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Abstract: Formaldehyde is a simple chemical compound that is used as a building block in obtaining
a wide range of products. The versatility of formaldehyde in chemical synthesis becomes evident
when it is reacted with N-alkylethylenediamines. Therefore, this paper reports the structure and
reactivity of a series of compounds derived from easily accessible molecules, such as formaldehyde,
sodium hydrosulphide, and N-alkylethylenediamines. The 1,3,5-triazines (1a-1d) and bis(3-alkyl-
imidazolidin-1-yl)methanes (2a-2d) were obtained by simple reaction conditions. Additionally,
different proportions of sodium hydrosulphide and formaldehyde were used with N-benzylamine to
obtain N-benzyltriazinane (3), N-benzylthiadiazinane (4) and N-benzyldithiazinane (5). All these
compounds were characterized by analytical, spectroscopic, and spectrometric techniques, such as
melting point, solubility, one-dimensional and two-dimensional nuclear magnetic resonance (13C,
1H, 15N, COSY, HETCOR, NOESY, COLOC), elemental analysis, high- and low-resolution mass
spectrometry, among others. The structures of compounds 4 and 5 were obtained by single-crystal
X-ray diffraction. The results show that small variations in the stoichiometry and the reaction
conditions significantly influence the products obtained.

Keywords: formaldehyde; triazinane; imidazolidine; ethylendiamine; bis(imidazolidinyl)methane

1. Introduction

On the one hand, imidazolidines are of commercial interest due to their multiple
biological activities related to ring substitution [1,2]. Bis(imidazolidinyl)methanes are
derived from these heterocycles and have shown excellent antimicrobial, antiparasitic, and
antitumor activity [3]. These properties could be related to its hydrophobic nature, which
increases the bioavailability of its biologically active precursors (carbonyl and ethylene-
diamine) [4]. In addition, microbiological studies have shown a high activity of these
derivatives against fungi, aerobic bacteria and anaerobic bacteria in the degradation of
petroleum derivatives [5]. Artificial neural networks used in pharmacology identify them
as potential new drugs against Chagas disease [6]. Some authors have even used them in
the design of lithium carbanions and in the reduction with borane [7,8]. Therefore, new
green synthesis techniques have been implemented to obtain them [9].

On the other hand, 1,3,5-triazinanes are exceptionally important because they have
three nitrogen atoms with different degrees of hybridization and are good hydrogen-bond
acceptors, which is why they are widely used by the pharmaceutical and biotechnological
industries [10]. In the literature, 2,4,6-trichloro-1,3,5-triazine, also named as cyanuric chlo-
ride, and 1,3,5-trichloro-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, also named as trichloroiso-
cyanuric acid, symclosene or chloreal, are known [11,12]. Both commercial compounds
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are produced on an industrial scale and are economically accessible. The first is used
in agricultural pesticides and photoactive compounds, while the second is used in the
treatment and disinfection of swimming pools and food surfaces [13,14]. Additionally, it
has been reported that 1,3,5-triazinanes have a wide variety of applications, such as in
anticorrosives [15–17], explosives [18,19], precursors in the synthesis of insecticides [20] and
organic compounds [21,22]. For example, in the synthesis of heterocycles, they are easy to
prepare and low-cost substances, allowing other compounds of biological or technological
interest to be obtained [23].

N-alkylethylenediamines react with formaldehyde to obtain different products (imida-
zolidines, 1,3,5-triazinanes or bis(imidazolidinyl)methanes), which depend on the nature
of the reagents, the stoichiometry of the reaction, the solvent used, as well as the time and
temperature of the reaction. In this work, a clear competition between 1,3,5-triazinanes and
bis(imidazolidinyl)methanes was observed, testing various reaction conditions during the
synthesis of the products. Due to the above and considering the chemical and biological
importance of these compounds, there was an interest in understanding the structural and
dynamic behaviour of the new heterocycles derived from N-alkylethylenediamines.

2. Materials and Methods
2.1. General Experimental Details

The reagents used in this investigation were purchased from Sigma-Aldrich Chemical, Fluka
Chemika or Strem Chemical. Reactive-grade solvents, such as toluene, methylene chloride, chloro-
form and tetrahydrofuran were previously dried according to the procedures already established
in the literature. NMR spectra in one and two dimensions were determined in the following
equipment: Jeol GSX-DELTA 270 MHz [1H: 270.17 MHz, 13C: 67.94 MHz, 15N: 27.39 MHz], Jeol
Eclipse GSX-DELTA 400 [1H: 399.78 MHz, 13C: 100.53 MHz, 15N: 40.52 MHz] and BRUKER-
AVANCE 300 [1H: 300.13 MHz, 13C: 75.47 MHz, 15N: 30.42 MHz]. The 1H and 13C spectra
were acquired with reference to Si(CH3)4 and the 15N spectra with reference to CH3NO2 in
5 mm diameter resonance tubes. Chemical shifts are expressed in parts per million (ppm)
and were obtained at room temperature.

Melting points were measured in capillary tubes sealed in Gallemkamp Mel-Temp II
Laboratory Devices equipment. The elemental analyses were performed on FLASH(EA)
1112 Series, Thermo Finnigan equipment. Mass spectra were acquired in HP-5989A MS
Engine Hewlett-Packard equipment coupled to a gas chromatograph 5890 series II by
direct insertion to 20 eV or by high resolution using Agilent Technologies LC/MCD TOF
equipment with ESI and APCI ionization sources.

Crystallographic data were collected in Nonius Kappa CCD equipment with an area
detector using monochromatic molybdenum Kα radiation (0.71073 Å), and intensities were
measured using scans in ϕ andω. The structures were solved using direct methods with
SHELX-97, Sir 2002 and 2004. The refinement of all structures (F2 based on all data) was
done with the least-squares technique of the complete matrix with Crystals-1287d-2009. All
atoms except hydrogen were refined anisotropically.

2.2. Synthesis of 1,3,5-Triazinanes (1a-1d)
2.2.1. Synthesis of 2,2′,2”-(1,3,5-Triazinane-1,3,5-triyl)tris(N-methylethylenamine) (1a)

In a round-bottom flask provided with a magnetic stirrer, N-methylethylenediamine
(5 mL, 53.9 mmol) was dissolved in tetrahydrofuran (50 mL), then placed at –78 ◦C in a
dry ice–acetone bath, and aqueous formaldehyde (4.4 mL, 59.3 mmol) previously cooled
in an ice bath was slowly added. The reaction mixture was stirred for 30 min at 5 ◦C and
24 h at room temperature, then tetrahydrofuran was evaporated. The reaction mixture was
solubilized with methylene chloride, purified with activated carbon, and dried with sodium
sulphate. After filtering and evaporating the solvent, the mixture of compounds 1a and 2a
was obtained as a colourless liquid in a ratio of 40:60, respectively. Product 1a was identified
by comparison with the NMR data of pure compound 2a obtained later. Compound 1a: 1H
NMR (400 MHz, CDCl3) δ: 3.29 (s, 6H, H2, H4, H6), 2.96 (t, 6H, J = 7.0 Hz, H8), 2.50 (t, 6H,
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J = 7.0 Hz, H7), 3.40 (s br, 3H, H9), 2.25 (s, 9H, H10). 13C NMR (101 MHz, CDCl3) δ: 72.3
(C2, C4, C6), 54.2 (C7), 45.7 (C8), 39.5 (C10). 15N NMR (41 MHz, CDCl3) δ: −327.1 (N9),
−340.0 (N1, N3, N5).

2.2.2. Synthesis of 2,2′,2′′-(1,3,5-Triazinane-1,3,5-triyl)tris(N-ethylethylenamine) (1b)

Compound 1b was obtained in the same manner as compound 1a from N-ethylethylen
ediamine (5 mL, 46.5 mmol) and aqueous formaldehyde (3.8 mL, 51.2 mmol). The mixture of
compounds 1b and 2b was obtained as a slightly yellow liquid in a ratio of 45:55, respectively.
Product 1b was identified by comparison with the NMR data of pure compound 2b obtained
later. Compound 1b: 1H NMR (400 MHz, CDCl3) δ: 3.24 (s, 6H, H2, H4, H6), 2.95 (s br, 3H,
H9), 2.86 (t, 6H, J = 7.0 Hz, H8), 2.42 (t, 6H, J = 7.0 Hz, H7), 2.31 (q, 6H, J = 7.3 Hz, H10), 0.92 (t,
9H, J = 7.3 Hz, H11). (101 MHz, CDCl3) δ: 70.3 (C2, C4, C6), 51.9 (C7), 47.5 (C10), 45.2 (C8),
14.1 (C11). 15N NMR (41 MHz, CDCl3) δ: −326.1 (N9), −341.2 (N1, N3, N5).

2.2.3. Synthesis of 2,2′,2”-(1,3,5-Triazinane-1,3,5-triyl)tris(N-benzylethylenmine) (1c)

Compound 1c was obtained in the same manner as compound 1a from N-benzylethylen
ediamine (5 mL, 32.3 mmol) and aqueous formaldehyde (2.7 mL, 35.5 mmol). The mixture
of compounds 1c and 2c was obtained as a colourless liquid in a ratio of 50:50, respectively.
Product 1c was identified by comparison with the NMR data of pure compound 2c obtained
later. Compound 1c: 1H NMR (400 Mhz, CDCl3) δ: 7.35–7.15 (m, 15H, Har), 3.59 (s, 6H,
H10), 3.42 (s, 6H, H2, H4, H6), 3.02 (t, 6H, J = 7.1 Hz, H8), 2.62 (t, 6H, J = 7.1 Hz, H7), 2.60 (s
br, 3H, H9). 13C NMR (101 MHz, CDCl3) δ: 139.0 (Ci), 128.7 (Co), 128.5 (Cm), 127.2 (Cp),
70.7 (C2, C4, C6), 58.0 (C10), 52.3 (C7), 45.4 (C8). 15N NMR (41 MHz, CDCl3) δ: −318.8
(N9), −340.9 (N1, N3, N5).

2.2.4. Synthesis of 2,2′,2”-(1,3,5-Triazinane-1,3,5-triyl)tris(N,N-dimethylethylenamine) (1d)

Compound 1d was obtained in the same manner as compound 1a of N,N-dimethylethy
lenediamine (5 mL, 43.5 mmol) and aqueous formaldehyde (3.6 mL, 35.5 mmol). Compound
1d was obtained pure as a slightly yellow liquid (3.2 g, 73%). Compound 1d: 1H NMR
(400 Mhz, CDCl3) δ: 3.12 (s, 6H, H2, H4, H6), 2.29 (t, 6H, J = 6.8 Hz, H7), 2.12 (t, 6H,
J = 6.8 Hz, H8), 1.96 (s, 18H, H10). 13C NMR (101 MHz, CDCl3) δ: 74.7 (C2, C4, C6), 57.5
(C8), 50.4 (C7), 45.6 (C10). 15N NMR (41 MHz, CDCl3) δ: −355.6 (N9), −334.1 (N1, N3, N5).
LRMS (EI, 20 eV), m/z (%): 301 (2), 242 (5), 201 (9), 158 (8), 142 (38), 130 (27), 101 (68), 72
(22), 58 (100), 42 (12); HRMS (ESI+) m/z calc. for (M+H)+: 301.3080, found: 301.3074. EA
calc. for C15H36N6

1
2 CH2Cl2: C, 54.28; H, 10.87; N, 24.50. found: C, 54.01; H, 10.86; N, 25.01.

2.3. Synthesis of Bis(3-alkyl-imidazolidin-1-yl)methane (2a-2d)
2.3.1. Obtaining Bis(3-methylimidazolidin-1-yl)methane (2a)

In a round-bottom flask provided with a magnetic stirrer, N-methylethylenediamine
(5 mL, 53.9 mmol) was dissolved in tetrahydrofuran (50 mL), then aqueous formaldehyde
was added slowly (4.4 mL, 59.3 mmol). The reaction mixture was stirred for 10 min at 5 ◦C
in a water ice bath and maintained at reflux for 6 h in tetrahydrofuran. The solvent was
evaporated, and the reaction mixture was solubilized with methylene chloride, purified
with activated carbon and dried with sodium sulphate. After filtering and evaporating
the solvent, pure compound 2a was obtained as a colourless liquid (4.6 g, 92%). 1H NMR
(400 Mhz, CDCl3) δ: 3.26 (s, 4H, H2), 3.23 (s, 2H, H6), 2.75 (t, 4H, J = 6.7 Hz, H5), 2.55 (t, 4H,
J = 6.7 Hz, H4), 2.19 (s, 6H, H7). 13C NMR (101 MHz, CDCl3) δ: 77.0 (C6), 76.6 (C2), 54.1
(C4), 51.0 (C5), 40.6 (C7). 15N NMR (41 MHz, CDCl3) δ: −326.9 (N1), −340.7 (N3). LRMS
(EI, 20 eV), m/z (%): 183 (2), 167 (2), 156 (3), 142 (2), 126 (2), 113 (9), 99 (31), 85 (45), 72 (22),
58 (54), 44 (100). EA calc. for C9H20N4

1/3CH2Cl2: C, 52.73; H, 9.80; N, 26.35. found: C,
52.78; H, 10.09; N, 26.47.
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2.3.2. Obtaining Bis(3-ethylimidazolidin-1-yl)methane (2b)

Compound 2b was obtained following the same procedure as compound 2a from N-
ethylethylenediamine (5 mL, 46.5 mmol) and aqueous formaldehyde (3.8 mL, 51.2 mmol).
After filtering and evaporating the solvent, pure compound 2b was obtained as a colourless
liquid (4.5 g, 91%). 1H NMR (400 Mhz, CDCl3) δ: 3.09 (s, 4H, H2), 3.01 (s, 2H, H6), 2.53 (t, 4H,
J = 6.6 Hz, H5), 2.36 (t, 4H, J = 6.6 Hz, H4), 2.14 (q, 4H, J = 7.2 Hz, H7), 0.73 (t, 6H, J = 7.2 Hz,
H8). 13C NMR (101 MHz, CDCl3) δ: 76.4 (C6), 74.6 (C2), 51.7 (C4), 50.3 (C5), 48.5 (C7), 13.7
(C8). 15N NMR (41 MHz, CDCl3) δ: −327.2 (N1), −328.8 (N3). LRMS (EI, 20 eV), m/z (%):
211 (16), 197 (1), 154 (1), 127 (2), 113 (100), 99 (7), 84 (3), 72 (8), 58 (2), 56 (3), 42 (2). EA calc.
C11H24N4 1/9 CH2Cl2: C, 60.18; H, 11.01; N, 25.26. found: C, 60.51; H, 10.86; N, 24.86.

2.3.3. Obtaining Bis(3-benzylimidazolidin-1-yl)methane (2c)

Compound 2c was obtained following the same procedure as compound 2a from N-
benzylethylenediamine (5 mL, 32.3 mmol) and aqueous formaldehyde (2.7 mL, 35.5 mmol).
After filtering and evaporating the solvent, pure compound 2c was obtained as a colourless
liquid (4.8 g, 88%). 1H NMR (400 Mhz, CDCl3) δ: 7.35–7.15 (m, 15H, Har), 3.60 (s, 4H, H7),
3.42 (s, 4H, H2), 3.33 (s, 2H, H6), 2.86 (t, 4H, J = 7.2 Hz, H5), 2.70 (t, 4H, J = 7.2 Hz, H4).
13C NMR (101 MHz, CDCl3) δ: 139.1 (Ci), 128.7 (Co), 128.4 (Cm), 127.1 (Cp), 76.7 (C6), 75.2
(C2), 59.1 (C7), 52.3 (C4), 50.7 (C5). 15N NMR (41 MHz, CDCl3) δ: −327.6 (N1), −327.9 (N3).
LRMS (EI, 20 eV), m/z (%): 335 (3), 292 (2), 251 (2), 220 (13), 205 (42), 175 (91), 161 (54), 146
(6), 132 (16), 119 (10), 99 (16), 91 (100), 83 (37), 72 (14), 57 (18), 42 (37). EA calc. C21H28N4: C
(74.96), H (8.39), N (16.65). found: C (74.68), H (8.30), N (16.73).

2.3.4. Obtaining Bis(3-phenylimidazolidin-1-yl)methane (2d)

Compound 2d was obtained following the same procedure as compound 2a from N-
phenylethylenediamine (5 mL, 37.6 mmol) and aqueous formaldehyde (3.1 mL, 41.4 mmol).
After filtering and evaporating the solvent, pure compound 2d was obtained as a white
solid (4.8 g, 82%, Mp 142 ◦C). 1H NMR (400 Mhz, CDCl3) δ: 7.25 (dd, 4H, JHm-Hp = 7.3 Hz,
JHm-Ho = 7.8 Hz, Hm), 6.72 (t, 2H, JHp-Hm = 7.3 Hz, Hp), 6.54 (d, 4H, JHo-Hm = 7.8 Hz, Ho),
4.17 (s, 4H, H2), 3.47 (s, 2H, H6), 3.42 (t, 4H, J = 6.6 Hz, H4), 3.13 (t, 4H, J = 6.6 Hz, H5).
13C NMR (101 MHz, CDCl3) δ: 146.7 (Ci), 129.4 (Cm), 116.5 (Cp), 111.8 (Co), 74.5 (C6), 69.1
(C2), 51.0 (C5), 45.8 (C4). 15N NMR (41 MHz, CDCl3) δ: −325.7 (N1), −309.4 (N3). LRMS
(EI, 20 eV), m/z (%): 308 (1), 176 (1), 161 (100), 147 (47), 120 (5), 106 (48), 77 (6), 56 (20), 42
(5). EA calc. for C19H24N4 1/16CH2Cl2: C, 72.98; H, 7.75; N, 17.86. found: C, 72.77; H, 7.37;
N, 17.51.

2.4. Synthesis of 1,3,5-Tribenzyl-1,3,5-triazinane (3)

Compound 3 is obtained from N-benzylamine (10 mL, 89.8 mmol) dissolved in distilled
water (50 mL) and tetrahydrofuran (25 mL). The reaction mixture was placed in a water
ice bath, and aqueous formaldehyde (7.4 mL, 98.8 mmol) was slowly added. The reaction
was kept under stirring and after 24 h at room temperature the solvent was evaporated.
Compound 3 was extracted with methylene chloride and dried with anhydrous sodium
sulphate (10.5 g, 98%, Mp 50 ◦C). 1H NMR (400 Mhz, CDCl3) δ: 7.45–7.25 (m, 15H, Har),
3.76 (s, 6H, H7), 3.52 (s br, 6H, H2, H4, H6). 13C NMR (101 MHz, CDCl3) δ: 138.7 (Ci),
129.1 (Co), 128.4 (Cm), 127.2 (Cp), 74.0 (C2, C4, C6), 57.2 (C7). 15N NMR (41 MHz, CDCl3)
δ: −329.7 (N1, N3, N5). LRMS (EI, 20 eV), m/z (%): 357 (10), 238 (14), 133 (19), 120 (72), 106
(12), 91 (100), 65 (6), 42 (9); HRMS (ESI+) m/z calc. for (M + Na)+: 380.2103, found: 380.2097.
EA calc. for C24H27N3: C, 80.63; H, 7.61; N, 11.75. found: C, 80.28; H 7.42; N 11.45.

2.5. Synthesis of 3,5-Dibenzyl-1,3,5-thiadiazinane (4)

In a round-bottom flask provided with a magnetic stirrer, N-benzylamine (5 mL,
44.9 mmol) dissolved in distilled water (50 mL) was placed. The solution was cooled in
an ice bath, and a cold solution (5 ◦C) of sodium hydrosulphide (7.6 g, 134.7 mmol) in
aqueous formaldehyde (16.7 mL, 224.5 mmol) was slowly added. The reaction mixture
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was stirred for 30 min at 5 ◦C and 24 h at room temperature. Compound 4 was extracted
with methylene chloride and dried with anhydrous sodium sulphate. Compound 4 was
obtained mixed with compound 5. However, the slow evaporation of methylene chloride
allowed the obtaining of colourless crystals of compound 4, which were separated by
filtration. (3.0 g, 47%, Mp 96 ◦C). 1H NMR (400 Mhz, CDCl3) δ: 7.42–7.26 (m, 10H, Har),
4.26 (s br, 4H, H2, H6), 4.13 (s, 4H, H7), 4.08 (s br, 2H, H2). 13C NMR (101 MHz, CDCl3)
δ: 138.7 (Ci), 128.9 (Co), 128.6 (Cm), 127.4 (Cp), 73.8 (C4), 57.3 (C2, C6), 56.2 (C7). 15N NMR
(41 MHz, CDCl3) δ: −334.0 (N3, N5). MS (EI, 20 eV), m/z (%): 284 (2), 251 (6), 211 (1), 193
(2), 165 (28), 133 (31), 118 (38), 91 (100), 74 (2), 65 (13), 42 (17); HRMS (ESI+) m/z calc. for
(M + H)+: 285.1425, found: 285.1419. EA calc. for C17H20N2S: C, 71.79; H, 7.09; N, 9.85.
found: C, 71.84; H, 7.42; N, 9.73.

2.6. Synthesis of 5-Benzyl-1,3,5-dithiazinane (5)

Compound 5 was obtained from N-benzylamine (5 mL, 44.9 mmol) dissolved in
distilled water (50 mL). The solution was cooled in an ice bath, and a cold solution (5 ◦C)
of 17.6 g of sodium hydrosulphide (314.3 mmol) in aqueous formaldehyde (73.6 mL,
987.8 mmol) was slowly added. The reaction mixture was stirred for 30 min at 5 ◦C and
24 h at room temperature. Compound 5 was extracted with methylene chloride and dried
with anhydrous sodium sulphate (6.6 g, 70%). 1H NMR (400 Mhz, CDCl3) δ: 7.42–7.22 (m,
5H, Har), 4.44 (s br, 4H, H4, H6), 4.24 (s, 2H, H7), 4.14 (s br, 2H, H2). 13C NMR (101 MHz,
CDCl3) δ: 137.4 (Ci), 129.4 (Co), 128.7 (Cm), 127.6 (Cp), 58.0 (C4, C6), 53.4 (C7), 34.2 (C2).
15N NMR (41 MHz, CDCl3) δ: −344.8 (N5). LRMS (EI, 20 eV), m/z (%): 211 (13), 165 (15),
133 (45), 120 (10), 118 (30), 91 (100), 65 (12), 42 (72); HRMS m/z calc. for (M+H)+: 212.0568,
found: 212.0562. EA calc. for C10H13NS2: C, 56.83; H, 6.20; N, 6.63. found: C, 56.96;
H 6.27; N 6.67.

3. Results and Discussion

Condensation reactions between N-alkylethylenediamines, formaldehyde and sodium
hydrosulphide in a stoichiometric ratio [1:5:3] led to the formation of N-alkyl-ethylene-
dithiazinanes, which were previously reported by our research group [24]. However, by
varying stoichiometry, by-products were obtained, such as N-alkylethylenethiadiazinanes,
or N-alkylethylenetriazinanes, which made it difficult to isolate pure compounds. Therefore,
we decided to explore the condensation reactions between N-alkylethylenediamines and
formaldehyde in the absence of sodium hydrosulphide, favouring the formation of sulphur-
free heterocycles, such as 1,3,5-triazinanes (1a-1d) and bis(imidazolidinyl)methanes (2a-2d).

3.1. Preparation of 1,3,5-Triazinanes (1a-1d)

To a solution of the N-alkylethylenediamines (R = Me, Et or Bn) in tetrahydrofuran
at –78 ◦C was added dropwise an equivalent of formaldehyde, previously cooled. After
twenty-four hours of stirring at room temperature, a mixture of 1,3,5-triazinanes (1a-1c) and
bis(imidazolidinyl)methanes (2a-2c) was obtained in proportions of: 1a/2a 40:60, 1b/2b
45:55, and 1c/2c 50:50; see Scheme 1. The 1,3,5-triazinanes (1a-1c) could not be isolated
pure by any of the known separation techniques, so they were only identified by NMR.
However, reactions to tetrahydrofuran reflux for six hours and subsequent distillation led
exclusively to the formation of bis(imidazolidinyl)methanes (2a-2c); see Section 3.2.

Under the same reaction conditions, the N,N-dimethylethylenediamine produced ex-
clusively the 1,3,5-triazinane (1d), while N-phenylethylenediamine gave the bis(imidazolid
inyl)methane (2d); see Scheme 2. The 1,3,5-triazinanes (1a-1c) discussed in this section had
not previously been reported in the literature, except compound 1d, which had already
been described under different reaction conditions [25].
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3.2. Preparation of Bis(imidazolidinyl)methanes (2a-2d)

Attempts to purify 1,3,5-triazinanes (1a-1c) by vacuum distillation (0.5 mmHg, +20 ◦C to
+90 ◦C) showed that heating the reaction mixture transforms them into bis(imidazolidinyl)m
ethanes (2a-2c); see Scheme 3.
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Scheme 3. Preparation of the bis(imidazolidinyl)methanes (2a-2c) by heating the 1,3,5-triazinanes
(1a-1c).

Bis(imidazolidinyl)methanes (2a-2d) are very stable compounds and were synthesized
directly with good yields, from the equimolar reaction between formaldehyde and the
corresponding N-alkylethylenediamine. The addition was made at room temperature,
and the reaction mixture was subsequently maintained at reflux in tetrahydrofuran for
six hours; see Scheme 4. The bis(imidazolidinyl)methanes (2a-2d) were obtained in good
yields and are colourless liquids, soluble in polar organic solvents, such as tetrahydro-
furan, dimethyl sulfoxide, chloroform, methylene chloride, methanol, ethanol, etc. The
bis(imidazolidinyl)methanes 2a [5,8,9], 2c [5] and 2d [2–6] discussed in this section had
previously been reported in the literature under different reaction conditions, except com-
pound 2b, which had never been synthesized and characterized.
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3.3. NMR Reaction Evaluation

The results in Section 3.1 showed that the reaction products depend on the amine
structure, the reaction conditions and the stoichiometry. Therefore, to have more infor-
mation about the evolution of different reactions, the equimolar reaction between N-
methylethylenediamine and formaldehyde was monitored by 13C and 1H NMR in tubes at
different acquisition temperatures; see Scheme 5. The experimental strategy was to evaluate
the reaction in 1:1 stoichiometry using two solvents with a wide range between their boiling
(Bp) and melting points (Mp). Tetrahydrofuran-d8 allowed the temperature to be lowered to
−78 ◦C and dimethylsulfoxide-d6 allowed the temperature to be raised to 120 ◦C. Therefore,
the experiments were carried out at−78, 25, 65 ◦C (for tetrahydrofuran-d8) and 5, 25, 120 ◦C
(for dimethylsulfoxide-d6). The reaction times used were 0.1, 1, 6 and 24 h. In addition,
the stoichiometric ratios 1:2 and 2:1 were analysed in order to verify their influence on the
reaction. The intensity and integration of the signals assigned by NMR to the [N-CH2-N]
fragment and to the N-CH3 group were used in the quantification of the ratio of compounds
a, 1a and 2a. In an NMR tube at −78 ◦C, the spectra acquired immediately after mixing
the reagents in tetrahydrofuran-d8 showed three compounds: imidazolidine (a, 42%),
1,3,5-triazinane (1a, 21%) and bis(imidazolidinyl)methane (2a, 37%). The spectra recorded
after six hours of reaction at room temperature showed an increase in 1,3,5-triazinane (1a,
43%) and a decrease in imidazolidine (a, 21%) and bis(imidazolidinyl)methane (2a, 36%).
When the reaction was monitored in dimethylsulfoxide-d6, initially at 5 ◦C and later at
room temperature, results similar to those found with tetrahydrofuran-d8 were observed.
Additionally, with this solvent the NMR tube was heated for one hour at 120 ◦C, changing
the ratio between the products 1,3,5-triazinane (1a, 26%) and bis(imidazolidinyl)methane
(2a, 74%); see Table 1.
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When the reaction was carried out in dimethylsulfoxide-d6 in a 2:1 ratio between
N-methylethylenediamine and formaldehyde, the spectra acquired a few minutes af-
ter mixing the reagents showed: imidazolidine (71%), 1,3,5-triazinane (1a, 17%) and
bis(imidazolidinyl)methane (2a, 12%). The spectra of the solution after heating for three
hours at 120 ◦C have a mixture of 1,3,5-triazinane (1a) and the free diamine. The spec-
tra of the reaction carried out in dimethylsulfoxide-d6 in a 1:2 stoichiometric ratios be-
tween N-methylethylenediamine and formaldehyde showed the signals corresponding
to bis(imidazolidinyl)methane (2a) as a majority product. The 1,3,5-triazinane (1a) and
imidazolidine were observed in small amounts, even when the reaction was heated at
120 ◦C for two hours; see Table 1. From the results obtained, we can determine that in
excess of formaldehyde, the main product is bis(imidazolidinyl)methane (2a), while in
excess of N-methylethylenediamine, 1,3,5-triazinane (1a) is the predominant compound. It
is interesting to note that imidazolidine is precursor to 1,3,5-triazinane (1a).

The previous results allow us to discuss the preliminary thermodynamic and kinetic
stability of the products obtained from the equimolar reaction between N-methylethylenedia
mine and formaldehyde. The kinetically controlled product is 1,3,5-triazinane (1a), since it is
the least stable product and is obtained by lowering the temperature in short reaction times.
Additionally, the thermodynamically controlled product is bis(imidazolidinyl)methane (2a),
since it is the most stable product and is obtained by increasing the temperature in long re-
action times. That is, 1,3,5-triazinane (1a) is formed faster than bis(imidazolidinyl)methane
(2a) because the activation energy for bis(imidazolidinyl)methane (2a) is lower than for
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bis(imidazolidinyl)methane (2a), even though bis(imidazolidinyl)methane (2a) is more sta-
ble. However, to confirm these assertions, a deeper study is necessary, gradually modifying
the reaction conditions for a better comparison.

Table 1. Proportion of the products obtained from the reaction between N-methylethylenediamine
and formaldehyde by NMR.

Reagents (Eq.) Reaction Conditions Products (%)
A B Solvent Temperature Time C D E

1 1 THF-d8 −78 ◦C 6 min
(0.1 h) 42 21 37

1 1 THF-d8 25 ◦C 360 min
(6 h) 21 43 36

1 1 THF-d8 25 ◦C 1440 min
(24 h) 0 40 60

1 1 THF-d8 65 ◦C 360 min
(6 h) 0 0 100

1 1 DMSO-d6 5 ◦C 6 min
(0.1 h) 25 39 36

1 1 DMSO-d6 25 ◦C 6 min
(0.1 h) 21 43 36

1 1 DMSO-d6 120 ◦C 60 min
(1 h) 0 26 74

2 1 DMSO-d6 5 ◦C 6 min
(0.1 h) 71 17 12

2 1 DMSO-d6 120 ◦C 150 min
(2.5 h) 0 50 * 0

1 2 DMSO-d6 5 ◦C 6 min
(0.1 h) 1 1 98

1 2 DMSO-d6 120 ◦C 90 min
(1.5 h) 0.5 0.5 99

* Excess diamine, A = N-methylethylenediamine, B = formaldehyde, C = imidazolidine, D = 1,3,5-triazinane
E = bis(imidazolidinyl)methane, DMSO-d6: Mp 18.5 ◦C, bp 189 ◦C, THF-d8: Mp −108.5 ◦C, bp 66 ◦C.

3.4. Spectroscopic Characterization of 1,3,5-Triazinanes (1a-1d)

The 13C NMR spectra confirmed the formation of 1,3,5-triazinanes, since the signal cor-
responding to the equivalent carbons (C2, C4 and C6) showed a characteristic displacement
for this type of derivative at approximately 70 ppm. The C8 of compound 1d showed a
different shift from that of 1,3,5-triazinanes (1a-1c), since it has a tertiary amine attached in
that position. Table 2 summarizes the chemical shifts of 1H and 13C NMR (CDCl3, 25 ◦C) of
1,3,5-triazinanes (1a-1d); the protons of the heterocycle are characterized by a broad signal
for equivalent hydrogens (H2, H4 and H6) that integrate for six protons. The unequivocal
assignment of H7 and H8, as well as its correlation with 13C, was completed by experiments
in two dimensions: COSY, NOESY and HETCOR.

Table 2. NMR data of 13C and 1H (δ, J, CDCl3, 25 ◦C) for 1,3,5-triazinanes (1a-1d).

Prod. C2, C4, C6 C7 C8 R Group H2, H4, H6 H7 H8 R Group

1a 72.3 54.2 45.7 39.5, (Me) 3.29 (s) 2.50 (t)
J 7.0

2.96 (t)
J 7.0 2.25 (s), (Me)

1b 70.3 51.9 45.2 47.5, 14.1, (Et) 3.24 (s) 2.42 (t)
J 7.0

2.86 (t)
J 7.0 2.31 (c), 0.92 (t), (Et)

1c 70.7 52.3 45.4 58.0, 139.0, 128.7,
128.5, 127.2, (CH2Ph) 3.42 (s) 2.62 (t)

J 7.1
3.02 (t)

J 7.1
3.59 (s), 7.4–7.2 (m),

(CH2Ph)
1d 74.7 50.4 57.5 45.6 (Me) 3.12 (s) 2.29 (t)

J 6.8
2.12 (t)

J 6.8 1.96 (s), (Me)

The 15N NMR spectroscopic data (CDCl3, 25 ◦C) showed the signal corresponding
to the equivalent nitrogen atoms (N1, N3 and N5) at approximately −340 ppm. This
displacement is characteristic for heterocyclic nitrogen at 1,3,5-triazinanes, as reported in
the literature for similar compounds [26–28]. Table 3 compares the 15N NMR chemical
shifts of 1,3,5-triazinanes (1a-1d) and the N-alkylethylenediamines (a-d) from which they
come and shows that the primary amine (N1) in the N-alkylethylenediamine about 22 ppm
was deprotected by forming the heterocycle and becoming a tertiary amine (N1, N3 and
N5) in the new 1,3,5-triazinanes (1a-1d). The change in the nitrogen displacement of the
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secondary amine of the N-alkylethylenediamines (N4), by forming 1,3,5-triazinanes (N9),
could be explained by the intramolecular hydrogen bridge N•••H-N that forms exocyclic
N-H with endocyclic nitrogen in these compounds (1a-1c). This hydrogen bond cannot be
formed in derivative 1d, so the shift does not change significantly with respect to that of
the initial amine.

Table 3. NMR data of 15N (δ, CDCl3, 25 ◦C) for 1,3,5-triazinanes (1a-1d) and their N-
alkylethylenediamines (a-d).

N-Alkyl-
Ethylenediamine N1 N4 1,3,5-Triazinane N1, N3, N5 N9

a −363.5 −360.8 1a −340.0 −327.1
b −362.9 −341.2 1b −341.2 −326.1
c −362.0 −343.3 1c −340.9 −318.8
d −363.5 −360.3 1d −334.1 −355.6

3.5. Spectroscopic Characterization of Bis(imidazolidinyl)methanes (2a-2d)

The 13C NMR spectra showed the characteristic signals around 70 ppm for C2 and C6.
The C2 integrates for two carbons and the C6 for one. Table 4 summarizes the chemical
shifts of 13C and 1H (CDCl3, 25 ◦C) of bis(imidazolidinyl)methanes (2a-2d); protons H2
and H6 are characterized by being simple signals that integrate for four and two protons,
respectively. The unambiguous allocation of H4 and H5, as well as the correlation between
carbon and hydrogen, was completed by experiments in two dimensions: COSY, NOESY,
HETCOR and COLOC. The coupling constants (3JH4-H5) and dihedral angles from the
Karplus curve of compounds (2a-2d) confirm that the nitrogen is in the syn position: 2a
(3JH4-H5 = 6.7) 34◦ and 137◦, 2b (3JH4-H5 = 6.6) 34◦ and 136◦, 2c (3JH4-H5 = 7.2) 30◦ and 140◦,
and 2d (3JH4-H5 = 6.6 Hz) 34◦ and 136◦; see Figure 1.

Table 4. NMR data of 13C and 1H (δ, J, CDCl3, 25 ◦C) for bis(imidizalodinyl)methanes (2a-2d).

Prod. C2 C6 C4 C5 R Group H2 H6 H4 H5 R Group

2a 76.6 77.0 54.1 51.0 40.6, (Me) 3.26 (s) 3.23 (s) 2.55 (t)
J 6.7

2.75 (t)
J 6.7 2.19 (s), (Me)

2b 74.6 76.4 51.7 50.3 48.5, 13.7, (Et) 3.09 (s) 3.01 (s) 2.36 (t)
J 6.6

2.53 (t)
J 6.6 2.14 (c), 0.73 (t), (Et)

2c 75.2 76.7 52.3 50.7
59.1, 139.1,

128.7, 128.4,
127.1, (CH2Ph)

3.42 (s) 3.33 (s) 2.70 (t)
J 7.2

2.86 (t)
J 7.2

3.60 (s),
7.4–7.2 (m), (CH2Ph)

2d 69.1 74.5 45.8 51.0 146.7, 129.4,
116.5, 111.8, (Ph) 4.17 (s) 3.47 (s) 3.42 (t)

J 6.6
3.13 (t)

J 6.6 7.3–6.5 (m), (Ph)
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Figure 1. Newman projections for compounds (2a-2d) showing dihedral angles according to cou-
pling constants JH-H. 
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constants JH-H.

The 15N NMR spectroscopic data (CDCl3, 25 ◦C) showed a signal around −326 ppm,
which corresponds to the bridging carbon between the two five-membered heterocycles, and
their value is characteristic for nitrogen atoms in similar compounds reported in the litera-
ture [26–28]. Table 5 compares the 15N NMR chemical shifts of bis(imidazolidinyl)methanes
(2a-2d) and the N-alkylethylenediamines (a-d) from which they come. It is observed
that in the N-alkylethylenediamines, the nitrogen of the N1 and N4 positions was depro-
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tected around 35 and 20 ppm, respectively, when forming the N1 and N3 positions of the
bis(imidazolidinyl)methanes, both becoming tertiary amines.

Table 5. NMR data of 15N (δ, CDCl3, 25 ◦C) for bis(imidizalodinyl)methanes (2a-2d) and their
N-alkylethylenediamines (a-d).

N-Alkyl-
Ethylenediamine N1 N4 Bis(imidizalodinyl)

Methanes N1 N3

a −363.5 −360.8 2a −326.9 −340.7
b −362.9 −341.2 2b −327.2 −328.8
c −362.0 −343.3 2c −327.6 −327.9
d −361.8 −316.7 2d −325.7 −309.4

3.6. Spectrometric Characterization of Bis(imidazolidinyl)methanes (2a-2d)

These derivatives were studied by electronic impact mass spectrometry at 20 eV. This
technique allowed us to observe odd molecular ions in molecules with an even number of
nitrogen, m/z(%): 183(2) (2a), 191(4) (2b), 335(4) (2c) and 307(1) (2d). The four compounds
have several possibilities of rupture. The bis(imidazolidyl)methanes (2a-2d) had the same
fragmentation pattern, so that the compound 2a is analysed by way of example. The
molecular weight of the compound is 184 g/mol, but it has an even number of nitrogen, so
the molecular ion found is 183 and is observed with a 2% abundance; the base peak 44(100)
corresponds to the fragment [(Me)2N]+; see Figure 2.
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spectrometry.

These derivatives were also studied by high-resolution mass spectrometry (MS-TOF),
using electrospray ionization (ESI). Although this technique did not allow us to observe the
characteristic molecular ions (M + H)+, despite the mild ionization and high sensitivity, this
offered us valuable information about the stability of the methylene bridge in C6, which
fragments easily during ionization. Fracture of the C-N bond in C6 produces characteristic
fragments in bis(imidazolidyl)methanes (2a-2d). Compounds 2a and 2b, after breaking the
bond, react with the methanol in the medium and form fragments at 131.1197 and 145.1382,
respectively; see Figure 3.
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3.7. Versatility of Formaldehyde in the Synthesis of Six-Member Heterocycles

In order to explore the versatility of formaldehyde in the synthesis of other six-
membered heterocycles, the reactions of N-benzyl-amine in the presence of formaldehyde
and sodium hydrosulphide in different proportions were explored. The equimolar reaction
between N-benzylamine and formaldehyde led exclusively to the formation of N-benzyl-
triazinane (3, 98% yield), which has already been previously reported by other research
groups under different reaction conditions [29–44]. The reaction of one equivalent of N-
benzylamine with five of formaldehyde and three of sodium hydrosulphide was explored,
obtaining a mixture of products in 50:50 ratios: N-benzyl-thiadiazinane (4) and N-benzyl-
dithiazinane (5). Compound 4 is a colourless crystalline solid while compound 5 is a yellow
liquid, so they were easily separated by filtration. The N-benzyl-dithiazinane was also
obtained pure (5, 70% yield) of the condensation of one equivalent of N-benzylamine with
twenty-two of formaldehyde and seven of sodium hydrosulphide; this compound had
already been reported by other authors [45–47]; see Scheme 6.
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3.8. Crystallographic Characterization of N-Benzyl-triazinane (3) and N-Benzyl-thiadiazinane (4)

The N-benzyl-triazinane 3 is a crystalline solid that was obtained by slow evapo-
ration of the solution obtained from the equimolar reaction between formaldehyde and
N-benzylamine. The crystals were studied by DRX (monoclinic P 21/n). Crystallographic
data and structure refinement are summarized in Table S1. The lengths and angles of the
bonds are presented in Table S2. In compound 3, the heterocycle has a chair conformation;
in addition, according to the NMR data obtained in solution [13C 57.2 ppm (C7), 1H 3.76 (s)
(H7), benzyl carbon], the three substituents would be expected to be in equilibrium between
the axial and equatorial positions. However, in the solid state it is observed that the first
substituent is placed in an equatorial position, the second in an axial position, and the third
is in equilibrium between both positions. For this reason, the disorder of the third benzyl
substituent was modelled; see Figure 4. The nitrogen atoms N1 and N5 have a trigonal
pyramidal geometry: C2-N1-C7 115.1(4)◦, C2-N1-C6 102.9(5)◦, C6-N1-C7 110.7(4)◦ [Σangles

for N1(equatorial) = 328.7◦, 100% sp3 character], C4-N5-C6 110.9(4)◦, C6-N5-C21 115.0(5)◦,
C4-N5-C21 116.3(4)◦ [Σangles for N5(axial) = 342.2◦, 49.7% sp3 character]. The percentage
sp3 hybridization of N3 atoms was not determined due to the disorder of the benzyl group
at that position. The conformational behaviour in the solid state and in solution of some
other triazinanes analogous to compound 3 has been widely discussed by our working
group [48–51].
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In the same way, the N-benzyl-thiadiazinane 4 is a crystalline solid that was obtained by
slow evaporation of the solution containing it, mixed with compound 5. The crystals were
studied by single-crystal X-ray diffraction (orthorhombic P 212121). Crystallographic data
and structure refinement are summarized in Table S3. The lengths and angles of the bonds
are presented in Table S4. Compound 4 is in a chair conformation; it would be expected that,
according to the data obtained from NMR in solution [13C 56.2 ppm (C7), 1H 4.13 (s) (H7),
benzyl carbon], one substituent will be placed in axial position and the other in the equatorial
position. However, in the solid state, the two substituents were placed in axial position; see
Figure 5. The nitrogen atoms N3 and N5 have a trigonal pyramidal geometry: C4-N3-C8
115.4(4)◦, C2-N3-C8 113.4(3)◦, C2-N3-C4 111.3(4)◦ [Σangles for N3 = 340.1◦, 49.5% sp3 character],
C4-N5-C6 112.0(4)◦, C4-N5-C7 116.9(4)◦, C6-N5-C7 113.5(3)◦ [Σangles for N5 = 342.4◦, 49.7% sp3

character]. The bond angles around sulphur are C2-S1-C6 93.3(3)◦, which indicates only
86.3% sp2 hybridization, leaving the free electron pairs in one sp2 and other p pure orbitals.
Two hydrogen atoms in the benzyl groups have a shorter distance than the sum of the van
der Waals radii (ΣrvdW [H•••H] = 2.40 Å). The above indicates that the steric interaction
in axial is of lower energy than the electronic repulsion between the free electron pairs
of the nitrogen and sulphur atoms when the substituents are equatorial. This behaviour
is similar to that found for other thiadiazinanes reported by our work group [48–51].
Additionally, a polymorphic structure of compound 4 is reported, which was obtained by
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slow evaporation of the crude reaction. The structure crystallized in a monoclinic space
group, P 21. Crystallographic data and structure refinement are summarized in Table
S5. The bond lengths and angles are presented in Table S6. Both polymorphs showed
intra- and intermolecular S•••H interactions smaller than the sum of van der Waals radii
(ΣrvdW [S•••H] = 3.00 Å).
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4. Conclusions

Formaldehyde, a basic but highly reactive compound, is widely used in the chemical
industry due to its versatility, low cost, and easy production. This compound is also known
as methanal and is mainly used in the production of phenolic and amino resins, acetal
resins, polyhydric alcohols, fertilizers, and paraformaldehyde. Furthermore, this com-
pound reacts with various organic derivatives including amines, forming heterocycles with
one or more C-N bonds. Therefore, in this work, the reactivity of formaldehyde against N-
alkylethylenediamines was explored using different reaction conditions, such as variations
in reaction time and temperature, and modifications in the stoichiometric ratio, among
others. Under mild conditions (addition at −78 ◦C and stirring for 24 h), mixtures were
obtained between the products bis(imidazolidinyl)methanes (2a-2c) and 1,3,5-triazinanes
(1a-1c), when the alkyl substituents were methyl, ethyl or benzyl. However, when the sub-
stituent was phenyl, the reaction led exclusively to bis(imidazolidinyl)methane 2d. When
more severe conditions were used (addition at room temperature and reflux for 6 h) it ex-
clusively led to the formation in good yields of the bis(imidazolidinyl)methanes (2a-2d). In
the case of N,N-dimethylethylenediamine, when it reacts with formaldehyde it exclusively
leads to the formation of 1,3,5-triazinane 1d under both mild and severe reaction conditions.
To confirm the versatility of formaldehyde, its reaction with N-benzylamine was explored
in the absence and presence of sodium hydrosulphide in different stoichiometric ratios. The
manipulation of these three reagents led to the obtaining of three 1,3,5-heterocyclohexanes
(triazinane, thiadiazinane and dithiazinane) with an interesting conformational behaviour.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/org4020024/s1, Table S1: Crystallographic data for compound 3;
Table S2: Selected bond distances (Å) and bond angles (◦) for the compound 3; Table S3: Crystallo-
graphic data for compound 4 (orthorhombic polymorph); Table S4: Selected bond distances (Å) and
bond angles (◦) for the compound 4 (orthorhombic polymorph); Table S5: Crystallographic data for
compound 4 (monoclinic polymorph); Table S6: Selected bond distances (Å) and bond angles (◦) for
the compound 3 (monoclinic polymorph). Crystallographic data have been deposited at the Cam-
bridge Crystallographic Data Center as numbers (CCDC): 2251551–2251553 for compound 3 and 4.
Copies can be obtained, free of charge, on applications to CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK [fax: +44-(0)1223-336033 or https://www.ccdc.cam.ac.uk/structures/ (accessed on 24 March 2023).
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