppression of IGFBP1 was observed in the
IL17A-stimulated cells compared to levels in decidualized KC02-44D (p < 0.05, Figure 4).
Further, significant upregulation of PRL, IL15, HAND2, and IL17D was noted in the decidu-
alized KC02-44D (p < 0.05, Figure 4). There was no effect of additional IL17A stimulation in
E2 + MPA+ cAMP-treated cells (Figure 4).
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3.6. Effect of IL17A on FOXO1 Localization in KC02-44D Cells

In KC02-44D cells, IL17A stimulation causes the phosphorylation of decidualization
marker FOXO1 and its subsequent migration out of the nucleus, resulting in a downregula-
tion of IGFBP1 [54,55]. After KC02-44D cells were stimulated with or without IL17A for
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6 days, we examined the subcellular localization of FOXO1 [56]. We expected to stain the
nucleus with propidium iodide, but the cytoplasm and nucleolus were also fluorescently
labeled (Figure 5, purple). This localization suggested that the RNA molecules were labeled
with propidium iodide. FOXO1 was fluorescently labeled with a FOXO1 antibody and
Alexa488-secondary antibody (green). Increased localization of FOXO1 in the nucleus was
found in the decidualized cells in comparison with that in the untreated cells, with changes
in FOXO1 localization to the cytoplasm observed following additional IL17A stimulation
(Figure 5A). FOXO1 localization in the nucleus or cytoplasm was determined, and the
frequency of FOXO1 relative to the total cell number included in the entire image was
calculated for each image, whereafter differences in frequency were assessed. A significant
increase in the nuclear localization of FOXO1 was found in decidualized cells and IL17A
additionally stimulated cells in comparison with that in untreated KC02-44D controls
(p < 0.05). Furthermore, a significant increase in FOXO1 translocation from the nucleus to
the cytoplasm was observed in the IL17A additionally stimulated cells in comparison to
that in decidualized cells (p < 0.05) (Figure 5B).
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Figure 5. Effect of IL17A on FOXO1 in KC02-44D. The cytoplasm and nucleolus were stained with
PI (purple). FOXO1 was fluorescently labeled using a FOXO1 antibody and an Alexa488-secondary
antibody (green). The high-power images are magnified versions of the dashed squares in the
low-power images (A). Localization in the nucleus or cytoplasm was determined, whereafter the
frequency was calculated relative to the number of cells in the entire image covering an area of
1 mm2 (B). * p < 0.05 vs. control using Welch’s t-test with Bonferroni correction. + p < 0.05, vs.
decidualization using Welch’s t-test with Bonferroni correction. IL17A, interleukin 17 A; FOXO1,
Forkhead box protein O1; PI, propidium iodide.

3.7. Mechanism of IL17A-Dependent FOXO1 Migration

To assess changes in the downstream signaling of IL17A, we detected IKKA and
IKKB levels in KC02-44D cells after additional stimulation with IL17A. Normalized IKKA
band densities were 2.59 ± 0.03 (mean ± SD, control), 1.09 ± 0.46 (decidualization),
and 0.75 ± 0.14 (decidualization +IL17A) (Figure 6A). IKKB molecular densities were
0.13 ± 0.03 (control), 0.16 ± 0.02 (decidualization), and 0.16 ± 0.04 (decidualization +IL17A)
(Figure 6A). We observed a significant decrease in IKKA (p < 0.05) and no change in IKKB
in the IL17A-stimulated cells compared to control levels (Figure 6B).
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Figure 6. Mechanism of IL17A-dependent FOXO1 migration. After KC02-44D cells were stimulated
with or without 10 ng/mL IL17A for 6 days, IKKA, IKKB, and ACTB levels were quantified (A). The
obtained signals were analyzed using ImageJ and normalized to ACTB band intensity. Significant
suppression of IKKA was noted with IL17A stimulation ((B), p < 0.05). There was no significant
difference in IKKB among the three groups (C). * p < 0.05 vs. control using Welch’s t-test with
Bonferroni correction. IL17A, interleukin 17 A; IKKA (CHUK), component of inhibitor of nuclear
factor kappa B kinase complex; IKKB (IKBKB), inhibitor of nuclear factor kappa B kinase subunit
beta; ACTB, actin beta.

4. Discussion

In this study, decidualization of EnSCs isolated from the human endometrium and
of the endometrial stromal cell line KC02-44D induced a significant upregulation of IL1B,
IL23A, and IL17D expression [15,41], affecting the proliferation, differentiation, and func-
tional regulation of γδ17T and ILC3 [30,33,38–40,57,58], which is involved in innate immu-
nity and embryo implantation in the endometrium. This finding prompted us to explore the
interactions between decidualized EnSCs and IL17A-producing immune cells. Therefore,
we examined the expression of IL17RA/IL17RC and IL22RA1, which encode receptors for
IL17A and IL22 [32] secreted from activated γδ17T and ILC3, observing the upregulation
of IL17RA and IL17RC, but not IL22RA1, in both EnSCs and KC02-44D cells. Furthermore,
IL17A stimulation during decidualization of KC02-44D cells suppressed IGFBP1 expression.
As the involvement of FOXO1 in this repression has been suggested [59], the intracellular
localization of FOXO1 was examined. FOXO1 migration into the cytoplasm was observed
in decidualized cells with additional IL17A stimulation. IGFBP1 downregulation occurred
following FOXO1 migration out of the nucleus. Furthermore, analysis of IL17A recep-
tor downstream signaling revealed a reduction in the amount of IKKA, suggesting the
involvement of IKKA in this localization change.

It has been suggested that γδT cells are the major source of IL17A in various non-
lymphoid tissues, including the uterus [23,26–28]. The crucial role of IL17A in maintaining
health in response to infection, physiological stress, and injury, as well as in autoimmune
diseases, is well recognized [38,60–62]. γδT cells, which are thought to be a key source
of IL17A in the uterus [23], may facilitate IL17A-induced trophoblast migration and thus
play an important role in defense against infection, in addition to potential involvement
in pregnancy in young women. Unlike γδT cells in other tissues, uterine immune cells
need to both defend against infection and tolerate allogeneic fetuses during pregnancy.
γδ17T cells in the endometrium do not express granzyme B and CD107a like cytotoxic
γδT [23]. Thus, γδ17T cells are thought to tolerate the fetus, with cytotoxic γδT providing
protection against infection. Comparison of data from allogenic and syngeneic reproductive
pairs also indicates that γδT cells may play an important role in successful pregnancy [23].
Furthermore, γδT cells have been found to be abundant at the maternal–fetal interface dur-
ing pregnancy as well as in the non-pregnant uterus [23], suggesting their involvement in



Reprod. Med. 2024, 5 52

endometrial decidualization. In the decidualized EnSCs in this study, IL17A was implicated
in the regulation of IGFBP1 expression, a major decidualization marker. Overexpression of
IGFBP1 in the endometrium has been associated with impaired fetal growth and placental
insufficiency and is thought to cause placenta accreta [63]. Our results suggest that in
decidualized EnSCs, IL17A decreases IKKA protein levels, regulates downstream Akt
and FOXO1 phosphorylation, and restores IGFBP1 expression to a constant level. This
suggests that IL17A secreted by γδ17T and ILC3 may contribute to the prevention of fetal
growth defects caused by placental insufficiency and the development of placenta accreta
by restricting the overexpression of IGFBP1 in decidualized EnSCs.

ILCs are immune cells involved in innate defense and tissue remodeling. NK cells,
lymphoid tissue inducer cells, and ILC1-3 belong to the ILC family [64], with all subsets
observed within human uterine tissues [29–31,33]. The ILC3 fraction identified via flow
cytometry also contains ILC precursors that can give rise to ILC1-3 [65,66]. ILC3 in the
human decidua interact with decidualized EnSCs, suggesting that they contribute to innate
immunity as well as vascular and tissue architecture [33]. Indeed, ILC3 in the decidua
likely act on extravillous trophoblasts and modulate invasion by secreting granulocyte–
macrophage colony-stimulating factor, X-C motif chemokine ligand 1, and macrophage
inflammation protein 1α and 1β [31,67,68]. The results of this study suggest that their
secretion from ILC3 [68] is dependent on activation by IL1B, IL23A, and IL17D secreted
from decidualized EnSCs.

IL17A, from intrauterine γδ17T cells, which is thought to play an important role
in EVT invasion, is highly abundant [23]. γδ17T cells are recruited into the uterus in
response to estrogen, which increases in the blood with follicle development and induces
IL17A production in γδ17T cells [69]. Therefore, their involvement in uterine function
from the proliferative to secretory phases is also possible. In this context, it is interesting
to follow the changes in expression and secretion of IL1B, IL23, and IL17D in EnSCs
under estrogen stimulation conditions. ILC3 was reduced in eutopic endometrium during
endometriosis [70] when compared to levels in normal endometrium. Therefore, we suggest
the involvement of ILC3 in normal decidualization and the menstrual cycle. Further,
dysregulation of ILC3 might contribute to endometriosis, consequent implantation failure,
and recurrent pregnancy loss.

Limitations

This study demonstrated that the levels of IL1B, IL23A, and IL17D, which regulate
γδ17T and ILC3 proliferation and differentiation, are elevated in decidualized EnSCs.
Further, IL17A secreted from these cells affects EnSCs decidualization. However, because
γδ17T and ILC3 samples derived from the human endometrium are difficult to obtain and
these cell lines have not been established outside of mice [71,72], examining the effect of
supernatant from decidualized human EnSC culture, which is thought to contain IL17D
and other factors, on the growth and differentiation of human cells has not been possible.
Since IL17D is also expressed in CD19(+) B cells and quiescent CD4(+) T cells [73,74],
determining the localization of IL17D expression in EnSCs using actual uterine tissue
sections is necessary. Furthermore, a comparison of IL1B, IL23A, and IL17D expression
in decidualized EnSCs and the presence of γδ17T or ILC3 in the vicinity of decidualized
EnSCs using endometrial tissue sections from healthy subjects and patients with infertility
may lead to the discovery of a new category of obstetric diseases caused by γδ17T and/or
ILC3. It is also necessary to measure cytokines, including IL17A and others, in the blood of
patients experiencing preeclampsia, preterm labor, and miscarriage.

5. Conclusions

We found that EnSCs may regulate γδ17T and ILC3 in the endometrium and that
IGFBP1 is suppressed by IL17A secreted by the latter two cell types. This regulation occurs
via the IL17A-IKKA-FOXO1 phosphorylation-IGFBP1 axis.
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