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Abstract: An exact expression for R = P(X < Y) has been obtained when X and Y are inde-
pendent and follow Birnbaum–Saunders (BS) distributions. Using some special functions, it was
possible to express R analytically with minimal parameter restrictions. Monte Carlo simulations and
two applications considering real datasets were carried out to show the performance of the BS models
in reliability scenarios. The new expressions are accurate and easy to use, making the results of
interest to practitioners using BS models.
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1. Introduction

The Birnbaum–Saunders (BS) fatigue-life model with two parameters was originally
introduced in [1] and stems from the principles of renewal theory, focusing on the count
of cycles required to surpass a critical threshold and induce fatigue crack propagation.
In the same year, those same authors [2] provided maximum likelihood estimates (MLE)
for BS model parameters. Later, Desmond [3] presented an alternative derivation of
the distribution using a biological model and relaxing several of the assumptions made
in [1], and Desmond [4] further studied how the Birnbaum–Saunders distribution could be
related to inverse Gaussian distributions. The cumulative distribution function (CDF) of
the Birnbaum–Saunders (BS(α, β)) model is given by:

F(t; α, β) = Φ
(

1
α

ξ

(
t
β

))
, t > 0, (1)

where Φ(·) is the CDF of a standard normal distribution, α > 0 and β > 0 are the shape
and scale parameters, respectively, and

ξ(x) =
√

x − 1√
x

, x > 0. (2)

In this work, the focus is on the stress–strength reliability metric P(X < Y) (cf. [5])
when both X and Y are distributed as BS(α, β) random variables. In broad terms, one may
be interested in the likelihood of a system or component failing based on a comparison
between the applied stress and the system’s strength. Let us consider stress, denoted
as variable Y, and strength, denoted as variable X. Assuming these are independent
continuous random variables (RVs) with probability density function (PDF) fY and CDF
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FX, respectively, the stress–strength probability (also referred to as reliability) is defined
as follows:

R := P(X < Y) =
∫ ∞

−∞
FX(x) fY(x)dx.

This theory finds numerous applications, including statistics, economics, engineering
and decision theory, and the reader may refer to the seminal work by Kotz et al. [5] for
additional details.

For instance, when considering the reliability of a particular system, such a metric can
indicate the likelihood of one system performing better than another concerning reliability
or failure rates. Thus, specialists might utilise this metric to determine which system is
more reliable for a specific application. Also, financial analysts might employ this metric to
evaluate the relative risk linked with various investment strategies or assets. In contrast,
manufacturing sectors could utilise this measure to appraise the effectiveness of quality
control methods or production processes, thereby pinpointing areas for enhancement and
optimising operations to enhance product quality and customer satisfaction.

In essence, the significance of reliability metrics such as R lies in their capacity to enable
quantitative assessments for comparison, evaluation and informed decision making in
intricate and uncertain circumstances. This, in turn, facilitates improved risk management,
allocation of resources and optimisation across a broad spectrum of domains.

The stress–strength reliability metric when X and Y are independent RVs with dis-
tributions, respectively, BS(αx, βx) and BS(αy, βy), was studied by Xiuyun et al. [6], who
derived an expression for the stress–strength probability R based on progressively Type
II-censored samples. They presented an approximated expression for R when αx = αy = α.
MLE and Bayesian estimators were also studied in [6]. In the present paper, it is of in-
terest to explore cases without such parameter restrictions and in an exact and compact
framework through the use of generalised hypergeometric special functions like the ones
proposed by Rathie et al. [7].

Special functions are widely studied in the literature, such as the cases of the gener-
alised hypergeometric function, Meijer’s G-function, Fox’s H-function, modified Bessel
Kν-function of the third kind (see Definitions 1.1, 1.5, 1.6 and 1.11 in [8]), Î-function ([7]).
Thus, the results are hereby obtained using such functions and their properties. In the con-
text of stress–strength reliability, the use of special functions is a way to provide expressions
for R with fewer parameter restrictions (see [9] for example).

The paper is organised as follows: in Section 2, some preliminary concepts are pre-
sented, especially the definition of some useful special functions and of the Birnbaum–
Saunders distribution (its density and properties of interest). Section 3 deals with the
derivation of R when X and Y are independent Birnbaum–Saunders RVs as well as the esti-
mation of R. In Section 4, Monte-Carlo simulations are presented to show the correctness of
the analytical expressions derived. Besides, in Section 4, the modelling of two real datasets
which account for the strength of different-length carbon fibres and daily wind speeds in
two Atlantic coastal cities are presented. Then, conclusions are presented in Section 5.

2. Preliminaries

In this section, some definitions and results, which will be used subsequently, are presented.

2.1. Special Functions and Mellin Transforms

The Fox’s H-function (cf. Definition 1.1 in [8]) is defined by:

Hm,n
p,q

[
z
∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]
=

1
2πi

∫
L

∏m
k=1 Γ(bj + Bjs)∏n

j=1 Γ(1 − aj − Ajs)

∏
q
k=m+1 Γ(1 − bj − Bjs)∏

p
j=n+1 Γ(aj + Ajs)

z−sds, (3)



Modelling 2024, 5 225

where 0 ≤ m ≤ q, 0 ≤ n ≤ p (not both m and n simultaneously zero), Γ(·) is the gamma
function and i stands for square root of (−1), Aj > 0 (j = 1, · · · , p), Bk > 0 (k = 1, · · · , q), aj
and bk are complex numbers such that no poles of Γ(bk + Bks) (k = 1, · · · , m) coincide with
poles of Γ(1 − aj − Ajs) (j = 1, · · · , n). L is a suitable contour w − i∞ to w + i∞, w ∈ R,
separating the poles of the two types mentioned above. For more details, see [8].

The Meijer’s G-function is a particular case of the H-function and can be defined
(Definition 1.5 in 1.5 [8]) by:

Gm,n
p,q

[
z
∣∣∣ a1, · · · , ap

b1, · · · , bq

]
=

1
2πi

∫
L

∏m
k=1 Γ(bk − s)∏n

j=1 Γ(1 − aj + s)

∏
q
k=m+1 Γ(1 − bk + s)∏

p
j=n+1 Γ(aj − s)

z−sds,

where x ̸= 0, an empty product is interpreted as unity, 0 ≤ m ≤ q, 0 ≤ n ≤ p (not both
m and n simultaneously zero). The parameters aj (j = 1, · · · , n) and bk (k = 1, · · · , m) are
such that no poles of ∏n

j=1 Γ(bk − s) coincide with poles of ∏n
j=1 Γ(1 − aj + s). Refer to

the study by [10] for details about the contour L and about the convergence conditions of
the integral.

Let M[ f ](s) denote the Mellin transform of a function f , which can be mathematically
defined as (cf. [8]):

M[ f ](s) =
∫ ∞

0
ts−1 f (t)dt, (4)

provided that the integral converges. The inverse Mellin transform is obtained by the
contour integral:

f (x) = M−1[M[ f ]](x) =
1

2πi

∫ c+i∞

c−i∞
x−sM[ f ](s)ds.

Rathie et al. [7] proposed a generalisation of the H-function, thereby named the
Î function, defined as a contour complex integral which contains H-functions in their
integrands. The function is given by:

Îm

z

∣∣∣∣∣∣∣∣
(ām,1, âm,1, Ām,1), (ām,2, âm,2, Ām,2), (ām,3, âm,3, Ām,3)

(b̄m,1, b̂m,1, B̄m,1), (b̄m,2, b̂m,2, B̄m,2)
(γ̄m, Γ̄m, π̄m, Π̄m, ρ̄m, σ̄m)
(ᾱm, β̄m, Λ̄m, Θ̄m, ζ̄m, η̄m)

 =
1

2πi

∫
L

Ψ(s)z−sds, (5)

in which Ψ(s) is the Mellin transform of the new function and can be explicitly given as:

Ψ(s) =
m

∏
j=1

(ᾱjs + β̄ j)
Λ̄js+Θ̄j eζ̄ js+η̄j × (6)

×
(

H2,1
3,2

[
(γ̄j + Γ̄js)

π̄j+Π̄js
∣∣∣ (āj,1 + âj,1s, Āj,1), (āj,2 + âj,2s, Āj,2), (āj,3 + âj,3s, Āj,3)

(b̄j,1 + b̂j,1s, B̄j,1), (b̄j,2 + b̂j,2s, B̄j,2)

])ρ̄js+σ̄j

,

where Āj,k and B̄j,k are assumed to be positive real quantities, the āj,k, âj,k, b̄j,k, b̂j,k, Π̄j, π̄j,
Γ̄j, γ̄j, ρ̄j, σ̄j, ᾱj, β̄ j, Λ̄j, Θ̄j, ζ̄ j, η̄j, j = 1, · · · , m are real numbers. The contour L runs from
c − i∞ to c + i∞, where c is a real number, and exists in accordance with Mellin inversion
theorem, taking into account all the singularities.

2.2. The BS Model

The PDF of the BS model is given by:

f (t) = ϕ

(
1
α

ξ

(
t
β

))
1
α

ξ ′
(

t
β

)
1
β

, t > 0, (7)
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which can also be explicitly expressed as:

f (t; α, β) =
1

2
√

2παβ

[(
β

t

)1/2
+

(
β

t

)3/2
]

exp
{
− 1

2α2

[
t
β
+

β

t
− 2

]}
, t > 0, (8)

since ϕ(·) denotes the PDF of a standard normal distribution. Figure 1 shows the PDF
given in (7) and the CDF given in (1) for some choices of parameters.

Figure 1. Plots for the probability density function (PDF) (left) and cumulative distribution function
(CDF) (right) of the Birnbaum–Saunders (BS) model.

From [11,12], it follows that:

E[Tp] = βp I(p, α), (9)

where T ∼ BS(α, β) and

I(p, α) =
Kp+1/2(α

−2) + Kp−1/2(α
−2)

2K1/2(α−2)
, (10)

and Kν(z) is the modified Bessel function of the third kind (see Definition 1.11 in [8]). Also,
literature [8] (p. 24) indicates that:

Kν(z) =
1
2

H2,0
0,2

[
z2

4

∣∣∣∣ (ν/2, 1), (−ν/2, 1)

]
=

1
2

G2,0
0,2

[
z2

4

∣∣∣∣ν

2
,−ν

2

]
. (11)

Equation (11) will be used to obtain an expression for the stress–strength probability
R in terms of Î functions.

3. Stress–Strength Probability for BS Models

Let X and Y be independent random variables with X ∼ BS(αx, βx), and
Y ∼ BS(αy, βy), αj, β j ∈ R+ (j ∈ {x, y}). The stress–strength probability is given by:

R = P(X < Y) =
∫ ∞

0
FX(t; αx, βx) fY(t; αy, βy)dt. (12)

As described, Xiuyun et al. [6] presented an approximate expression for (12) when
α1 = α2 = α. The results hereby obtained, on the other hand, will not consider such restrictions.
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Thus, it follows from (7) and (12) that:

R =
∫ ∞

0
Φ
(

1
αx

ξ

(
t

βx

))
ϕ

(
1
αy

ξ

(
t

βy

))
1
αy

ξ ′
(

t
βy

)
1
βy

dt

At first, let us consider a special case where ξ
(

t
βx

)
= ξ

(
t

βy

)
= u. Then, βx = βy,

which implies:

R =
∫ ∞

−∞
Φ
(

1
αx

u
)

ϕ

(
1
αy

u
)

1
αy

du.

In this case, it is worth noticing that:

1. Φ
(

1
αx

u
)

is the CDF of Vx ∼ N(0, αx);

2. ϕ
(

1
αy

u
)

is the PDF of Vy ∼ N(0, αy).

Thus, since Vx and Vy are independent:

R = P(Vx < Vy) = P(Vx − Vy < 0) =
1
2

,

which suggests the following remark:

Remark 1. If βx = βx = β, the stress–strength reliability metric in (12) is given by R = 0.5.

Coming back to the definition of R given in (12), then:

R = P(X < Y) = P
(

X
Y

< 1
)

,

since Y is a positive RV. One may look for the CDF of W = X
Y to investigate R. The Mellin

transform, as defined in (4), of the PDF fW is given by:

M[ fW ](s) = M[ fX ](s)M[ fY](2 − s).

One may refer to [13] for further details on the properties of Mellin transforms in the
context of the algebra of random variables.

From (9):
M[ fX ](s) = E[Xs−1] = βs−1

x I(s − 1, αx)

and, similarly,
M[ fY](s) = E[Ys−1] = βs−1

y I(s − 1, αy).

Then, by inverting the Mellin transform:

fW(z) =
βy

βx

1
2πi

∫
L

I(s − 1, αx)I(1 − s, αy)

(
βyz
βx

)−s
ds.

The direct integration of the PDF fW(z) leads to:

FW(z) =
∫ z

0
fW(w)dw

=
βy

βx

1
2πi

∫
L

I(s − 1, αx)I(1 − s, αy)

(
βy

βx

)−s ∫ z

0
w−sdwds

=
βy

βx

1
2πi

∫
L

I(s − 1, αx)I(1 − s, αy)

(
βy

βx

)−s z1−s

1 − s
ds,
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provided that Re(1 − s) > 0 (Re(z) is the real part of z). Then:

FW(z) = z
βy

βx

1
2πi

∫
L

I(s − 1, αx)I(1 − s, αy)

1 − s

(
βyz
βx

)−s
ds,

which implies:

R = P
(

X1

X2
< 1

)
= FW(1) =

βy

βx

1
2πi

∫
L

I(s − 1, αx)I(1 − s, αy)

1 − s

(
βy

βx

)−s
ds. (13)

Using (10) and (11), the inner part of the integral (13) becomes:

I(s − 1, αx)I(1 − s, αy) =
1

16
1

K1/2(α
−2
x )K1/2(α

−2
y )

×
{

G2,0
0,2

[
α−4

x
4

∣∣∣∣ s − 1/2
2

,− s − 1/2
2

]
+ G2,0

0,2

[
α−4

x
4

∣∣∣∣ s − 3/2
2

,− s − 3/2
2

]}
×
{

G2,0
0,2

[
α−4

y

4

∣∣∣∣∣ s − 1/2
2

,− s − 1/2
2

]
+ G2,0

0,2

[
α−4

y

4

∣∣∣∣∣ s − 3/2
2

,− s − 3/2
2

]}
.

This implies that R is the sum of four Î functions (5), proving the following result:

Theorem 1. Let X ∼ BS(αx, βx) and Y ∼ BS(αy, βy) be independent RVs, αx, αx, βx, βy ∈ R+.
Then:

R = P(X < Y) =
1

16
βy

βx

1
K1/2(α

−2
x )K1/2(α

−2
y )

{I1 + I2 + I3 + I4}, (14)

where, for k = 1, · · · , 4:

Ik = Î2

 βy

βx

∣∣∣∣∣∣∣∣
{(0, 0, 0), (1, 0, 0), (1, 0, 0)}, {(0, 0, 0), (1, 0, 0), (1, 0, 0)}

{(ν1,k/2, 1/2, 1), (−ν1,k/2,−1/2, 1)}, {(ν2,k/2, 1/2, 1), (−ν2,k/2,−1/2, 1)}
{(α−4

x /4, 0, 1, 0, 0, 1)}, {(α−4
y /4, 0, 1, 0, 0, 1)}

{(−1, 1, 0,−1, 0, 0)}, {(0, 1, 0, 1, 0, 0)}

,

in which:

ν1,k =

{
− 1

2 , k ∈ {1, 2},
− 3

2 , k ∈ {3, 4},

and

ν2,k =

{
− 1

2 , k ∈ {1, 3},
− 3

2 , k ∈ {2, 4}.

Estimation

Let X ∼ BS(αx, βx) and Y ∼ BS(αy, βy) be independent RVs. It is of interest to
estimate R = P(X < Y) based on random samples of X and Y. For this, estimates of
θ = (αx, αy, βx, βy) are required. For simplicity of notation, let x = (x1, · · · , xn) and
y = (y1, · · · , ym) denote observed random samples of X and Y, respectively.

The log-likelihood function, denoted by l(θ) := l(θ; x, y), is given by

l(θ) = −n(log αx + log βx)− m(log αy + log βy)

+
n

∑
i=1

{
− 1

2α2
x

ξ2
(

ti
βx

)
+ log ξ ′

(
ti
βx

)}

+
m

∑
j=1

{
− 1

2α2
y

ξ2
( uj

βy

)
+ log ξ ′

( uj

βy

)}
. (15)
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The maximum likelihood estimator (MLE) of (α, β) was presented in [2]. In the present
paper, two independent samples are considered with no parameter equality constraint
(as αx = αy considered by [6]), such that θ̂ is obtained directly by the MLEs (α̂x, β̂x) and
(α̂y, β̂y).

Remark 2. The MLE of R is obtained using the invariance property of MLE. This is due to the
Theorem 1 that describes R in terms of Î functions (which are integrals, hence continuous and
measurable functions), that is, using the estimates α̂x, α̂y β̂x and β̂y. Then, from (14):

R̂MLE = R(α̂x, α̂y, β̂x, β̂y).

Algorithm 1 describes the approach used in the next section to obtain bootstrap
confidence intervals of R.

Algorithm 1: Let x and y be samples of sizes n and m, respectively, and a positive
integer M.

Step 1 Generate independent bootstrap samples xi and yi from x and y (or directly sample
from distributions if true parameters are known).

Step 2 Compute the estimate θ̂i = (α̂x,i, α̂y,i, β̂x,i, β̂y,i) based on xi and yi.
Step 3 Obtain R̂i = R̂(θ̂i) by (14).
Step 4 Repeat steps 1 to 3 M times.
Step 5 The approximate 100(1 − α)% confidence interval of R is given by

[R̂M(α/2), R̂M(1 − α/2)], where R̂M(α) ≈ Ĝ−1(α) and Ĝ is the cumulative
distribution function of R̂ considering all i = 1, ..., M samples.

It is also possible to calculate the mean of the estimates obtained in Algorithm 1,
denoting this mean as R̂boot = M−1 ∑M

i=1 R̂i. It is clear that R̂MLE is the value of R̂i when
x = xi and y = yi, i.e., when the full sample is used to estimate the parameters of
the distribution. In the following section, the estimates for both R̂MLE and R̂boot are
obtained. When matched data are present (m = n), these results can be compared with a
nonparametric estimator denoted as R̂NP, which is defined as:

R̂NP =
1
n

n

∑
j=1

1xj≤yj ,

where 1A denotes the indicator function on the set A.

4. Applications

Monte Carlo simulations are presented to assess the estimation of R for the BS model
as well as the modelling of two real data sets involving different-length carbon fibres and
daily wind speeds in two Atlantic coastal cities. All the applications have been devised to
show the full capabilities of the expressions hereby developed, and readers may inquire
about the codes used directly to the corresponding author.

4.1. Monte Carlo Simulations

In this subsection, a Monte Carlo simulation study is carried out to evaluate the Boot-
strap MLE R̂boot, described in Algorithm 1. Additionally, the assessment of the estimates of
αx, βx, αy and βy are also considered. The following fixed parameters are considered for
the simulations:

• True population parameters (αx, βx, αy) = (0.3, 35, 0.5) and βy ∈ {27.5, 30, 32.5, 37.5};
• M = 100 Monte Carlo replications of samples x and y directly sampled from true

distributions since the parameters are known;
• sample sizes m = n ∈ {25, 100, 500, 1000}.
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Table 1. Monte Carlo simulation results for R estimation.

n αx βx αy βy R R̂boot Bias (R̂boot) RMSE (R̂boot)

25 0.3 35 0.5 27.5 0.6618 0.6694 0.0076 0.0060
25 0.3 35 0.5 30 0.6051 0.6092 0.0041 0.0071
25 0.3 35 0.5 32.5 0.5510 0.5599 0.0089 0.0075
25 0.3 35 0.5 37.5 0.4525 0.4484 −0.0042 0.0068

100 0.3 35 0.5 27.5 0.6618 0.6629 0.0011 0.0016
100 0.3 35 0.5 30 0.6051 0.6063 0.0012 0.0016
100 0.3 35 0.5 32.5 0.5510 0.5531 0.0021 0.0019
100 0.3 35 0.5 37.5 0.4525 0.4523 −0.0003 0.0017

500 0.3 35 0.5 27.5 0.6618 0.6619 0.0001 0.0003
500 0.3 35 0.5 30 0.6051 0.6058 0.0007 0.0003
500 0.3 35 0.5 32.5 0.5510 0.5516 0.0006 0.0004
500 0.3 35 0.5 37.5 0.4525 0.4522 −0.0003 0.0004

1000 0.3 35 0.5 27.5 0.6618 0.6614 −0.0004 0.0001
1000 0.3 35 0.5 30 0.6051 0.6048 −0.0003 0.0002
1000 0.3 35 0.5 32.5 0.5510 0.5516 0.0006 0.0002
1000 0.3 35 0.5 37.5 0.4525 0.4527 0.0002 0.0002

Aiming to study the Monte Carlo MLEs, the bias and root mean squared error (RMSE)
of each estimated value with respect to their true population’s values are computed. The
simulation study was programmed in Python. The simulation results of R̂boot are presented
in Table 1. Figures 2 and 3 present the bias and RMSE for each estimated parameter. In short,
each time Step 2 in Algorithm 1 is run, one ends up having estimates of the parameters
αx, βx, αy and βy. After M = 100 runs, there are 100 values which are compared to the true
population’s values mentioned before. Observe that by increasing the sample size n, the
bias and RMSE of the Monte Carlo simulations decrease.

Figure 2. Cont.
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Figure 2. Bias (left) and root mean squared error (RMSE) (right) of the Monte Carlo simulation
results for Bootstrap maximum likelihood estimates (MLE) of αx and βx.

Figure 3. Cont.
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Figure 3. Bias (left) and root mean squared error (RMSE) (right) of the Monte Carlo simulation results
for Bootstrap maximum likelihood estimates (MLE) of αy, βy and R.

4.2. Real Data Set

Taking advantage of real data previously analysed in the literature, two applications
are presented. The validity of the model for both datasets is studied and it is shown that
the BS distribution presents a good fit in both cases.

4.2.1. Carbon Fibres

In the work of Bader and Priest [14], single carbon fibres were tested under tension at
gauge lengths of 20 mm and 10 mm, having their strength measured in GPa. The data for
both lengths are compared to assess which is statistically higher than the other. These data
sets were modelled previously in several works (see, for example, [15]). For the convenience
of the reader, data sets of length 20 mm (x) and length 10 mm (y) are presented below:

x = (1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.977, 2.006,

2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274,

2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535,

2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773,

2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128,

3.233, 3.433, 3.585, 3.585)

and

y = (1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518,

2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856,

2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235,

3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554,

3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020).

Descriptive statistics for x and y are presented in Table 2. The boxplot in Figure 4
shows that the data in x are a bit skewed to the right while the data in y are closer to being
symmetric. Computing the value of the statistic R is important to quantitatively assess the
differences observed in the data sets.
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Table 2. Descriptive statistics for breaking strength (in GPa) of carbon fibre at gauge lengths 20 mm
(x) and 10 mm (y).

Data Set Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dv.

x 1.31 2.10 2.48 2.45 2.77 3.58 0.50
y 1.90 2.55 3.00 3.06 3.42 5.02 0.62

Figure 4. Boxplots of carbon fibre breaking strengths at gauge lengths 20 mm (left) and 10 mm
(right). The circles denote outliers, hereby considered as being outside the range (Q1 − 1.5(Q3 − Q1),
Q3 + 1.5(Q3 − Q1)), where Q1 and Q3 are the first and third quartiles of the dataset.

As the data sets have positive support, the BS distribution is a candidate to model
such data sets. Let us assume that x and y are observed samples of X ∼ BS(αx, βx) and
Y ∼ BS(αy, βy), respectively. Estimates of parameters αx, αy, βx and βy are presented in
Table 3 as well as the p-value of the Kolmogorov–Smirnov (KS) test. The results indicate
that it is not possible to reject the null hypothesis that BS models the CDF. Figure 5 shows
the fit of distributions to data sets.

Figure 5. Plots for x (left) and y (right). On top, histogram and fitted probability density function
(PDF); on bottom, empirical cumulative distribution function (CDF) and fitted CDF.
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Table 3. Estimated parameters, p-value of Kolmogorov–Smirnov (KS) test.

Data Set α̂ β̂ KS p-Value

x 0.2138 2.3965 0.8496
y 0.1984 3.0003 0.7678

Using Theorem 1 and Algorithm 1, the values of R̂MLE = 0.7802, R̂boots = 0.7808 and
the 95% bootstrap confidence interval (0.7092, 0.8472) were obtained. The spread of the
bootstrap estimates can be assessed in Figure 6. From the results, it is possible to say that
since P(X < Y) > 0.5 and 0.5 is not within the CI of the Bootstrap estimates, carbon fibres
with a length of 20 mm (sampled from X) show less strength when compared to carbon
fibres with a length of 10 mm (sampled from Y).

Figure 6. Boxplot (left) and histogram (right) for bootstrap estimates R̂i. The circles denote outliers,
hereby considered as being outside the range (Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)), where Q1

and Q3 are the first and third quartiles of the dataset.

As mentioned, this dataset has already been analysed in the stress–strength context
previously. Valiollahi et al. [15] estimated R after transforming the original data (so that
the transformed data had the same scale parameter) and modelling it using the Weibull
distribution. They considered MLE, approximate MLE (AML) and Bayes estimator obtain-
ing the values 0.5002, 0.5172 and 0.5221, respectively. They also obtained the 95% Boot-p
and Boot-t confidence intervals as (0.4758, 0.5789) and (0.4726, 0.5823). Their results cannot
provide conclusive evidence of the true problem, as the transformation severely impairs
the reliability calculations (now P(X < Y) = 0.5 is within the CI). In the present analysis,
such a transformation is not needed since the BS distribution was a good candidate for
modelling the data and Theorem 1 does not require equality of parameters between x and
y. To compare the findings of the present study with their transformed datasets, using
Tables 4 and 5 of [15], it was estimated that X ∼ BS(0.2138, 0.9040), Y ∼ BS(0.1983, 0.9051)
and R̂MLE = 0.4984, which also sits on the reported confidence interval even though BS
distributions are considered.

4.2.2. Daily Wind Speeds

An application of stress–strength probability R = P(X < Y) in the modelling and
comparison of daily wind speeds (in 0.1 m/s units) in two Atlantic coastal cities, Coruña
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(Spain)—X—and Bergen (Norway)—Y—from 1 January 2010 till 31 December 2019, is
presented. The data are presented below and were first analysed and studied in [16]:

x = (81, 33, 39, 78, 28, 22, 53, 25, 25, 28, 17, 44, 31, 28, 39,

22, 22, 42, 39, 31, 36, 39, 44, 33, 36, 25, 33, 36, 28, 44)

and

y = (36, 57, 26, 52, 29, 93, 50, 72, 53, 11, 31, 27, 37, 15, 28,

38, 28, 26, 48, 17, 34, 28, 35, 30, 45, 22, 100, 126, 21, 39).

Descriptive statistics for x (Coruña) and y (Bergen) are presented in Table 4. The
boxplot in Figure 7 shows that the 50% highest y values appear to be larger and more
dispersed than the 50% highest x values. Computing R can be useful to assess the suitability
of building a wind power plant in either city.

Table 4. Descriptive statistics for daily wind speeds (in 0.1 m/s units) in Coruña (x) and Bergen (y).

City Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dv.

Coruña 17.00 28.00 33.00 36.03 39.00 81.00 14.37
Bergen 11.00 27.25 34.50 41.80 49.50 126.00 25.99

Figure 7. Boxplots of daily winter speeds in cities Coruña (left) and Bergen (right). The circles denote
outliers, hereby considered as being outside the range (Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)),
where Q1 and Q3 are the first and third quartiles of the dataset.

Figure 8 shows the fit of BS models to the datasets; meanwhile, the estimated parame-
ters are shown in Table 5. Results of the Kolgomorov–Smirnov (KS) test indicate that BS
random variables provide a reasonable representation of the datasets.

Table 5. Estimated parameters, p-value of Kolgomorov–Smirnov (KS) test for daily winter speeds in
Coruña and Bergen.

City Data Set α̂ β̂ KS p-Value

Coruña x 0.3463 34.0008 0.7125
Bergen y 0.5559 36.2300 0.8309
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Figure 8. Plots for x (left) and y (right). On top, histogram and fitted probability density function
(PDF); on bottom, empirical cumulative distribution function (CDF) and fitted CDF.

Using Theorem 1 with the parameters of Table 5, it was possible to obtain
R̂MLE = 0.5390 from the fitted distributions, R̂NP = 0.5333 and R̂boots = 0.5394 (M = 104)
whose confidence interval is (0.3921, 0.6825) at a 95% significance level. It is important to
highlight that the size of the bootstrap confidence interval was large, similar to the results
obtained in [16] (R̂ = 0.57 and CI = (0.45, 0.69)). One can see the distribution of the
bootstrap estimates in Figure 9.

Figure 9. Boxplot (left) and histogram (right) for bootstrap estimates R̂i. The circles denote outliers,
hereby considered as being outside the range (Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)), where Q1

and Q3 are the first and third quartiles of the dataset.

Since P(X < Y) = 0.5 is within the CI, it is not possible to indicate which city would
have higher coastal wind speeds, statistically.

5. Conclusions

Assessing reliability measures of the type R = P(X < Y) has received much at-
tention in several fields. When both X and Y follow Birnbaum–Saunders distributions,
i.e., X ∼ BS(αx, βx) and Y ∼ BS(αy, βy), previous works have addressed the exact and
approximate evaluation of R assuming several restrictions on the parameters of each dis-
tribution. In the present paper, R is obtained analytically in an exact and compact form
in terms of generalised hypergeometric functions. This allows one to provide maximum



Modelling 2024, 5 237

likelihood estimates for R in a straightforward way. The results obtained indicate that
the case when βx = βy = β is not interesting because it implies R = 0.5. A Monte Carlo
simulation indicated the correctness of the estimators proposed. Additionally, two real
datasets were modelled using the new expression hereby derived, showing they are easy
to use and accurate. Accurate and precise calculations of such metrics are essential for
offering quantitative evaluations that aid in comparing, evaluating and making informed
decisions in complex and uncertain situations. Consequently, this paper contributes to
enhanced risk management, resource allocation and optimisation across various domains
which consider Birnbaum–Saunders distributions to model the analysed random variables.
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