
Citation: Zhao, Y.; Jiang, F.;

Mochizuki, S. An Efficient Explicit

Moving Particle Simulation Solver for

Simulating Free Surface Flow on

Multicore CPU/GPUs. Modelling 2024,

5, 276–291. https://doi.org/

10.3390/modelling5010015

Academic Editor: Sergey

Utyuzhnikov

Received: 19 January 2024

Revised: 14 February 2024

Accepted: 17 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Efficient Explicit Moving Particle Simulation Solver for
Simulating Free Surface Flow on Multicore CPU/GPUs
Yu Zhao, Fei Jiang * and Shinsuke Mochizuki

Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation,
Yamaguchi University, Tokiwadai, Ube 7558611, Yamaguchi, Japan; c025vdw@yamaguchi-u.ac.jp (Y.Z.);
shinsuke@yamaguchi-u.ac.jp (S.M.)
* Correspondence: fjiang@yamaguchi-u.ac.jp

Abstract: The moving particle simulation (MPS) method is a simulation technique capable of calcu-
lating free surface and incompressible flows. As a particle-based method, MPS requires significant
computational resources when simulating flow in a large-scale domain with a huge number of
particles. Therefore, improving computational speed is a crucial aspect of current research in particle
methods. In recent decades, many-core CPUs and GPUs have been widely utilized in scientific
simulations to significantly enhance computational efficiency. However, the implementation of MPS
on different types of hardware is not a trivial task. In this study, we present an implementation
method for the explicit MPS that utilizes the Taichi parallel programming language. When it comes
to CPU computing, Taichi’s computational efficiency is comparable to that of OpenMP. Nevertheless,
when GPU computing is utilized, the acceleration of Taichi in parallel computing is not as fast as the
CUDA implementation. Our developed explicit MPS solver demonstrates significant performance
improvements in simulating dam-break flow dynamics.

Keywords: MPS; Taichi programming; GPU parallel computing; free surface flow simulation

1. Introduction

Simulating free surface flow is important in many areas of engineering and science,
including civil and environmental engineering, naval architecture, oceanography, and hy-
drology. Accurate simulations of free surface flow can provide valuable information for
the design of structures and infrastructure that interact with water, such as dams, levees,
and offshore platforms. Grid-based methods, such as the finite difference method (FDM),
lattice Boltzmann method (LBM), and finite volume method (FVM), are commonly used to
simulate free surface flow [1–6]. These methods divide the domain into a grid or mesh and
solve the governing equations for the flow variables at each grid point. However, these
grid-based methods have difficulties in simulating free surface flow with large deforma-
tions or fragmentation due to numerical errors or instabilities arising from the interface
capturing schemes.

Recently, the mesh-free or Lagrangian method, such as the smoothed particle hydro-
dynamics (SPH) method [7], has been attracting attention because it is very efficient in
solving problems involving large deformations and free surfaces [8,9]. Similarly to SPH,
the MPS method [10,11] is also a Lagrangian mesh-free method that solves the Navier–
Stokes equations by tracking the movement of fluid particles. The method divides the fluid
domain into particles that are assigned properties such as mass, velocity, and pressure.
These properties are then updated at each time step by solving the governing equations
for each particle. Both methods can be used to simulate compressible and incompressible
flows, and they have undergone relevant improvements in stability and accuracy [12–15].

The main limitation of MPS is that it can be computationally expensive and requires
a large number of particles to accurately capture the flow behavior. To overcome this

Modelling 2024, 5, 276–291. https://doi.org/10.3390/modelling5010015 https://www.mdpi.com/journal/modelling

https://doi.org/10.3390/modelling5010015
https://doi.org/10.3390/modelling5010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/modelling
https://www.mdpi.com
https://orcid.org/0000-0002-8111-4979
https://doi.org/10.3390/modelling5010015
https://www.mdpi.com/journal/modelling
https://www.mdpi.com/article/10.3390/modelling5010015?type=check_update&version=2


Modelling 2024, 5 277

limitation, the parallel computing technique can be used to improve its efficiency and make
it feasible for practical applications [16–18]. As a massively parallel processor, the GPU can
achieve high accelerations and efficiency using CUDA or OpenCL programming frame-
works [19,20]. However, writing codes using these frameworks requires a high level of
programming skill as well as the knowledge of the hardware architectures [21,22]. On the
other hand, the recently developed Taichi framework is designed with a focus on enabling
high-performance numerical computation, particularly on modern hardware architectures
like GPUs. Taichi is designed with the aim of improving the efficiency of implementing
high-performance computing which requires a holistic approach that considers the entire
system, including the programming language, the hardware architecture, and the optimiza-
tion algorithms [23–26]. One of the main merits of Taichi is its ability to take full advantage
of modern hardware, including GPUs, by providing a high-level language that can be
efficiently compiled to machine code. This ability can lead to significant accelerations
over traditional approaches. Moreover, Taichi’s syntax is intentionally crafted to resemble
Python, facilitating a swift adoption for developers already acquainted with Python. Addi-
tionally, Taichi stands out as a user-friendly option for newcomers interested in numerical
computing due to its relatively low learning curve, distinguishing it from other program-
ming languages. From an academic perspective, Taichi has been used in a variety of research
projects, including simulations of fluid dynamics, molecular dynamics, image processing,
and machine learning [27–29]. Overall, Taichi’s combination of high-performance, flexibil-
ity, ease of use, and active community makes it a promising language for high-performance
numerical computing, particularly on modern hardware architectures.

In this paper, we aim to use the Taichi programming language to accelerate the
explicit moving particle simulation (EMPS) method and test the performance of parallel
computing on both the CPU and GPU. Evaluations of efficiency and accuracy using the
Taichi framework are carried out carefully. Based on our investigation, the Taichi framework
exhibits robust potential for accelerating particle simulation. The unique features of the
Taichi framework, such as its ability to operate on both CPU and GPU architectures and its
support for parallel computations, enhance the speed and efficiency of flow simulations.

2. Explicit MPS Method

The EMPS was proposed by Koshizuka et al. [10,11] to simulate free surface flow.
In the conventional semi-implicit MPS method, a Poisson equation derived from the incom-
pressible condition should be solved to calculate the pressure field. Although solving the
Poisson equation improves the simulation accuracy and ensures the overall incompressibil-
ity, it suffers a high computational cost. On the other hand, the EMPS method explicitly
calculates all terms of the following Navier–Stokes equations

Du
Dt

= −1
ρ
∇P + ν∇2u + g (1)

1
ρ

Dρ

Dt
+∇ · u = 0 (2)

where P, ρ, u, t, ν, and g represent pressure, density, flow velocity, time, kinematic viscosity,
and gravitational acceleration, respectively. In the EMPS method, the pressure is calculated
by the equation of state (EOS) [13,30,31]:

P =
ρc2

γ
(ργ

rel − 1) (3)

In the above EOS, γ = 1 is used [32], and c is the artificial speed of sound. The sound
speed must be ten times as large as the maximum fluid velocity to limit the density
fluctuation for a nearly incompressible condition. ρrel is the relative density, which can be
calculated from the particle number density defined in Equation (5).



Modelling 2024, 5 278

In the MPS method, fluids are discretized by Lagrangian particles, where the flow
variables in terms of velocity and pressure are defined. The following weight function is
used for spatial discretization and calculating the derivatives of physical quantities [11]

w(r) =

{
Re
r − 1, if 0 ≤ r ≤ Re

0, if r > Re
(4)

where r is the distance between two particles and Re represents the influence radius.
To ensure computational stability and efficiency, it is recommended that the influence
radius be 2–4 times the initial particle distance [16]. For particle i, the particle number
density can be defined as

ni = ∑
j ̸=i

w
(∣∣r j − ri

∣∣) (5)

where ri and r j represent the coordinates of particles i and j, respectively [33]. The fluid
density is considered to be proportional to the particle number density.

The velocity viscosity term and the pressure gradient term in the governing Equation (1)
can be discretized as follows [10]:

⟨∇2u⟩i =
2d

n0λ0 ∑
j ̸=i

[
(uj − ui)ω

(∣∣r j − ri
∣∣)] (6)

⟨∇P⟩i =
d
n0 ∑

j ̸=i

[
Pj − P̂i∣∣r j − ri

∣∣2 (r j − ri
)
ω
(∣∣r j − ri

∣∣)] (7)

λ0 =
∑j ̸=i′ |r0

j − r0
i′ |

2ω(|r0
j − r0

i′ |)

∑j ̸=i′ ω(|r0
j − r0

i′ |)
(8)

where d represents the number of dimensions, n0 is the constant particle number density
and λ0 is a constant parameter equal to weighted average of the squares of the distances to
neighboring particles in the influence radius. Particles in EMPS method are usually catego-
rized into fluid particles (blue) and stationary wall particles (black) (Figure 1). The value
of constant λ0 is determined for particle i′ which in the fluid part at the initial state of
the calculation. The same value of λ0 is used for all particles. During the simulation, λ0

remains constant. P̂i is the minimum value among the pressure at particle and the pressure
in its neighboring particles.

In the EMPS method, an intermediate step is needed to achieve time discretization.
The intermediate velocity and pressure of the particle can be updated as follows:

u∗ = uk + ∆t
[
(ν∇2u

)k
+ g] (9)

P∗ = c2ρ
n∗ − n0

n0
(10)

The intermediate step is represented by ∗, and k means the present time step. The variables
of k + 1 time step can be calculated as follows:

uk+1 = u∗ + ∆t[−1
ρ
(∇P)∗] (11)

rk+1 = r∗ + ∆t2[−1
ρ
(∇P)∗] (12)

Pk+1 = c2ρ
nk+1 − n0

n0
(13)



Modelling 2024, 5 279

Once the particle velocities and coordinates have been corrected, it is necessary to recalculate
the particle number density at the next time step nk+1 based on the updated coordinates.

Figure 1. Particles and buckets of the EMPS method (blue: fluid particles; black: wall particles; red:
current calculating particle; gray: buckets within interaction domain; Re: influence radius).

To maintain numerical stability, the artificial sound speed should be slower than the
sound speed of the actual physical property [32]. The numerical stability condition is
determined by the Courant number using the flow velocity Cu and the Courant number
using the sound velocity Cc:

Cu =
umax∆t

l0
(14)

Cc =
c∆t
l0

(15)

where umax is the maximum value of the flow velocity and l0 represents the distance
between particles. The upper limit 0.2 for Cu and 1.0 for Cc are obtained from a numeri-
cal experiment.

The Dirichlet boundary condition is implemented by computing the particle number
density ni using Equation (5). If the calculated density surpasses the constant particle
number density n0, the particle is identified as internal, and the pressure is calculated.
Conversely, if the density is below the reference value, it is considered a free surface
particle, and its pressure is set to zero [32]. To impose a non-slip boundary condition on the
wall during viscosity calculations, it is essential to impart an opposite velocity to the wall
particles [34]. This ensures that the velocity on the surface of the wall is zero. Alternatively,
we can set the velocity of the wall particles to zero, which may introduce a slight error in
the viscous term near the wall.

The EMPS method can use the bucket technique to enhance the computational effi-
ciency [19,35–37]. By partitioning the domain into a series of buckets (Figure 1), each of
which accommodates a cluster of particles, particle interactions can be solely computed
among the particles residing in the same or neighboring buckets. This approach signifi-
cantly mitigates the computational expense associated with the algorithm, primarily by
reducing the searching process during the calculation of the particle interactions. This



Modelling 2024, 5 280

feature is particularly critical for large-scale simulations, where the computational expense
of searching becomes prohibitively high.

The procedure of an EMPS method is summarized below in Figure 2. After setting
the initial states of each particle, the calculation for each time step begins. First, the gravity
and viscosity terms are calculated explicitly, and then the intermediate particle velocities
and coordinates are updated. After the particles are moved, the intermediate pressure is
explicitly calculated using the adjusted particle coordinates. After calculating the pressure
gradient, we modify the velocity and coordinates of the particles. The updated particle
coordinates are then used to correct the intermediate pressure. If a particle is found to
have moved outside the boundary, it will be classified as a ‘GST’ type and excluded from
subsequent calculations. After this step, the coordinates, velocity, and pressure of each
particle at the new time can all be obtained.

Program begin

Set initial state of particles
r0,u0,P0

Calculate viscosity and gravity terms and moving particles
u∗ = uk + ∆t

[
(ν∇2u

)k
+ g]

r∗ = rk + ∆tu∗

Calculate pressure of intermediate step
P∗ = c2ρ n∗−n0

n0

Calculate pressure gradient and moving particles
Calculate nk+1 use the particle coordinates

u
′
= ∆t

ρ ∇P∗

uk+1 = u∗ + u
′
, rk+1 = r∗ + ∆tu

′

Calculate pressure of k+1 step using the particle coordinates at time k+1

Pk+1 = c2ρ nk+1−n0
n0

Simulation
complete?

Next time step
k + 1→ k

Program end

No

Yes

Figure 2. The flowchart of EMPS method.



Modelling 2024, 5 281

3. Implementation of EMPS Using Taichi

In this part, we present the Taichi implementation of the MPS method. The Taichi
framework is a versatile high-performance computing framework tailored for applications
in computer graphics, computational physics, and computational science, offering seamless
integration with Python to balance ease of use with computational efficiency. It is designed
to excel in various hardware environments by supporting multiple backends, including
CPUs and GPUs across different manufacturers, ensuring broad accessibility and optimal
performance. Key features include the automatic optimization and parallelization of
code, dynamic scheduling for adaptively handling computational workloads, and built-in
support for sparse computations and differentiable programming. These features make
the Taichi framework a powerful tool for developers and researchers working on a wide
range of computational tasks, from fluid dynamics simulations to molecular dynamics
simulations. In Taichi framework, setting ‘arch=ti.cpu’ in ‘ti.init’ function specifies
the use of CPU. The ‘cpu_max_num_threads’ parameter regulates the maximum number
of CPU cores that the program can utilize. Changing the arch argument in the ‘ti.init’
function to either ‘ti.gpu’ or ‘ti.cuda’ will enable Taichi to utilize the GPU for simulation.
In this study, the fast math function in the ‘ti.init’ is disabled to prevent precision
loss problems.

To parallelize a function in Taichi, it is sufficient to decorate the function with ‘@ti.kernel’.
The kernel serves as the fundamental execution unit in Taichi. It is worth noting that only
the outermost loop will be executed in parallel. As shown below in Algorithm 1, only the
outermost for loop in line 4 will be parallelized, so placing the most computationally inten-
sive loop at the outermost level of the function can significantly enhance the performance
of the Taichi program. Since the EMPS method uses particles as the object of computation,
the outermost for the loop in the program is usually set to traverse all particles. It can be
expected that Taichi is effective for simulations with a large particle number.

Multiple kernels can be defined within the same Taichi program, and these kernels are
independent of each other. The order of execution of the kernels depends on the sequence
in which they are first called. Once a kernel is compiled, it is cached, reducing the startup
overhead when the kernel is called multiple times within the same program. In this EMPS
code, functions such as‘Calculate_a’, ‘Calculate_p’, ‘Pressure_gradient’, ‘Move’ are
defined as kernels. They are used to calculate the acceleration, pressure, pressure gradient,
and movement of particles, respectively.

In this simulator, the ‘Check_position’ function, responsible for verifying whether
particles exceed the boundaries, is decorated with ‘@ti.func’, which is a Taichi function
that can be invoked by a kernel. The ‘Check_position’ Taichi is then utilized in the ‘Move’
kernel. Particle positions, velocities, pressures, and other physical quantities are stored in a
Taichi field format. In Taichi, the field serves as a global data container. Data can be passed
between the Taichi scope and Python scope through a field. At the same time, using field to
store data also allows Taichi to achieve the continuous arrangement of data and improve
the memory usage efficiency.

In Taichi, part of the program can run serially when necessary to prevent errors. As pre-
sented in Algorithm 2, ‘bfst’ is an array storing the index of the first particle in each bucket,
‘blst’ contains the index of the last particle in each bucket, and ‘nxt’ holds the indices
of the next particles in the same bucket. As indicated in line 15, ‘blst[ib]’ is temporarily
stored in ‘j’ to check whether the bucket ‘ib’ contains any particles. In this algorithm,
the particles are sorted in a bucket starting from the first index ‘bfst’ and ending at the
last index ‘blst[ib]’ in a sequential manner. The next particle index ‘nxt’ is determined
one by one. Therefore, if this process is parallelized, it can lead to inconsistencies in the in-
formation stored in ‘bfst’, ‘blst’, and ‘nxt’. Then, ‘ti.loop_config(serialize=True)’
is added to the function so that Taichi will run it serially. This ensures the particle indices
stored in the buckets are correct.



Modelling 2024, 5 282

Algorithm 1: Taichi kernel used to calculate acceleration

input : nP, r, r2, DB, DBinv, nB, nBxy, nBx, MIN_X, MIN_Y, MIN_Z, G_X, G_Y, G_Z,
A1

output : ax, ay, az
1 /* Defined as Taichi kernel,run in parallel */

2 @ti.kernel
3 def Calculate_a():
4 for i← 0 to nP− 1 do
5 /* Only fluid particles are calculated */

6 if typ[i] = FLD then
7 /* Accelerations are initialized to 0 */

8 Acc_x, Acc_y, Acc_z← 0.0, 0.0, 0.0;
9 /* Coordinate and velocity are loaded */

10 pix, piy, piz← px[i], py[i], pz[i]; vix, viy, viz← vx[i], vy[i], vz[i];
11 /* Bucket number of particle i located */

12 ix← int(((pix - MIN_X) * DBinv) + 1);
13 iy← int(((piy - MIN_Y) * DBinv) + 1);
14 iz← int(((piz - MIN_Z) * DBinv) + 1);
15 /* Bucket number of surrounding buckets in 3 dimensions */

16 for jz← iz− 1 to iz + 1 do
17 for jy← iy− 1 to iy + 1 do
18 for jx ← ix− 1 to ix + 1 do
19 /* Bucket number of surrounding particle j located is

calculated */

20 jb← jz * nBxy + jy * nBx + jx;
21 j← blst[jb];
22 while j ̸= -1 do
23 v0← px[j] - pix; v1← py[j] - piy; v2← pz[j] - piz;
24 /* Calculate the distance between particle i and

surrounding particle j */

25 dist2← v02 + v12 + v22;
26 /* Surrounding particles in influence radius are used to

calculate weight function */

27 if dist2 < r2 and typ[j] ̸= GST and j ̸= i then
28 dist←

√
dist2;

29 wei← ((r / dist) - 1.0);
30 Acc_x← (vx[j] - vix) * wei;
31 Acc_y← (vy[j] - viy) * wei;
32 Acc_z← (vz[j] - viz) * wei;
33 end
34 /* Move to next particle in this bucket */

35 j← nxt[j];
36 end
37 end
38 end
39 end
40 ax[i]← Acc_x * A1 + G_X; ay[i]← Acc_y * A1 + G_Y; az[i]← Acc_z * A1 + G_Z;
41 end
42 end
43 end



Modelling 2024, 5 283

Algorithm 2: Bucket method in EMPS
input : nP, typ, px, py, pz, MIN_X, MIN_Y, MIN_Z, DBinv, nBxy, nBx, blst, b f st, nxt
output : blst, b f st, nxt

1 /* Defined as Taichi kernel */

2 @ti.kernel
3 def Assigh_bucket():
4 /* Run this for-loop serially in Taichi */

5 ti.loop_config(serialize=True)
6 for i← 0 to nP− 1 do
7 /* All particles in the domain including fluid and wall */

8 if typ[i] == GST then
9 Continue

10 end
11 ix ← int(((px[i]−MIN_X) ∗ DBinv) + 1);
12 iy← int(((py[i]−MIN_Y) ∗ DBinv) + 1);
13 iz← int(((pz[i]−MIN_Z) ∗ DBinv) + 1);
14 /* Calculate the bucket in which the particle i is located */

15 ib← iz ∗ nBxy + iy ∗ nBx + ix;
16 /* Temporarily store the information of the last particle in j */

17 j← int(blst[ib]);
18 blst[ib]← int(i);
19 /* If j = −1,means this bucket is empty, so i is the first particle */

20 if j == −1 then
21 b f st[ib]← int(i);
22 end
23 else
24 nxt[j]← int(i);
25 end
26 end
27 end

4. Numerical Benchmark

Two classical free-surface problems were simulated using our developed Taichi-EMPS
solver. The computation times using the Taichi platform were compared to those of serial
computing, and a detailed analysis of the performance improvement was conducted.
Furthermore, the accuracy of the simulation was evaluated by comparing it with other
numerical methods [38].

4.1. Dam Break Flow

The dam-break benchmark is a commonly used test to simulate free surface flows. This
involves simulating the scenario where a partially filled tank with water suddenly ruptures,
allowing the water to flow out of the tank and form waves and other complex surface
features. In this test, a tank with dimensions of 1.0 × 0.2 × 0.6 m is used, with an open roof
and the right side of the tank closed by a gate. The simulation is initialized with a water level
of 0.5 m to mimic the dam-break process. To accurately calculate the pressure distributions,
three layers of wall particles are utilized. For this simulation, we chose a particle spacing
of 0.02 m. The total number of particles, which includes both water and wall particles,
is 19,136. An analysis of spatial resolution is presented in Appendix A. Decreasing the
distance between particles has a significant impact on both the total number of particles and
the computational workload. The following section will discuss the relationship between
particle spacing and the computational time.

We conducted a 1 s dam-breaking simulation with a time interval of 10−4 s, determined
by Equations (14) and (15). The results of the simulation, depicting the motion of the water
column at different time steps, are illustrated in Figure 3. To assess the precision of the
results, we compared the position of the front tip of the water on the bottom surface with the



Modelling 2024, 5 284

experimental data and other numerical results in Figure 4 [38–40]. Our analysis indicates
that the EMPS method yields simulation results that are closer to the experimental values,
compared to other numerical techniques [38].

Figure 3. Simulation results of a simple dam break flow at different time steps.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

t
√

2g/L

Z
/

L

Cal.(MPS(Taichi))
Cal.(MPS(C++)) (Koshizuka, (1995))
Cal.(SOLA-VOF) (Hirt & Nichols, (1981))
Exp.(L = 0.028575 m) (Martin, et al., (1952))
Exp.(L = 0.05715 m) (Martin, et al., (1952))

Figure 4. Comparisons of the temporal variations of the water tip’s position at the bottom during the
dam break (Z: distance of water tip from vertical plane; L: a dimension characteristic of the water
column base; t

√
2g/L: dimensionless time) [38–40].

To evaluate Taichi’s computational efficiency, we compared the computation times
using different codes with different types of implementations (Native Python 3.9.0, C++



Modelling 2024, 5 285

20, OpenMP 5.2, and CUDA 11.0). The computational time for the dam break simulation
case is 200.51 s for serial computation using Taichi 1.0.4, compared to 200.14 s using C++.
Therefore, it has sped up the Python code 237 times and achieved the same computational
efficiency as C++ code in the case of serial computation.

Subsequently, we conducted an investigation to evaluate the computational efficiency
of the Taichi programming language using GPU (GeForce RTX 3060 Ti, NVIDIA, Santa Clara,
CA, USA) and multicore CPU (INTEL Core i5 9400F, Intel, Santa Clara, California, USA),
in conjunction with various parallel programming libraries (i.e., OpenMP and CUDA).
As Taichi has been designed to be optimized for both CPU and GPU architectures, our
initial comparison focused on the computational time of parallel CPU and GPU computing
in the Taichi platform. In terms of parallel CPU computation time, we observed that the
efficiency of Taichi is nearly identical to that of OpenMP. According to the results shown
in Table 1, the computation time for CPU (six cores) and GPU was 38.87 s and 23.58 s,
respectively, demonstrating an acceleration of only 1.65 times with GPU usage. This can
be attributed to the modest particle number in the benchmark test case, which limited
the CUDA cores (computing units in GPUs) from functioning at full capacity. In contrast,
the computation time using CUDA implementation was 9.64 s, indicating much greater
efficiency compared to Taichi GPU computing, as the CUDA implementation features finely
tuned optimizations for local calculations. It is worth noting that our study only parallelized
the primary loop for traversing all particles in the Taichi code. Further optimization and
tuning could potentially enhance the code efficiency, particularly for complex computations.
For example, optimizing the use of Taichi inline functions ‘ti.func’ is recommended to
reduce the function call overhead. Another possible recommendation is to replace the
nested for-loop with a single, flat for-loop.

Table 1. The calculation time for various programming languages and implementation strategies.

Code C++ Python Taichi
(1 Core)

Taichi
(6 Cores)

OpenMP
(6 Cores)

Taichi
(GPU) CUDA

Time [s] 200.54 47,540.92 200.51 38.87 38.60 23.58 9.64

4.2. Dam Break Impact on a Solid Obstacle

To demonstrate the robustness of our Taichi-EMPS solver, we also conducted a flow
simulation to emulate the intricate behavior of fluid flows when a dam breaks and en-
counters an obstacle in its path [41]. In this simulation, a 3.22 m long open tank with a
1 × 1 m2 cross-section was employed, and 0.55 m of water was introduced with a gate
placed to seal the right side of the tank (Figure 5). An obstacle measuring 40 cm in length
and 16 × 16 cm2 in cross-section was placed on the left side of the tank, and the distance
between the obstacle and the left wall of the tank was set at 0.67 m. In Figure 5, four snap-
shots of the simulation are presented. After the gate opening, the dam break wave spreads
over the downstream area and hits the block obstacle approximately at time t = 0.4 s. To
provide further quantitative validation of the accuracy of our results, we measured the time
evolution of the water height at designated locations, specifically H4 and H2 (Figure 5).
The results are generally consistent with previous simulations [41] and the experimental
data from Maritime Research Institute Netherlands (MARIN), as depicted in Figure 6.
The minor disparities observed in the results are likely attributed to potential inaccuracies
in the process of reconstructing the surface from the particle data.



Modelling 2024, 5 286

Figure 5. Simulation results of dam break simulation with a solid obstacle.

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time(s)

W
at

er
he

ig
ht

(m
)

Taichi-EMPS
Exp(MARIN)
ComFLOW
(Kleefsman, et al., (2005))

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time(s)

W
at

er
he

ig
ht

(m
)

Taichi-EMPS
Exp(MARIN)
ComFLOW
(Kleefsman, et al., (2005))

Figure 6. Comparisons of temporal variations of vertical water heights at H4 (left) and H2 (right) [41].

Next, we conducted an examination on the relationship between acceleration and
particle number utilizing this specific scenario. A higher quantity of particles contributes to
a more enhanced simulation resolution. We specifically altered the initial particle spacing
to be 0.04 m, 0.03 m, and 0.02 m, consequently yielding particle numbers of 36,014, 68,505,
and 181,298, respectively. The simulations were executed for a total duration of 8.0 s in
physical time, using a time step of 5.0× 10−4 s. The acceleration was determined through
the ratio of serial to parallel computational times. The computation times and accelera-
tion for the three cases with a different particle number utilizing CPU and GPU-based
parallel computing are presented in Figure 7 and Table 2. The acceleration of GPU parallel
computing is directly proportional to the number of particles, highlighting the scalability
of the GPU-based Taichi solver. However, the acceleration of CPU parallel computing
roughly remained constant when we increase the particle number. This discrepancy can
be attributed to the limited number of cores used on the CPU (only six), in contrast to
the 4864 CUDA cores available on the GPU. When the number of particles is increased,
the large amount of GPU’s CUDA cores are more effectively employed, leading to a higher
computational performance. Therefore, the GPU parallel computing is more efficient when
operating on a large number of particles.



Modelling 2024, 5 287

36 014 68 505 181 298

5

10

15

20

Number of Particles

A
cc

el
er

at
io

n

CPU
GPU

Figure 7. Relationship between the particle number and acceleration for CPU and GPU.

Table 2. The computation times of CPU and GPU-based parallel computing.

Particle
Spacing [m]

Particle
Number CPU [s] Parallel CPU

(6 Cores) [s]
Acceleration

(CPU) GPU [s] Acceleration
(GPU)

0.04 36,014 1214.80 216.21 5.85 4144 9.61
0.03 68,505 2921.88 552.34 5.82 81,340 11.60
0.02 181,298 11,640.41 2200.46 5.82 2150.03 17.20

Then, we focused on examining the efficiency of Taichi CPU parallel computing by
using more CPU cores (up to 16 cores of Ryzen 9 7950X CPU, AMD, Santa Clara, California,
USA). The acceleration when increasing the used CPU cores was quantified by simulating
a fixed-scale system with a substantial particle count of 68,505 (strong scaling). In this large-
scale system, we can observe that the acceleration increased with the increase in CPU cores
(Figure 8 (left)). Nevertheless, it is noteworthy that the relationship between the number of
employed CPU cores and the resulting acceleration is not strictly linear. The acceleration
leveled off when we raised the CPU core from 15 to 16. Amdahl’s law [42] states that the
acceleration of a computer program depends on the proportion of its serial portion. Even if
the parallel portion of the program can be accelerated infinitely, the overall acceleration is
limited by the serial portion. Therefore, Amdahl’s law provides the theoretical upper limit
of the acceleration for parallel computing, which is expressed as:

SuIdeal =
1

(1− P) + P
N

(16)

where P represents the proportion of a program that can be made parallel (functions
decorated by ‘@ti.kernel’), and N represents the number of processors used. In this
study, the proportion P is calculated based on the execution time for the parallelizable and
non-parallelizable part of the program using one CPU core. The P value of our Taichi-
EMPS solver is 0.998, which means the most of the program was parallelized. Amdahl’s
law indicates that as the number of processors used increases, the acceleration gradually
decreases until it reaches a limit. Thus, to maximize computational performance, it is crucial
to minimize the serial portion of the program as much as possible. Compared with the ideal
acceleration determined by Amdahl’s law, our simulation acceleration was very close to the
upper limit when CPU core number is below 10 (Figure 8 (left)). However, the gap between
the simulation acceleration and the ideal value became larger when more CPU cores are
used because of the marked increase in communication time for the transmission of particle
information among CPU cores in configurations employing a large number of cores.



Modelling 2024, 5 288

Another key concept in parallel computing is Gustafson’s law [43], in which the ideal
acceleration can be defined as:

Su
′
Ideal = (1− P) + NP (17)

By increasing both the workload and the processors, the scalability can be maintained (weak
scaling). Therefore, we increased the number of CPU cores used while also increasing
the particle number to examine the acceleration in the weak scaling scenario. Figure 8
(right) shows the results of weak scaling acceleration for particle numbers of 36,014, 68,505,
and 181,298 using 3, 6, and 15 cores, respectively. As the particle number and CPU cores
increase, the simulation acceleration exhibits a linear increase but below the ideal value.
The reason may also be attributed to the increase in communication time when the core
number is large.

0 5 10 15
0

5

10

15

20

Number of processors (CPU)

A
cc

el
er

at
io

n

Amdahl’s law
Simulation acceleration

0.5 1.0 1.5
0

5

10

15

20

Number of particles(×105)

A
cc

el
er

at
io

n

Gustafson’s law
Simulation acceleration

Figure 8. Parallel efficiency evaluations by strong scaling (left) and weak scaling (right) tests.
The simulation accelerations are compared with the ideal values according to Amdahl’s law (left)
and Gustafson’s law (right).

5. Conclusions

In this study, we present an efficient EMPS solver, implemented in the Taichi program-
ming language to facilitate parallel computing. This solver takes advantage of the EMPS
method and the Taichi programming language, resulting in a significant acceleration of
numerical simulations for free surface flow. To validate the solver’s efficiency and accuracy,
we conducted a classical dam break simulation. It was found that the original Python code
can be accelerated by more than 237 times using Taichi programming language, approach-
ing the efficiency level of the C++ code. Moreover, the ability to seamlessly switch between
CPU and GPU computing can be achieved by selecting a single parameter to alter the archi-
tecture. While comparing the rate enhancement of CPU and GPU parallel computing with
different particle numbers, it has emerged that the superiority of GPU parallel computation
extends to scenarios involving an immense number of particles. Nevertheless, the effi-
ciency of GPU computation using the Taichi programming language exhibited a noticeable
gap when compared to CUDA. Finally, our developed Taichi-EMPS solver demonstrated
notable performance in simulating the free surface flow problem and exhibits compatibility
with cross-platform systems.



Modelling 2024, 5 289

Author Contributions: Conceptualization, F.J. and Y.Z.; methodology, F.J. and Y.Z.; software, Y.Z.;
validation, Y.Z.; formal analysis, F.J. and Y.Z.; investigation, F.J. and Y.Z.; resources, F.J.; data curation,
Y.Z.; writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z., F.J., and S.M.;
visualization, Y.Z.; supervision, F.J.; project administration, S.M.; All authors have read and agreed to
the published version of the manuscript.

Funding: This research was partially supported by JSPS KAKENHI Grant Number JP22K03927.

Data Availability Statement: The Taichi-EMPS is open source under MIT License and available in
the Github repository at https://github.com/laiyinhezhiying/taichi-EMPS-solver (accessed on 16
January 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Grid-Independent Test

To guarantee that the particle spacing does not impact the simulation results, a grid-
independent test was conducted. To examine the impact of spatial resolution on the
migration of the water tip, we conducted a dam-break simulation by altering the particle
spacing, ranging from 0.01 m to 0.1 m. The findings depicted in Figure A1 indicate that there
are only slight variations when the particle spacing is adjusted between 0.02 and 0.04 m.
Decreasing the particle spacing to 0.01 m does not significantly improve the accuracy of the
outcomes. However, when the spacing between particles is adjusted to 0.1 m, there was a
notable deviation in the position of the water tip, and the liquid particles were unable to
reach the opposite end within a time frame of 0.004 s. Therefore, we consider it suitable to
set the spacing between particles at 0.02, 0.03, and 0.04 m.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time (×10−3s)

D
is

ta
nc

e
of

w
at

er
ti

p
fr

om
th

e
le

ft
w

al
l(

m
)

0.10 m
0.04 m
0.03 m
0.02 m
0.01 m

Figure A1. Grid-independent test for particle spacings of 0.01, 0.02, 0.03, 0.04, and 0.10 m.

https://github.com/laiyinhezhiying/taichi-EMPS-solver


Modelling 2024, 5 290

References
1. Tomé, M.F.; Mangiavacchi, N.; Cuminato, J.A.; Castelo, A.; Mckee, S. A finite difference technique for simulating unsteady

viscoelastic free surface flows. J. Non–Newton. Fluid Mech. 2002, 106, 61–106. [CrossRef]
2. Casulli, V. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. Int. J. Numer. Methods Fluids 1999,

30, 425–440. [CrossRef]
3. Muzaferija, S.; Perić, M. Computation of free-surface flows using the finite-volume method and moving grids. Numer. Heat

Transf. 1997, 32, 369–384. [CrossRef]
4. Jiang, F.; Matsumura, K.; Ohgi, J.; Chen, X. A GPU-accelerated fluid–structure-interaction solver developed by coupling finite

element and lattice Boltzmann methods. Comput. Phys. Commun. 2021, 259, 107661. [CrossRef]
5. Jiang, F.; Yang, J.; Boek, E.; Tsuji, T. Investigation of viscous coupling effects in three-phase flow by lattice Boltzmann direct

simulation and machine learning technique. Adv. Water Resour. 2021, 147, 103797. [CrossRef]
6. Jiang, F.; Liu, H.; Chen, X.; Tsuji, T. A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem.

J. Comput. Phys. 2022, 454, 110963. [CrossRef]
7. Gingold, R.; Monaghan, J. Smoothed Particle Hydrodynamics - Theory and Application to Non-Spherical Stars. Mon. Not. R.

Astron. Soc. 1977, 181, 375–389. [CrossRef]
8. Dalrymple, R.; Rogers, B. Numerical modeling of water waves with the SPH method. Coast. Eng. 2006, 53, 141–147. [CrossRef]
9. Hu, X.; Adams, N. A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 2006, 213, 844–861.

[CrossRef]
10. Koshizuka, S.; Nobe, A.; Oka, Y. Numerical Analysis of Breaking Waves using the Moving Particle Semi-implicit Method. Int. J.

Numer. Methods Fluids 1998, 26, 751–769. [CrossRef]
11. Koshizuka, S.; Oka, Y. Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid. Nucl. Sci. Eng. 1996,

123, 421–434. [CrossRef]
12. Cummins, S.J.; Rudman, M. An SPH projection method. J. Comput. Phys. 1999, 152, 584–607. [CrossRef]
13. Shakibaeinia, A.; Jin, Y.C. A weakly compressible MPS method for modeling of open-boundary free-surface flow. Int. J. Numer.

Methods Fluids 2010, 63, 1208–1232. [CrossRef]
14. Tayebi, A.; Jin, Y.C. Development of moving particle explicit (MPE) method for incompressible flows. Comput. Fluids 2015,

117, 1–10. [CrossRef]
15. Jandaghian, M.; Shakibaeinia, A. An enhanced weakly-compressible MPS method for free-surface flows. Comput. Methods Appl.

Mech. Eng. 2020, 360, 112771. [CrossRef]
16. Murotani, K.; Masaie, I.; Matsunaga, T.; Koshizuka, S.; Shioya, R.; Ogino, M.; Fujisawa, T. Performance improvements of

differential operators code for MPS method on GPU. Comput. Part. Mech. 2015, 2, 261–272. [CrossRef]
17. Gou, W.; Zhang, S.; Zheng, Y. Implementation of the moving particle semi-implicit method for free-surface flows on GPU clusters.

Comput. Phys. Commun. 2019, 244, 13–24. [CrossRef]
18. Khayyer, A.; Gotoh, H. Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows

characterized by high density ratios. J. Comput. Phys. 2013, 242, 211–233. [CrossRef]
19. Green, S. Particle simulation using cuda. NVIDIA Whitepaper 2010, 6, 121–128.
20. Goodnight, N. CUDA/OpenGL fluid simulation. NVIDIA Corp. 2007, 548, 1–11.
21. Kim, K.S.; Kim, M.H.; Park, J.C. Development of Moving Particle Simulation Method for Multiliquid-Layer Sloshing. Math. Probl.

Eng. 2014, 2014, 350165. [CrossRef]
22. Yang, Y.H.C.; Briant, L.; Raab, C.; Mullapudi, S.; Maischein, H.M.; Kawakami, K.; Stainier, D. Innervation modulates the functional

connectivity between pancreatic endocrine cells. eLife 2022, 11, e64526. [CrossRef]
23. Hu, Y.; Li, T.M.; Anderson, L.; Ragan-Kelley, J.; Durand, F. Taichi: A language for high-performance computation on spatially

sparse data structures. ACM Trans. Graph. 2019, 38, 1–16. [CrossRef]
24. Hu, Y.; Anderson, L.; Li, T.M.; Sun, Q.; Carr, N.; Ragan-Kelley, J.; Durand, F. Difftaichi: Differentiable programming for physical

simulation. arXiv 2019, arXiv:1910.00935.
25. Hu, Y. The Taichi Programming Language: A Hands-on Tutorial. ACM SIGGRAPH 2020 Courses. 2020, 21, 1–50. [CrossRef]
26. Hu, Y.; Liu, J.; Yang, X.; Xu, M.; Kuang, Y.; Xu, W.; Dai, Q.; Freeman, W.T.; Durand, F. QuanTaichi: A Compiler for Quantized

Simulations. ACM Trans. Graph. (TOG) 2021, 40, 1–16. [CrossRef]
27. Yang, J.; Xu, Y.; Yang, L. Taichi-LBM3D: A Single-Phase and Multiphase Lattice Boltzmann Solver on Cross-Platform Multicore

CPU/GPUs. Fluids 2022, 7, 270. [CrossRef]
28. Wu, Y.C.; Shao, J.L. mdapy: A flexible and efficient analysis software for molecular dynamics simulations. Comput. Phys. Commun.

2023, 290, 108764. [CrossRef]
29. Dave, S.; Baghdadi, R.; Nowatzki, T.; Avancha, S.; Shrivastava, A.; Li, B. Hardware acceleration of sparse and irregular tensor

computations of ml models: A survey and insights. Proc. IEEE 2021, 109, 1706–1752. [CrossRef]
30. Sun, X.; Sun, M.; Takabatake, K.; Pain, C.; Sakai, M. Numerical Simulation of Free Surface Fluid Flows Through Porous Media by

Using the Explicit MPS Method. Transp. Porous Media 2019, 127, 7–33. [CrossRef]
31. Monaghan, J. Simulating Free Surface Flows with SPH. J. Comput. Phys. 1994, 110, 399–406. [CrossRef]
32. OOchi, M. Explicit MPS algorithm for free surface flow analysis. Trans. JSCES 2010, 20100013. [CrossRef]

http://doi.org/10.1016/S0377-0257(02)00064-2
http://dx.doi.org/10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
http://dx.doi.org/10.1080/10407799708915014
http://dx.doi.org/10.1016/j.cpc.2020.107661
http://dx.doi.org/10.1016/j.advwatres.2020.103797
http://dx.doi.org/10.1016/j.jcp.2022.110963
http://dx.doi.org/10.1093/mnras/181.3.375
http://dx.doi.org/10.1016/j.coastaleng.2005.10.004
http://dx.doi.org/10.1016/j.jcp.2005.09.001
http://dx.doi.org/10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
http://dx.doi.org/10.13182/NSE96-A24205
http://dx.doi.org/10.1006/jcph.1999.6246
http://dx.doi.org/10.1002/fld.2132
http://dx.doi.org/10.1016/j.compfluid.2015.04.025
http://dx.doi.org/10.1016/j.cma.2019.112771
http://dx.doi.org/10.1007/s40571-015-0059-2
http://dx.doi.org/10.1016/j.cpc.2019.07.010
http://dx.doi.org/10.1016/j.jcp.2013.02.002
http://dx.doi.org/10.1155/2014/350165
http://dx.doi.org/10.7554/eLife.64526
http://dx.doi.org/10.1145/3355089.3356506
http://dx.doi.org/10.1145/3388769.3407493
http://dx.doi.org/10.1145/3450626.3459671
http://dx.doi.org/10.3390/fluids7080270
http://dx.doi.org/10.1016/j.cpc.2023.108764
http://dx.doi.org/10.1109/JPROC.2021.3098483
http://dx.doi.org/10.1007/s11242-018-1178-z
http://dx.doi.org/10.1006/jcph.1994.1034
http://dx.doi.org/10.11421/jsces.2010.20100013


Modelling 2024, 5 291

33. Idelsohn, S.; Oñate, E.; Del Pin, F. The Particle Finite Element Method; A Powerful tool to Solve Incompressible Flows with
Free-surfaces and Breaking Waves. Numer. Methods Eng. 2004, 61, 964–989. [CrossRef]

34. Lee, B.H.; Park, J.C.; Kim, M.H.; Hwang, S.C. Step-by-step improvement of MPS method in simulating violent free-surface
motions and impact-loads. Comput. Methods Appl. Mech. Eng. 2011, 200, 1113–1125. [CrossRef]

35. Mattson, W.; Rice, B.M. Near-neighbor calculations using a modified cell-linked list method. Comput. Phys. Commun. 1999,
119, 135–148. [CrossRef]

36. Nishiura, D.; Sakaguchi, H. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors. J. Comput.
Phys. 2011, 230, 1923–1938. [CrossRef]

37. Ha, L.; Krüger, J.; Silva, C. Fast 4-way parallel radix sorting on GPUs. Comput. Graph. Forum 2009, 28, 2368–2378. [CrossRef]
38. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225.

[CrossRef]
39. Koshizuka, S. A particle method for incompressible viscous flow with fluid fragmentation. Comput. Fluid Dyn. J. 1995, 4, 29.
40. Martin, J.C.; Moyce, W.J.; Martin, J.; Moyce, W.; Penney, W.G.; Price, A.; Thornhill, C. Part IV. An experimental study of the

collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1952, 244, 312–324.
41. Kleefsman, K.; Fekken, G.; Veldman, A.; Iwanowski, B.; Buchner, B. A Volume-of-Fluid Based Simulation Method for Wave

Impact Problems. J. Comput. Phys. 2005, 206, 363–393. [CrossRef]
42. Amdahl, G.M. Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the

Spring Joint Computer Conference, Atlantic City, NJ, USA, 18–20 April 1967; pp. 483–485.
43. Gustafson, J.L.; Montry, G.R.; Benner, R.E. Development of parallel methods for a 1024-processor hypercube. SIAM J. Sci. Stat.

Comput. 1988, 9, 609–638. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/nme.1096
http://dx.doi.org/10.1016/j.cma.2010.12.001
http://dx.doi.org/10.1016/S0010-4655(98)00203-3
http://dx.doi.org/10.1016/j.jcp.2010.11.040
http://dx.doi.org/10.1111/j.1467-8659.2009.01542.x
http://dx.doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/10.1016/j.jcp.2004.12.007
http://dx.doi.org/10.1137/0909041

	Introduction
	Explicit MPS Method
	Implementation of EMPS Using Taichi
	Numerical Benchmark
	Dam Break Flow
	Dam Break Impact on a Solid Obstacle

	Conclusions
	Appendix A
	References

