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Abstract: Fracture porosity is crucial for storage and production efficiency in fractured tight reservoirs.
Geophysical image logs using resistivity measurements have traditionally been used for fracture
characterization. This study aims to develop a novel, hybrid machine-learning method to predict
fracture porosity using conventional well logs in the Ahnet field, Algeria. Initially, we explored
an Artificial Neural Network (ANN) model for regression analysis. To overcome the limitations of
ANN, we proposed a hybrid model combining Support Vector Machine (SVM) classification and
ANN regression, resulting in improved fracture porosity predictions. The models were tested against
logging data by combining the Machine Learning approach with advanced logging tools recorded in
two wells. In this context, we used electrical image logs and the dipole acoustic tool, which allowed
us to identify 404 open fractures and 231 closed fractures and, consequently, to assess the fracture
porosity. The results were then fed into two machine-learning algorithms. Pure Artificial Neural
Networks and hybrid models were used to obtain comprehensive results, which were subsequently
tested to check the accuracy of the models. The outputs obtained from the two methods demonstrate
that the hybridized model has a lower Root Mean Square Error (RMSE) than pure ANN. The results
of our approach strongly suggest that incorporating hybridized machine learning algorithms into
fracture porosity estimations can contribute to the development of more trustworthy static reservoir
models in simulation programs. Finally, the combination of Machine Learning (ML) and well log
analysis made it possible to reliably estimate fracture porosity in the Ahnet field in Algeria, where, in
many places, advanced logging data are absent or expensive.

Keywords: machine learning; SVM; ANN; fracture porosity prediction; anisotropy; well logging;
shear waves; image logs

1. Introduction

Significant hydrocarbon resources may be derived from naturally fractured reservoirs
such as fractured shale gas reservoirs, fractured tight sandstone and limestone reservoirs,
and basement rocks [1–5]. Fracture characterization plays a critical role in the quantitative
evaluation and effective management of these complex reservoirs [6]. Fracture character-
izations include quantitative information on fracture density, orientation, and porosity,
among others [7]. Fracture porosity directly controls the transportation and storage of
hydrocarbons in these reservoirs. Additionally, the fracture properties affect the flow direc-
tion and permeability of the reservoir rocks [8]. Cores extracted during drilling, and less
often, side wall cores, can be used to calculate fracture porosity [9,10]. However, this is an
expensive and time-consuming process, and it can have a significant impact on the conclu-
sions drawn if there are insufficient cores available for examination. On the other hand,
empirical approaches, while easy to apply, are limited to wells from which data have been
collected, resulting in a considerable level of uncertainty when combined with extrapolated
or anticipated geological data [11]. To overcome these limitations, a cost-effective, rapid,
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and reliable model is required for reservoir evaluations and characterizations to describe
porosity, using well logs and existing core data to certify the results.

Artificial intelligence techniques are promising tools for addressing some of the com-
plex problems in petroleum engineering, particularly when dealing with large datasets.
In the oil and gas industry, machine learning uses computational algorithms and statisti-
cal models to analyze and interpret large volumes of data from various sources, such as
downhole and surface sensors and equipment. It facilitates the identification of patterns,
making predictions, and optimizing processes, thereby improving efficiency, reducing costs,
and leading to better decision-making. Machine learning algorithms can be employed for
reservoir characterization, production forecasting, anomaly detection, and predictive main-
tenance, among others. ML techniques are used in various applications for the exploration
and production of hydrocarbons, for instance, in reservoir characterizations [12,13], pro-
duction design [14], well completion [15], and drilling engineering [16]. A comprehensive
review of the applications of artificial intelligence techniques in the context of petroleum
engineering can be found in [17–20]. Researchers are investigating the application of ma-
chine learning techniques for fracture characterization. The authors of [21] characterized
fractures using sonic waveform measurements and ML classification algorithms. The
authors of [22] developed ML-based models to describe the fracture toughness in shales.
The authors of [23] developed a technique called double beam neural network, which uses
machine learning and was employed to convert double beam interference into a discrete
fracture network; this technique is an image-to-image learning method. The authors of [24]
carried out a computer vision-based structural analysis of a system containing granular
and fracture porosity using K-means clustering algorithms. The primary emphasis of these
investigations was on the characterization of various facets within a fractured reservoir,
with the notable exception of fracture porosity. Furthermore, in instances where certain
investigations have delved into ML applications to predict fracture porosity, they have
predominantly relied on sophisticated image logs, core images [25], or production data [26],
rather than on conventional well logs, which are more widely accessible.

Over the past decade, there has been a surge in research efforts aimed at predicting
fracture porosity in geological formations using machine learning techniques. Researchers
have explored various methodologies, from traditional regression models to more advanced
artificial intelligence algorithms. Many studies have focused on integrating geological
data on, for example, lithology, mineralogy, and seismic attributes with well log and core
sample data to train predictive models. Moreover, the incorporation of unconventional data
sources like image logs and microseismic data has shown promising results in enhancing
the accuracy of predictions. Additionally, some studies have explored the application of
neural networks, support vector machines, and random forests to tackle the complexity of
fracture networks and their influence on porosity. Despite these advancements, challenges
remain when handling sparse and noisy data, as well as in ensuring the interpretability
of models and generalizing across diverse geological settings. Nevertheless, the literature
reflects a growing consensus that machine learning has the potential to revolutionize
fracture porosity predictions in reservoir characterizations and subsurface exploration.
Table 1 summarizes some of the key literature in this field:
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Table 1. Statistical characteristics for the used data.

Study Methodology Data Source Key Findings

[27] ANN

Caliper, Gamma Ray, Bulk
Density, Neutron Porosity,
Sonic Transient Time, and
core data

ANN can be successfully used to predict the fracture
density in boreholes using conventional well log data.

[28] ANN
deep resistivity, density,
neutron porosity and
gamma ray

ANN has proven to be an excellent technique to estimate
natural fracture porosity.

[29]
Bayesian Network
Theory (BN)and

Random Forest (RF)

Gamma-ray, deep resistivity,
bulk density, neutron porosity,
photo-electric.

BN Theory and RF were found to be effective in
predicting the presence of fractures in different types of
hydrocarbon-bearing rocks with a high degree of accuracy.

[30] CNN (Convolutional
Neural Network)

Seismic data, Vp, Vs,
Image logs

The method offers a valuable means of evaluating fracture
evolution in fractured reservoirs. Moreover, this research
can serve as a benchmark for predicting anisotropic
behavior and fracture porosity in other
fractured reservoirs.

[31] ANN
Image logs, gamma ray,
caliper, photo-electric, deep
resistivity, shallow resistivity

Interpreted FMI logs provide a trace while generating
subsurface fracture maps using the statistical study of
fracture radius, dip, and azimuth.

To the best of our knowledge, to date, very few studies have investigated the ap-
plicability of ML methods to predict fracture porosity derived from the integration of
image logs and full acoustic waveforms. We employed two supervised learning methods,
namely, Artificial Neural Network (ANN) and a hybrid method, ANN and Support Vector
Machines, referred to as (SVM-ANN), and evaluated their efficacy in predicting fracture
porosity. The novelty of the current research is its incorporation of hybrid machine learning
algorithms into reservoir characterization. The importance of the present study lies in its
leveraging of conventional logs to predict fracture porosity, making it possible to perform
accurate reservoir evaluations and characterizations. This, in turn, facilitates enhanced
decision-making and optimization of resources.

The input dataset includes the geophysical well logs of two wells in Ahnet, Algeria.
These logs were taken through the Cambro-Ordovician formation and include caliper,
compressional slowness, shear slowness, gamma ray, photoelectric factor, neutron porosity,
and Bulk density logs. The ultimate objective is to develop a cost-effective and expeditious
approach to predicting fracture porosity using well logs where core data are absent.

2. Geological Background

The Ahnet Basin is a Palaeozoic intracratonic sedimentary basin situated in the central
and southern parts of the Algerian Sahara Massif [32] (Figure 1). It forms part of a series
of north–south trending basins and basement highs, with the basin itself dipping toward
the north. The Ahnet basin, situated in the northwest region of the Hoggar massif within
the Algerian Sahara, is structurally unique due to its privileged location. It is bordered by
the highly stable and rigid African Quest craton to the west, which has been cratonized
for 3 billion years, and the mobile zones of the Hoggar craton to the east, which were
cratonized during the Pan-African Orogeny (550 to 600 Ma). Furthermore, the basin is
flanked by the highly stable Mole of In Ouzzal in the south. The suture zone between the
Hoggar and African West Craton is marked by the folded NW–SE trending mountain chain
of the Ougartha to the north. The unique structural setting of the Ahnet basin contributes
to its geological diversity and has implications for hydrocarbon exploration and production
in the area [33–36].
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These sandstones, which are more solid and cemented than those in other nearby basins, 
constitute the petroleum reserves in the South-Algerian basins. The natural fractures in 
the sandstones enhance the petrophysical characteristics of the reservoir. The Cambro-
Ordovician series are typically divided into three sections. The lowermost section, Unit II, 
comprises mostly cross-stratified conglomeratic sandstones that were most likely formed 
in a fluviatile environment. The overlying fine-grained and well-sorted sand and siltstones 
are interpreted as reflecting a marine influence; numerous Skolithos characterize these fa-
cies. Compared to the other Cambro-Ordovician reservoir units, this unit possesses good 
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a quartzite layer in the middle. This formation was deposited in a mixed continental to 
marine environment and is clearly transgressive at the scale of the Saharan platform. Lo-
cally, this formation rests unconformably on Unit II. Unit IV, the upper Cambro-Ordovi-
cian unit, is characterized by a marine and a glacial depositional environment. The facies 
of Unit IV correspond to medium to zero-quality reservoir characteristics in the Ahnet 
Basin. 

Figure 1. Location of the area of study.

The Paleozoic sediments of the Ahnet Basin overlie the basement rocks and are sep-
arated from them by an unconformity (Figure 2), which is typical of Saharan basins and
grabens. The basement comprises thick series of little or non-metamorphosed Precam-
brian rocks, known as “Series Pourpres”, which exhibit substantially different mechanical
properties from other basement rocks in the Sahara [34]. During the Cambro-Ordovician,
a series of predominantly sandstones were deposited on the Precambrian basement [34].
These sandstones, which are more solid and cemented than those in other nearby basins,
constitute the petroleum reserves in the South-Algerian basins. The natural fractures in
the sandstones enhance the petrophysical characteristics of the reservoir. The Cambro-
Ordovician series are typically divided into three sections. The lowermost section, Unit II,
comprises mostly cross-stratified conglomeratic sandstones that were most likely formed
in a fluviatile environment. The overlying fine-grained and well-sorted sand and siltstones
are interpreted as reflecting a marine influence; numerous Skolithos characterize these
facies. Compared to the other Cambro-Ordovician reservoir units, this unit possesses good
petrophysical properties, with porosity values that can reach 10% or more and permeability
in the range of a few tens of mD. However, these reservoir characteristics are enhanced
locally by natural fracturing. Unit III consists of alternating shales and sandstones and has
a quartzite layer in the middle. This formation was deposited in a mixed continental to ma-
rine environment and is clearly transgressive at the scale of the Saharan platform. Locally,
this formation rests unconformably on Unit II. Unit IV, the upper Cambro-Ordovician unit,
is characterized by a marine and a glacial depositional environment. The facies of Unit IV
correspond to medium to zero-quality reservoir characteristics in the Ahnet Basin.
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Figure 2. Lithostratigraphic column of the Cambro-Ordovician formations in the Ahnet Basin,
modified from [37].

3. Materials and Methods
3.1. Fracture Porosity Quantification

The present study employed a workflow, as illustrated in Figure 3, for estimating
fracture porosity. The methodology comprised an analysis of resistivity-based borehole
images and the use of an acoustic scanning platform that integrated Shear Anisotropy
and Flexural Dispersion Analysis (FDA). The process involved in generating borehole
images from the initial observations of rock parameters included a series of procedures
within the workflow. The input data were first subjected to depth shifting and speed
correction during image log processing. Subsequently, pad and flap concatenation and
equalization were employed during image generation to achieve clarity. To ensure accuracy,
manual processing of the image logs and full acoustic waveforms was essential; this
involved the precise picking of the fracture sinusoidal waves using Schlumberger’s Techlog
software 2023.1.
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Figure 3. The proposed workflow for the fracture porosity estimation.

The process of estimating the fracture porosity involved the use of multiple techniques,
as seen in Figure 4. The initial step involved analyzing the resistivity-based image logs,
also known as FMI, to identify conductive fractures. However, it is important to note that
these fractures may not necessarily be open, as they could be filled with minerals such as
pyrite, chalcopyrite, or clays, all of which are electrically conductive.

To differentiate between the open and filled fractures, sonic scanner shear dispersion
plots were employed to provide further insights into the nature of the fractures; this allowed
us to identify 404 open fractures from a total of 635 fractures. Fractures present in rock
formations can result in anisotropy, which is directional variation in the elastic properties
of the rock. Acoustic anisotropy is responsible for the differing velocities of shear waves in
various directions through the rock. Dipole flexural waves, being dispersive in nature, are
influenced by several factors, such as borehole conditions, mud density and velocity, the
logging tool used, and the formation properties. The sonic waveform dispersion analysis
technique can be employed to study and describe the formation. This technique involves
four possible mechanisms, one of which is inhomogeneous anisotropic, which is associated
with fractures. In this mechanism, the shear wave separates into two components, with fast
and slow frequencies falling within distinct ranges [38].

This workflow utilizes flexural wave shear anisotropy to determine the presence
of fractures and distinguish between open ones and those filled with conductive miner-
als. A more accurate estimate of the fracture porosity can be obtained by combining the
information obtained from the image logs and the sonic scanner shear dispersion plots.

To estimate the fracture porosity, it is essential to calculate the width of the fractures.
Therefore, the aperture is calculated using Luthi and Souaite’s (1990) equation:

w = cARb
mR1−b

xo

w = Fracture Width in mm
Rm = Mud Resistivity
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Rxo = Formation Resistivity of the invaded zone
A = Additional current into the formation
c and b are tool parameters

Several factors impact the observed fracture aperture, including the resistivity of
the drilling mud (Rm) and invaded zone (Rxo). To estimate the apertures, image logs are
processed using advanced techniques that rely on measurements of excess current injected
into the formation [39]. These images are calibrated using a shallow resistivity log.

The fracture volume is calculated using a simple volumetric formula that takes into
account the fracture dip, borehole diameter, and estimated fracture width (kinematic
aperture). The fracture porosity (P33) is then obtained by dividing the fracture volume by
the borehole volume (Figure 5).
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Figure 5. Various rock characteristics as displayed in a typical borehole in the Cambro-Ordovician
formation. Track 1: Gamma Ray (G.R.); Track 2: Dynamic Image log (FMI_DYN) with open fracture
sines; Track 3: Fracture tadpoles (dip and azimuth); Track 4: Fracture aperture along the facture sine
wave; and Track 5: Mean fracture kinematic (FVA) and hydraulic aperture.

3.2. Predictive Modeling Approach
3.2.1. Exploratory Data Analysis

A combination of logs, i.e., depth, neutron porosity (Por), shear slowness (DTSM),
compressional slowness (DTCO), natural gamma ray (G.R.), Bulk density (RHOZ), Photo
Electric Factor (PEFZ), and caliper (Cal), was chosen in the present study to predict the
porosity. The data consist of 5008 data samples and eight input well log attributes. Table 2
presents the data range for each of the input attributes used in this study, while Figure 6
illustrates the input logs used in the model. This step plays a critical role in comprehending
our data by enabling us to visualize the distribution of each individual variable, as well as
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the correlation among various features. Using pair plots, also called scatter plot matrices, is
an effective tool for data visualization in research analysis. They allow us to look into the
relationships among attributes within a dataset. The pair plot is a map of scatter plots where
each variable in the dataset has been plotted against all other variables. The multivariate
distribution can be obtained using a pair plot in R. Our analysis of the pair plot is provided
in Section 4.

Table 2. Statistical characteristics for the used data.

DEPT Cal DTCO DTSM GR P33 PEFZ Por RHOZ

(m) (in) (us/ft) (us/ft) (GAPI) (v/v) (b/e) (v/v) (g/cc)
count 5008 5008 5008 5008 5008 5008 5008 5008 5008
mean 2098.965 7.150779 64.1306 104.8334 118.4989 7.74 × 10−5 2.788434 0.040624 2.605229

std 165.4286 1.339378 5.422916 13.9901 70.87042 0.00016 0.815019 0.035257 0.080526
min 1793.596 4.243306 46.75045 79.24234 19.42065 0 1.781257 −0.01271 1.6979
max 2419.655 10.36588 88.15414 162.6788 734.3147 0.001278 10 0.37467 2.842013
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Figure 6. Data distribution of each input log and the P33. The corresponding statistical information
and the units of each variable are provided in the Table 2.

Inaccurate data acquisition may occur due to various factors, including environmental
conditions and inadequate instrument calibration. Therefore, the noise is eliminated by
deleting any spiky readings and readings in front of washouts as shown in Figure 7.

3.2.2. Machine Learning Algorithms

Machine learning (ML) algorithms, which are a part of statistical methods, can be
divided into four main types: supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning [40]. This paper focuses on the utilization of super-
vised ML methods to characterize the fractures, more specifically, fracture porosity. A
supervised ML model learns from the training data that is assumed to be independent
and identically distributed. The algorithm then uses an evaluation criterion to select the
best model from a set of hypothesis spaces, which can make the best prediction under the
evaluation criterion from training and test data [40].
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slowness in red and violet; and Track 3: Photo Electric Factor (PEF), Bulk density (RHOZ), and
Neutron porosity (Por) in violet red, and black respectively.

We employed two machine learning methods in this study to predict the fracture
porosity of the fractured reservoirs: (1) Artificial Neural Networks (ANN), and (2) Support
Vector Machines + Artificial Neural Networks (SVM-ANN).

Artificial Neural Networks (ANN)

Artificial neural networks (ANNs) have become a powerful statistical tool in identify-
ing and categorizing intricate outlines and systems beyond human intelligence [41]. As a
type of supervised learning method, ANN models have three layers [42]: an input layer, a
hidden layer, and an output layer. Further, the hidden layers can consist of one or more
layers. During the calculation process, each node in the hidden layer will receive an input
signal from its previous layer, which comprises all the nodes in that layer, along with their
weighting factors [43]. The activation function, which could take different forms in each
node, is used to tune the weighting factors of the nodes during the training process. The
backpropagation algorithm minimizes the user-defined error metric between the model
and the data [43]. Empirical studies have shown that ANN models can be effective in
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estimating shear velocity and have the best regression performance results compared to
other ML methods [44,45].

The initial approach involves utilizing the pure ANN model, which comprises two
hidden layers and 7, 2 nodes, to forecast the fracture porosity (P33) in each layer, as
illustrated in Figure 8. To accomplish this, the dataset is randomly split into two distinct
parts, with the training data comprising 80% of the dataset and the test data 20%. The
training data are utilized to train the ANN model, and the accuracy of the model is
evaluated based on the metrics testing it on the test data. The objective function we used
to train the data and validation was the Root Mean Squared Error (RMSE). This approach
offers the advantage of balancing the contribution of errors from the entire range of fracture
porosity values.

RMSE =

√
1
n

n

∑
i=1

(
PPredicted

33 − PTrue
33

)2

where n is the total number of observations, PTrue
33 are the actual data, and PPredicted

33 are the
data predicted using a machine learning algorithm. This approach was implemented to
assess the performance of the ANN model and to determine its suitability for the forecasting
of P33.

Fuels 2023, 4, FOR PEER REVIEW 11 
 

 

a type of supervised learning method, ANN models have three layers [42]: an input layer, 
a hidden layer, and an output layer. Further, the hidden layers can consist of one or more 
layers. During the calculation process, each node in the hidden layer will receive an input 
signal from its previous layer, which comprises all the nodes in that layer, along with their 
weighting factors [43]. The activation function, which could take different forms in each 
node, is used to tune the weighting factors of the nodes during the training process. The 
backpropagation algorithm minimizes the user-defined error metric between the model 
and the data [43]. Empirical studies have shown that ANN models can be effective in es-
timating shear velocity and have the best regression performance results compared to 
other ML methods [44,45]. 

The initial approach involves utilizing the pure ANN model, which comprises two 
hidden layers and 7, 2 nodes, to forecast the fracture porosity (P33) in each layer, as illus-
trated in Figure 8. To accomplish this, the dataset is randomly split into two distinct parts, 
with the training data comprising 80% of the dataset and the test data 20%. The training 
data are utilized to train the ANN model, and the accuracy of the model is evaluated based 
on the metrics testing it on the test data. The objective function we used to train the data 
and validation was the Root Mean Squared Error (RMSE). This approach offers the ad-
vantage of balancing the contribution of errors from the entire range of fracture porosity 
values.  

𝑅𝑀𝑆𝐸 = 1𝑛 𝑃 − 𝑃  

where n is the total number of observations, 𝑃   are the actual data, and 𝑃   are 
the data predicted using a machine learning algorithm. This approach was implemented 
to assess the performance of the ANN model and to determine its suitability for the fore-
casting of P33. 

 
Figure 8. ANN Model architecture. 

  

Figure 8. ANN Model architecture.

Hybrid Model Support Vector Machine-Artificial Neural Network (SVM-ANN)

A support vector machine (SVM) is a type of supervised learning method that can
separate data into two classes [46]. Its basic model is a linear classifier that defines a decision
boundary with the largest spacing in the feature space [46]. The SVM differs from other
linear classifiers in that it maximizes the spacing or margin between the decision boundary
and the closest data points. By using kernel tricks, SVM can also classify nonlinear data by
transforming it into a higher-dimensional space where a linear boundary may be found.
The learning strategy of SVM involves solving a convex quadratic programming problem
to maximize the margin. Overall, SVM is considered the optimal algorithm for solving
convex quadratic programming problems in supervised learning tasks [2].

The second approach employed in this project utilizes both SVM and ANN algorithms.
The SVM algorithm determines the presence of fractures in formations by classifying the
P33 variable into two categories: values of zero and greater than zero. An observed P33
value of zero indicates an unfractured portion of the formation, while a value greater than
zero indicates the presence of fractures. Similar to the previous method, the dataset is
randomly partitioned into two groups, namely, the training data and the test data. The
SVM model is initially trained using the training data to distinguish between P33 values
of zero and non-zero. At the same time, all datasets with a P33 value of zero are excluded
from the training data. Subsequently, the ANN model is trained exclusively using data
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from fractured formations. Finally, the accuracy of both models is evaluated using the test
data (Figure 9).
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The ANN model used for the second approach (hybrid) has an architecture of two
hidden layers and 10, 10 nodes on each layer, as shown in Figure 10.
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4. Results and Discussion

The pair plots were generated using R and are presented in Figure 11. The correlation
plot indicates that the “DTCO_Final” exhibited the weakest correlation with the P33,
which represents the porosity of fractures. However, a nearly linear relationship was
observed between the “DTCO” and the “DTSM”. Thus, when training the ANN and SVM-
ANN models, the factor “DTCO” was removed from the model training. It can also be
observed that P33 had a good correlation with the Bulk density (RHOZ) and photoelectric
factor (PEFZ).
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As mentioned earlier, the data consisted of 5008 samples which were randomly allo-
cated into two groups. The first set contained 80% of the total samples, referred to as the
“training data subset” and used to train the machine learning algorithms. The remaining
20%, known as the ‘test data subset’, were utilized to evaluate the efficacy of the machine
learning methods. The error metric Root Mean Square Error (RMSE) was chosen to quantify
the efficiency of the models.

Accurate estimations of fracture porosity are essential, as they play a vital role in
assessments of hydrocarbon reserves. Machine learning (ML) algorithms have been in-
creasingly employed in fracture porosity estimations due to their ability to handle large
volumes of data and identify complex patterns. In this regard, two ML algorithms, i.e.,
pure Artificial Neural Networks and the hybrid SVM-ANN model, have been evaluated in
terms of their effectiveness in estimating fracture porosity. This study aimed to provide
insights into the comparative performance of these two ML algorithms and highlight the
potential of hybridized machine learning algorithms in fracture porosity estimations.

4.1. Artificial Neural Network (ANN)

We systematically investigated the optimum number of hidden layers and neurons
in each layer required for the ANN model. Further, we observed the response of the
objective function to determine the best network structure for our implementation of the
neural network approach. We observed that increasing the number of layers and neurons
increased the score of the objective function, although this was because of overfitting.
Overfitting happens when a model is too complex and goes beyond the task of accurately
fitting the patterns in the data, leading to it memorizing the training points. This causes
the model’s performance to improve continuously on the training dataset; however, this
improvement comes at the cost of the model’s ability to generalize to new, unseen data [47].
Due to noise in the training data and the potential inability to fully represent the entire
population, it is crucial to prevent overfitting by carefully selecting the appropriate size
for the neural network. The optimum ANN model consisted of two layers with 7 and
2 neurons in each layer. The ANN was implemented on R with algorithm backpropagation,
weight backtracking, and the highest learning rate of 0.01.
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The P33 predictions of the ANN are presented in Figure 12 the validity of the ANN was
checked on separate data that were not used during training. We used RMSE to measure
the performance and validity of the machine learning methods. We found RMSE values of
4.13 × 10−5 and 20 × 10−5 for Well A and Well B, respectively, as shown in Figure 12.
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The present study showcases the results obtained from our analysis, where we em-
ployed an Artificial Neural Network (ANN) to predict fracture porosity based on the
provided input logs. The predicted values, alongside the corresponding input logs, are
depicted in Figures A1 and A2. Upon examination, it became evident that the ANN predic-
tions exhibited a discernible correlation with the observed trend of actual fracture porosity.
Particularly noteworthy is the accuracy of the ANN predictions when the P33 parameter
attained relatively high values.

To gain a more comprehensive understanding of our findings, we extended the
reference depth scale for the results obtained from Well A and Well B, as depicted in
Figures A3 and A4, respectively. Upon closer inspection, it became apparent that the accu-
racy of the ANN predictions was not entirely flawless compared to the actual values. Al-
though the overall trend of the predicted fracture porosity closely aligned with the observed
data, certain discrepancies arose, especially within the lower range of fracture porosities,
and specifically, within the depth interval highlighted in a circle as ‘X’ (Figure A1). Within
this range, the ANN tended to overestimate the fracture porosities, thereby incorrectly
suggesting the presence of fractures where there are none.

This discrepancy was a primary motivation for our search for alternative machine
learning algorithms, which eventually led us to adopt a hybrid ML approach. By lever-
aging a hybrid ML framework, we aimed to refine the accuracy of fracture porosity pre-
dictions, specifically targeting intervals where actual fracture porosity is absent but erro-
neously estimated by the ANN. The results of the hybrid approach are presented in the
following section.

4.2. Support Vector Machines-Artificial Neural Network (SVM-ANN)

In the preceding section, we established that the Artificial Neural Network (ANN)
yielded higher P33 values in nonfractured layers. In order to address this issue, we adopted
a two-step approach. Firstly, we employed the SVM algorithm to classify the depth interval
into fractured and nonfractured layers. We utilized a radial basis kernel with the SVM
algorithm to accomplish this. Following the classification, we proceeded to validate the
predictions on test data. Subsequently, we exclusively utilized data from the fractured
layers to predict P33 using the ANN. Our objective was to avoid overfitting the ANN
model, as discussed in the previous section.

To determine the optimal configuration for our analysis, we systematically investigated
the number of layers and neurons in the ANN. Through this exploration, we discovered that
employing two hidden layers consisting of 10 neurons yielded the most favorable results.
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We applied the ANN algorithm that utilized backpropagation with weight backtracking,
similar to the previous case.

By incorporating the SVM algorithm for layer classification and carefully fine-tuning
the ANN model, we aimed to enhance the accuracy of our predictions and mitigate the
biases observed in nonfractured layers. This approach allowed us to overcome the chal-
lenges posed by the initial ANN predictions and made it possible to make more reliable
estimations of P33 values in the fractured layers.

The SVM outcomes are presented in Table 3, which depicts the results for Wells A and
B, with each comprising over two thousand data points. As shown, the SVM achieved
precise predictions, allowing us to distinguish between fractured and non-fractured target
formations. Well A exhibited an impressive accuracy of 96.90%, while Well B displayed a
slightly lower but still commendable accuracy of 95.55%.

Table 3. Results of SVM for each well.

Well A: SVM algorithm predicted result

Real well logging data
P33 = 0 P33 > 0

Predicted well logging data
P33 = 0 1595 44

P33 > 0 25 560

Well B: SVM algorithm predicted result

Real well logging data
P33 = 0 P33 > 0

Predicted well logging data
P33 = 0 1277 56

P33 > 0 68 1383

The cross-validation on the test data for Wells A and B is presented in Figure 13. It can
be seen that the R2 score and the RMSE errors were superior to those of the ANN.
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As in the preceding section, the precision of the error estimates is expressed in terms
of the RMSE and is tabulated in Table 4.

Table 4. Root Mean Square Error results for each well.

RMSE Pure ANN Hybrid Model

Well A 0.092 0.083
Well B 0.145 0.114
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For Well A, the Pure ANN model had an RMSE of 0.092, while the Hybrid Model
achieved a lower RMSE of 0.083. This suggests that the Hybrid Model outperformed the
Pure ANN model in predicting values for Well A, as it had a smaller error. Similarly, the
Pure ANN model had an RMSE of 0.145 for Well B, whereas the Hybrid Model achieved
a lower RMSE of 0.114. In this part, the RMSE was for normalized data, in which the
maximum was 1 and the minimum was 0. This was only for measuring the accuracy of
the predictions.

The results are presented on different scales, specifically, 1:2000 in Figures A1 and A2,
and 1:240 in Figures A3 and A4. Figures A1 and A2 illustrate that there is a similarity in the
overall trend between the predicted fractural porosities and the actual fractural porosities.
This means that the SVM-ANN models were able to capture the general patterns and
variations in the porosity values. Figures A3 and A4 provide more detailed information.
The sections highlighted with ‘A’ in Figures A3 and A4 indicate that the ANN underpre-
dicted the P33 values while the SVM-ANN model tended to make more accurate porosity
predictions. This suggests that the SVM-ANN model performs better than the ANN model
in this respect.

However, in Figure A4, there is a layer marked with ‘B’, where both the ANN and
SVM-ANN models failed to accurately predict the actual P33 values. This discrepancy may
be attributed to the presence of overfitting in the data. Overfitting occurs when a model
becomes excessively complex, fitting the noise or peculiarities of the training data rather
than capturing the underlying patterns. In this study, overfitting is primarily caused by
the overly complex structure of the models. To address overfitting, we adopted a strategy
of simplifying the model structure when it was observed. For instance, if the ANN with
three hidden layers (10, 10, 10) was found to be overfitting, we tested configurations with
fewer nodes, such as (8, 8, 8), or even reduced the number of hidden layers, e.g., (10,
10). We found that in pure ANN, an optimal configuration consisted of two layers with
7 and 2 nodes, yielding relatively good results for both wells.

On the other hand, some alternative structures, such as two layers with 6 and 3 nodes,
16 and 7 nodes, or three layers with 5, 5, 5 nodes, demonstrated good results for one
well but not for the other. To strike a balance between avoiding overfitting and achieving
favorable outcomes for both wells, we utilized these two structures in both the pure ANN
and hybrid (SVM-ANN) models. Furthermore, we observed that the surrounding zones
with similar log signatures did not exhibit high degrees of fracture porosity. Consequently,
the models intentionally refrained from making predictions that erroneously identified
these zones as having high porosity, ensuring more accurate predictions overall.

5. Conclusions

In this study, we have employed an integrative approach to assess fracture porosity
in a tight gas naturally fractured reservoir, i.e., the Ahnet field in Algeria. By utilizing
machine learning techniques, we successfully predicted fracture porosity and conducted
a comparative analysis of various methods. The results demonstrate that accurate esti-
mations of fracture porosity can be achieved by integrating image logs and sonic scanner
data. The study aimed to identify an appropriate machine learning model for fracture
porosity predictions.

The findings of this analysis hold significant implications for reservoir characterization.
Firstly, by utilizing basic well logs for fracture porosity estimates, we circumvent the need
for acquiring expensive and time-consuming advanced well logs, which also helps mitigate
the risks associated with unstable wells during logging procedures. This cost-effective
approach facilitates efficient and informed decision-making during field development.

However, this study faced several limitations that should be acknowledged. Data
scarcity, primarily due to confidentiality concerns expressed by the owner company, re-
stricted the number of wells available for investigation. To enhance the robustness of the
proposed methodology, future research should aim to incorporate more advanced logging
data and validate the findings using core data. Additionally, the accuracy of predicted
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fracture porosity outcomes was influenced by the quality of the well logs, particularly those
with shallow investigation depths, as these were sensitive to the borehole conditions.

While prioritizing cost efficiency and accuracy in fracture porosity estimations, this
study recognizes that neglecting expensive and time-consuming core data may limit pre-
diction accuracy. Therefore, future research should focus on incorporating more well log
and image log data to enhance fracture porosity estimations while exploring methods to
minimize costs and time requirements. The SVM-ANN-based model presented in this
study has proven to be a reliable tool for accurate fracture porosity estimations and could
serve as a substitute in the absence of costly core datasets. Nonetheless, continuous efforts
to improve the model’s performance will lead to more comprehensive and reliable fracture
porosity predictions in tight gas naturally fractured reservoirs.

In summary, this research provides valuable insights into fracture porosity estimation
and highlights the potential of machine learning techniques for reservoir characterization.
As our understanding of these techniques deepens and data availability improves, the
industry will be better equipped to optimize productions in such challenging reservoirs.
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Figure A1. Well A presented at the depth reference scale 1:2000 m. Track I: Depth; Track II: Caliper 
(in black) and Gamma Ray (in red); Track III: Compressional and Shear slowness; Track IV: Neutron 
porosity, Bulk density and photoelectric factor; and Track V: Actual P33 porosity (in blue), ANN 
predicted porosity (in grey), and SVM-ANN predicted porosity (in red). 

Figure A1. Well A presented at the depth reference scale 1:2000 m. Track I: Depth; Track II: Caliper
(in black) and Gamma Ray (in red); Track III: Compressional and Shear slowness; Track IV: Neutron
porosity, Bulk density and photoelectric factor; and Track V: Actual P33 porosity (in blue), ANN
predicted porosity (in grey), and SVM-ANN predicted porosity (in red).
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(in grey), and SVM-ANN predicted porosity (in red).
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(in grey), and SVM-ANN predicted porosity (in red).
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