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Abstract: The increasing prevalence of upper and lower extremity (ULE) functional deficiencies
presents a significant challenge, as it restricts individuals’ ability to perform daily tasks independently.
Robotic devices are emerging as assistive devices to assist individuals with limited ULE functionalities
in activities of daily living (ADLs). While assistive manipulators are available, manual control through
traditional methods like joysticks can be cumbersome, particularly for individuals with severe hand
impairments and vision limitations. Therefore, autonomous/semi-autonomous control of a robotic
assistive device to perform any ADL task is open to research. This study addresses the necessity
of fostering independence in ADLs by proposing a creative approach. We present a vision-based
control system for a six-degrees-of-freedom (DoF) robotic manipulator designed for semi-autonomous
“pick-and-place” tasks, one of the most common activities among ADLs. Our approach involves
selecting and training a deep-learning-based object detection model with a dataset of 47 ADL objects,
forming the base for a 3D ADL object localization algorithm. The proposed vision-based control
system integrates this localization technique to identify and manipulate ADL objects (e.g., apples,
oranges, capsicums, and cups) in real time, returning them to specific locations to complete the
“pick-and-place” task. Experimental validation involving an xArm6 (six DoF) robot from UFACTORY
in diverse settings demonstrates the system’s adaptability and effectiveness, achieving an overall
72.9% success rate in detecting, localizing, and executing ADL tasks. This research contributes to
the growing field of autonomous assistive devices, enhancing independence for individuals with
functional impairments.

Keywords: activities of daily living (ADLs); assistive robot; localization; pre-trained deep learning
model; robotic assistance; vision-based object manipulation

1. Introduction

Functional impairments of the upper and lower extremities (ULEs) are common due
to stroke, spinal cord injury (SCI), cerebral palsy (CP), multiple sclerosis (MS), amyotrophic
lateral sclerosis (ALS), trauma, occupational injuries, and geriatric disorders [1,2]. Stroke
accounts for 34% of all cases of ULE dysfunctions (ULEDs) [3], with SCI (27%), MS (19%),
and CP (8%) following closely behind. Stroke affects more than 15 million people each
year worldwide [4]. ULEDs affect roughly 50–80% of stroke survivors in the acute phase
and 40–50% in the chronic phase [5]. Also, arm and hand functions decline dramatically
with age [6]. Over the last decades, the number of individuals with ULEDs has increased
alarmingly. Approximately 61 million adults in the United States live with a disability [7].
Over 6.8 million Americans use assistive devices to help them, 1.7 million are wheelchair
users, and almost one-third of mobility device users need assistance from another person in

Automation 2024, 5, 68–89. https://doi.org/10.3390/automation5020006 https://www.mdpi.com/journal/automation

https://doi.org/10.3390/automation5020006
https://doi.org/10.3390/automation5020006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/automation
https://www.mdpi.com
https://orcid.org/0000-0002-1797-3736
https://orcid.org/0000-0002-8289-6124
https://orcid.org/0000-0002-6289-3049
https://orcid.org/0000-0002-6370-8757
https://doi.org/10.3390/automation5020006
https://www.mdpi.com/journal/automation
https://www.mdpi.com/article/10.3390/automation5020006?type=check_update&version=2


Automation 2024, 5 69

one or more of the activities of daily living (ADLs) [8]. The inability to complete necessary
daily tasks may result in unsafe situations and low quality of life.

The human upper extremity (UE) is the most highly developed anatomical structure
because of its usefulness in manipulating and communicating with various objects. UE
mobility is essential to the overall quality of life because most ADL tasks depend on the
UE in some form, whether entirely or partially. The loss of UE function severely impairs
the affected person’s ability to engage in daily activities independently [9]. The inability
to use one’s UE typically has far-reaching consequences for a person’s everyday life and
independence in the workplace and at home. The problem is further compounded by the
constantly growing number of such cases.

Existing solutions involve caregivers and/or assistive devices to assist with specific
tasks. Many organizations offer disabled-adapted facilities to support them. Yet, it has
been observed that disabled-adapted facilities can restrict their mobility [10], even though
such facilities are rarely utilized. Therefore, there is an urgent need for research on ADL
assistance focusing on individuals with ULEDs to enhance the self-sufficiency of these
individuals and, in turn, reduce the caregiving responsibilities of their families.

Assisting individuals with ADLs is an essential healthcare service that supports inde-
pendent living for people with disabilities, chronic illnesses, or aging-related limitations.
However, the increasing demand for such assistance exceeds the availability of caregivers.
So, these individuals have to wait for the availability of the caregiver, even for the essential
ADL tasks. Approximately 41 million caregivers are estimated to offer over 34 billion hours
of valuable care to their families and loved ones each year, with an estimated worth surpass-
ing USD 470 billion [11]. Recent advancements in robotics and computer vision technologies
have opened up new opportunities for developing intelligent systems that can provide
personalized, efficient, and reliable ADL assistance. These technologies can help such
individuals to regain their independence by minimizing their dependence on caregivers.

A few robotic manipulators available on the market can assist the user, yet controlling
the robot sometimes becomes challenging and complex, especially for individuals with
severe limitations of hand functions and distance vision impairment. In our preliminary
work, we designed a minimum viable product (MVP) prototype of a multifunctional robotic
assistive arm (mR2A) (supported by the National Institute on Disability, Independent Liv-
ing, and Rehabilitation Research, Grant # 90DPGE0018-01-00). The participants’ feedback
suggests that there is still room for more significant advancements toward the practical
implementation of robotic assistive devices. For example, operating the robot can be diffi-
cult, especially for those with severe hand function and distance vision impairment. Thus,
some form of automation inside the system is necessary to help the user utilize the system
properly and reduce the burden of care for the family.

This research aims to design, develop, and evaluate a vision-based semi-autonomous
ADL assistance system using a commercially available assistive robot to enhance the quality
of life by providing ADL assistance to wheelchair users with the “pick-and-place” task.
Furthermore, this study aims to improve the user’s well-being. The proposed system uses
computer vision, deep learning, and localization techniques to perform “pick-and-place”
tasks, the most prevalent activity among ADLs [12]. The system will enable users to control
their actions while providing semi-autonomous assistance as needed.

The primary contribution of this research is developing a vision-based robot manipu-
lation system to perform the “pick-and-place” ADL task semi-autonomously. Naturally, it
is challenging for people with disabilities to pick an object from an upper shelf. They often
seek help from a caregiver or family member to perform this ADL task, which is one of the
most common. The system integrates advanced techniques, such as deep-learning-based
object detection and localization algorithms, with a control algorithm to enable a robotic
manipulator to perform the task for them semi-autonomously. The experimental results
demonstrate the effectiveness of the vision-based robot manipulation system in performing
the ADL task and the potential for further research in this area. This research is the proof of
concept that assistive robots can be used to perform ADL tasks autonomously. Although
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the long-term goal of this research is to automate various ADL tasks, this research focuses
explicitly on the semi-autonomous performance of the “pick-and-place” ADL task. In
future research, we will expand the system’s capabilities to perform additional ADL tasks
autonomously in various workspaces. The findings from this research will guide us in
enhancing the system’s performance and applicability in real life.

The rest of this paper is organized as follows: Section 2 presents a brief literature
review on vision-guided ADL assistance and a general review of vision-based robotic
applications. Section 3 describes developing a deep-learning-based ADL object detec-
tion model, including selecting, fine-tuning, and evaluating a pre-trained deep learning
model. Section 4 presents an algorithm for accurately localizing ADL objects in a 3D en-
vironment, leveraging the deep learning model from Section 3 and employing computer
vision techniques and depth estimation. In Section 5, the design of the vision-based robot
manipulation system for ADL tasks is illustrated, encompassing the integration of de-
tection and localization algorithms with a robotic manipulator and the development of
control algorithms enabling the robot to perform ADL tasks. Section 6 showcases the
experimental results of the vision-based robot manipulation system, including details on
the experimental setup, results, and analysis of the system’s performance in executing
the “pick-and-place” ADL task. Finally, Section 7 summarizes the research, discussing the
contributions and limitations of the present work and identifying potential areas for future
research in vision-based robot manipulation.

2. Literature Review

This section briefly reviews recent developments in vision-guided ADL assistance us-
ing assistive robots and a comprehensive analysis of the state of the art in the development
of vision-based robotic applications.

2.1. Vision-Guided ADL Assistance

Assistive robots have gained significant attention in recent years as a potentially
transformative technology for improving the lives of individuals with disabilities and
older adults [13]. These robots offer physical and cognitive assistance, particularly for
ADLs, where individuals face challenges in independent performance [14,15]. Among the
various methods explored for ADL-assisting robots, vision-guided assistance has emerged
as one of the most promising approaches [14–16]. Vision-guided ADL assistance leverages
computer vision algorithms and sensors to enable robots to perceive and interact with their
environment [17]. This technique holds immense potential for accurately identifying and
locating objects in real-world environments, which is critical for many ADL tasks.

Recent advancements in vision-guided ADL assistance using assistive robots demon-
strate notable progress. The utilization of deep learning algorithms for object detection
and recognition has emerged as a significant development [18]. These algorithms, ca-
pable of learning from extensive datasets, enable robots to detect and identify objects
with higher precision and reliability [19]. They have successfully contributed to various
ADL tasks, including object detection for meal preparation and object recognition for
medication management.

Additionally, there is a growing interest in developing personalized and adaptable
assistive robots. Machine learning algorithms that adapt to user behavior and preferences
enable personalization [19,20]. For instance, a robot can learn a user’s preferred method
of meal preparation and adjust its assistance accordingly. Adaptable robots can also
accommodate changes in a user’s abilities over time [21]. These advancements hold
immense potential for the future of vision-guided ADL assistance.

While vision-guided ADL assistance offers significant promise, several challenges
persist [22]. Developing robust algorithms for object detection, tracking, and recognition is
a major challenge, along with ensuring the safety and reliability of robot actions, particu-
larly in tasks involving physical interaction with users [22,23]. Moreover, creating more
personalized and user-friendly interfaces is essential for effective human–robot interaction.
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Addressing the challenges requires collaborative efforts among researchers, engineers,
designers, and users. These advancements will contribute to developing advanced assistive
robots that provide practical and personalized ADL assistance, reducing the dependence
on caregivers and enhancing individuals’ independence in their daily lives. By focusing
on autonomous control methods and addressing the challenges inherent in this approach,
more capable and user-friendly robotic systems can be created for ADL support.

2.2. Vision-Based Robotic Applications

Recent advancements in robotics have significantly enhanced the versatility and capa-
bility of robots for real-world tasks. Vision-based techniques, in particular, have become
central to robotic manipulation, offering rich sensory feedback and overcoming various
challenges in control and application domains, such as object handling, navigation, and
interaction [24]. Learning-based control theories have emerged as front-runners in this area
due to their ability to process extensive datasets and adaptively improve, thereby refining
robots’ manipulation accuracy and efficiency in dynamic settings. These methods leverage
an array of cameras—RGB, depth, stereo, and monocular—to perceive the environment
accurately. However, researchers still grapple with challenges related to reflected patterns,
drift, accumulation error, low spatial resolution, line-of-sight obstruction, and ambient
light saturation.

Recent advancements in vision-based robotic manipulation have focused on overcom-
ing challenges such as occlusion and complex environments. Yin et al. [25] developed
an RGB-D-based approach that enhances robotic grasping within fusion application en-
vironments by integrating instance segmentation with clustering and planar extraction,
thus improving stability and adaptability in uncertain conditions. Similarly, Yu et al. [26],
through their innovative use of a single shot multibox detector (SSD)-based detector, an
image inpainting and recognition network, and deep grasping guidance network, proposed
a novel method to address occlusions in robotic grasping. This method leverages image
inpainting within the detection process to significantly enhance object detection under
occluded scenarios, facilitating more efficient determination of optimal grasping poses.

Building on these concepts, James and Davison [27] introduced Q-Attention, an attention-
driven robotic manipulation (ARM) framework that efficiently learns from demonstrations
to perform sparsely rewarded tasks. ARM utilizes a Q-Attention module to focus on
relevant parts of the scene, simplifying complex manipulation tasks into manageable
steps and showing impressive adaptability across different tasks. Additionally, Zhang
et al. [28] presented a dual neural network controller approach that enables robots to grasp
objects in visually complex environments. Their method demonstrates improved grasping
performance and robustness in environments by combining visual guidance with a dual
network system that separately processes object recognition and grasp stability.

These studies collectively illustrate the significant strides made in addressing the
inherent challenges of robotic manipulation. Despite the significant progress achieved
by vision-based object manipulation systems, challenges related to sensor limitations and
environmental conditions persist. Further research studies are essential to overcome these
challenges and advance the development of more advanced and reliable vision-based object
manipulation systems.

2.3. Findings from the Review

This literature review provides crucial insights into vision-based robot manipulation.
It emphasizes the extensive research devoted to enhancing robot manipulation through
vision-based methodologies, focusing on integrating cameras and sensors to provide robots
with enhanced capabilities. In addition, the review highlights the variety of approaches in
vision-based robot manipulation, such as object detection, motion planning, control, and
machine learning techniques, each of which has distinct benefits and limitations based
on the application. Notably, the choice of camera type is crucial, with depth cameras
proving especially useful for human-interface systems due to their capacity to acquire
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three-dimensional environmental data, facilitating enhanced robot navigation. Based on a
comprehensive understanding of prior research methods, these findings provide invaluable
guidance for developing a robust and practical vision-based robot manipulation system.

2.4. Potential Research Gap and Possible Approach

The review identifies specific research gaps in vision-based robot manipulation that
demand attention. The need for algorithms capable of handling complex tasks in dy-
namic environments and the development of vision-based manipulation techniques for
autonomous or semi-autonomous object manipulation are examples of these gaps. To
address these issues, a promising strategy combines vision-based detection and recognition
models with 3D localization algorithms that utilize depth camera data for real-time object
localization. This information can then facilitate semi-autonomous object manipulation,
which is especially helpful for users who struggle with manual robot control. The proposed
strategy encompasses theoretical exploration, algorithm refinement, and experimental
validation, offering the potential to expand robotic capabilities into a broader range of tasks
within complex environments.

3. Deep-Learning-Based Detection Model

In recent years, deep-learning-based detection models have been gaining popularity
due to their ability to accurately and efficiently identify objects in images, videos, and other
forms of data. Deep learning is a subfield of machine learning that models and processes
complex data structures using complex neural networks [29]. At its heart is the artificial
neuron, producing an output based on the equation

y = σ(wx + b) (1)

where w, x, b, and σ represent the weight vector, the input vector, the bias, and an activa-
tion function, respectively. Deep learning architectures can capture complex hierarchical
patterns in data by stacking layers of these neurons, enabling advances in fields ranging
from computer vision to natural language processing.

Deep learning models are typically coupled with convolutional neural networks
(CNNs) for tasks like object detection from image data. CNNs are a subset of deep neural
networks explicitly designed to process data structures that appear like grids, most notably
images. Convolutional layers, which use discrete convolution operations to capture local
patterns, are vital components of CNNs [30]. Additionally, pooling layers reduce the size of
the space while keeping essential features, and fully connected layers allow for reasoning
across all datasets. CNNs’ weight-sharing feature reduces the number of parameters,
improving generalization and preventing overfitting. By utilizing these structures, CNNs
have transformed image recognition and classification and have come to be essential in
computer vision tasks.

Detection models based on deep learning have found applications in diverse fields,
such as object detection, face recognition, anomaly detection, and more [31]. They have
achieved state-of-the-art performance on various benchmark datasets, making them
a powerful research tool. However, these models require huge amounts of labeled
data and computational resources, frequently unavailable or impractical for many real-
world applications.

Utilizing a pre-trained model for any detection task is gaining popularity due to its
numerous advantages [32]. Pre-trained models have already undergone training on exten-
sive datasets, enabling them to recognize and classify a wide array of features and patterns
effectively. This prior learning facilitates faster and more efficient training of the model for
specific applications. Pre-trained models are often equipped with advanced features like
data augmentation and regularization techniques, developed and evaluated by experts.
Overall, using a pre-trained model can save time, improve accuracy, and provide access to
state-of-the-art models without requiring extensive training and computational resources.
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This section presents the selection and training of a deep-learning-based pre-trained
detection model for ADL object detection. Following the model selection, we conducted
fine-tuning using a custom dataset comprising images of various ADL objects. The primary
objective was to evaluate the performance of the pre-trained detection model and test its
accuracy and speed on the custom ADL dataset.

3.1. Dataset

Deep learning algorithms are designed to learn from large amounts of labeled data,
allowing them to extract patterns and features that can be used to make accurate predictions
on new, unseen data. The quality and quantity of the dataset used to train a deep learning
model can substantially affect its performance [33], as a poorly labeled or biased dataset
can lead to inaccurate or unfair predictions. A diverse dataset with numerous examples
and variations is essential to ensure the model’s ability to generalize to new data.

Dataset generation for deep learning models requires the creation of a labeled dataset
that can be used for training and testing the model. An alternative approach involves the
utilization of open datasets. Open datasets are accessible to the public and can be utilized
for research, educational, or other purposes [34]. ImageNet [35], COCO [36], and PASCAL
VOC [37] are examples of well-known open datasets utilized for deep learning.

COCO (Common Objects in Context) Dataset

In this research, we have collected data from the COCO (Common Objects in Context)
dataset [36], a large-scale image recognition, segmentation, and captioning dataset that is
usually utilized for object detection and image segmentation tasks. The dataset comprises
more than 328,000 images and 2.5 million labeled object instances, encompassing various
object categories such as humans, animals, automobiles, and household commodities. The
dataset is intended to represent real-world scenarios by capturing images from various
sources and contexts. The provided images exhibit a range of diversity and present
challenging scenarios, featuring complex compositions with multiple objects, occlusions,
and backgrounds that exhibit variability.

Choosing the COCO dataset for ADL object detection offers several advantages,
including high-quality annotations, a large number of object categories, and a diverse set
of images that can improve the model’s robustness and precision. As this research focuses
on manipulating ADL objects, 47 classes (as shown in Table 1) were extracted from the
COCO dataset and used to train the ADL detection model. In our preliminary work, we
identified that to provide ADL assistance robots need to manipulate 79 ADL objects [38].
These 47 classes were selected by intersecting the 79 essential ADL objects and 90 classes
available in the COCO dataset. In total, 34,627 images were utilized to train the detection
model, while 1473 were used to validate it. To mitigate overfitting, we ensured that the
images in the testing set were not present in the training set. Overall, our custom dataset
allowed us to evaluate the performance of our pre-trained detection model on a diverse set
of images and objects.

Table 1. List of 47 ADL objects identified from the COCO dataset.

1 Apple 2 Backpack 3 Banana
4 Bottle 5 Bench 6 Bed
7 Bowl 8 Book 9 Broccoli
10 Chair 11 Cake 12 Cell Phone
13 Clock 14 Couch 15 Cup
16 Carrot 17 Dining Table 18 Donuts
19 Fork 20 Handbag 21 Hot dog
22 Hair Drier 23 Keyboard 24 Knife
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Table 1. Cont.

25 Laptop 26 Microwave 27 Mouse
28 Orange 29 Oven 30 Pizza
31 Remote 32 Refrigerator 33 Sandwich
34 Spoon 35 Scissors 36 Sports Ball
37 Suitcase 38 Sink 39 Toothbrush
40 Tie 41 Teddy Bear 42 Toaster
43 Toilet 44 TV 45 Umbrella
46 Vase 47 Wine Glass

3.2. Model Selection and Training

Selecting a pre-trained model for a specific task requires evaluating the performance
and suitability of various models based on accuracy, speed, resource requirements, and
task-specific requirements. Several popular pre-trained object detection models, including
SSD MobileNet [39], YOLOv4 [40], YOLOv5 [41], and YOLOv7 [42], were considered for
this specific task. SSD MobileNet’s efficiency makes it an excellent option for embedded
devices. Similarly, YOLO4 has a good accuracy, employing a larger backbone network
to achieve state-of-the-art performance. However, both models are slightly slower and
more resource-intensive than other models. YOLOv7 is a recent innovation that employs
a larger and more complex backbone network to achieve even greater precision. Yet,
due to its computational requirements, it may not be suitable for real-time or embedded
applications. While each model has advantages and drawbacks, YOLOv5 offers a good
balance of speed and accuracy, making it a practical and versatile option for various
object detection tasks.

YOLOv5

YOLOv5 [41], a popular object detection algorithm, is widely utilized for object detec-
tion, employing a single-stage architecture and anchors to identify objects within an image.
It includes new optimizations and features that boost performance, making it an excellent
option for various applications. The utilization of CSPDarknet, a more proficient backbone
network, enables expedited inference times while concurrently attaining high precision.
Additionally, YOLOv5 is pre-trained using the COCO dataset [36], which features a variety
of object categories and is intended to reflect real-world scenarios. Overall, YOLOv5 is a
well-balanced and effective real-time pre-trained detection model.

YOLOv5 has several variations [43], including YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. Each variation differs in size and complexity. YOLOv5s stands out as the most
compact and fastest variant, tailored for real-time detection on mobile and embedded
devices. With fewer parameters and layers, YOLOv5s is well suited for devices with
limited processing power. Despite being small, YOLOv5s outperforms its predecessors and
other cutting-edge object detection algorithms in terms of accuracy. The 640 × 640 input
resolution and real-time operation of the YOLOv5s model make it suitable for real-time
detection in video streams.

YOLOv5m, YOLOv5l, and YOLOv5x, on the other hand, are larger and more complex
models designed for greater accuracy but with a tradeoff in speed and computational
resources. These models have more parameters, deeper layers, and higher input resolu-
tions than YOLOv5s, making them more precise and slower. They are appropriate for
applications requiring high precision.

Based on these advantages, we selected the YOLOv5s model as the base architecture for
our real-time ADL object detection tasks, as it balances speed, accuracy, and computational
resources. We fine-tuned the pre-trained model using our custom dataset. Fine-tuning
allows us to adapt the pre-trained model to our ADL object detection task in images. While
training the model, a learning rate of 0.01 and a batch size of 32 were used. We monitored
the loss and accuracy metrics during training to ensure the model learned effectively.
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Overall, our fine-tuned, pre-trained detection model allowed us to use the power of deep
learning while reducing the amount of labeled data needed for training.

3.3. Results

We evaluated the performance of our pre-trained YOLOv5s detection model on our
custom dataset. We used the mean average precision (mAP) metric to measure the model’s
performance. The inference time of our model is competitive, with an average of 5.1 ms,
and the average pre-processing per image is 0.2 ms. Here, the training and validation loss
for each epoch of the trained model is illustrated in Figure 1, along with the mean average
precision (mAP). We can see that the loss is higher initially but converges after 50 epochs.

Figure 1. Train and validation loss of the model for each epoch.

Overall, the pre-trained detection model achieved an mAP@0.5 (mean average preci-
sion calculated at an intersection over union (IoU) threshold of 0.5) of 0.39 on our testing set,
whereas the best value reported by the developer of the YOLOv5s model is 0.56 [41]. These
results suggest that our pre-trained detection model performs moderately in detecting
objects in images. This performance of the model is expected as we had to trade-off the
system’s accuracy for speed and computational time when choosing from different models.

4. Localization Algorithm for ADL Objects

Object localization is the identification of the position of one or more objects within
an image or video frame. This involves detecting the object’s presence and estimating its
spatial coordinates, typically in a bounding box or mask [44]. Numerous computer vision
and robotic systems rely on object localization to enable machines to perceive and interact
with their surroundings. By localizing objects, robots can manipulate them with greater
precision and efficiency, whether picking up and placing objects, maneuvering around
obstacles, or grasping and manipulating objects. Accurate and reliable object localization is
essential for robots to perform complex and sophisticated tasks in various environments.

Object localization plays a crucial role in developing assistive robots intended to aid
individuals with disabilities or mobility impairments in completing daily tasks. When
assisting users in everyday tasks, robots must accurately perceive and interact with objects
in the environment, such as picking up objects or using tools. Object localization enables
the robot to locate and manipulate these objects precisely, enhancing the efficiency and
effectiveness of the robotic system, reducing the user’s burden, and allowing them to
perform tasks they might not be able to perform otherwise.
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The novelty of our approach lies in developing a 3D localization algorithm for ADL
objects within the context of assistive robots. Object localization is foundational for com-
puter vision and robotic systems, allowing machines to effectively identify and interact
with objects. It also fosters social interaction and engagement among individuals with
disabilities. Robots equipped with object localization capabilities can actively participate
in collaborative tasks with users, promoting user independence and fostering a sense
of companionship.

4.1. Methodology

This section describes the methodology for developing our 3D localization system,
which combines the ADL object detection model from Section 3 with localization, using a
RealSense depth camera (D435) [45].

4.1.1. RealSense Depth Camera D435

To localize the detected objects in 3D space, we used an Intel RealSense Depth D435
camera [45]. The camera captures depth information in addition to color, which allows us
to calculate the 3D position of objects in the scene. The Intel RealSense Depth (D435) camera
works as a depth camera, using a combination of several sensors and algorithms [46]. The
camera contains an RGB sensor, an infrared (IR) projector, an IR camera, and a dedicated
depth processing chip (see Figure 2). When the camera operates, the IR projector emits a
pattern of IR dots into the scene. The pattern of dots is designed to cover the entire scene
and is structured in a way that allows the depth processing chip to calculate the depth of
each pixel in the scene.

Figure 2. Intel RealSense depth camera D435.

The depth processing chip utilizes multiple algorithms to calculate the depth of each
pixel [47]. One of these algorithms is “time-of-flight”, which measures the time it takes for
each IR dot to return to the camera after hitting an object in the scene. The depth processing
chip uses these data to calculate the distance to each scene object. “Stereo vision” is another
algorithm the chip uses for processing depth. This algorithm compares the IR dot pattern
captured by the left and right IR cameras of the D435 camera to determine the image
disparity. The contrast is then utilized to determine the depth of each pixel in the scene.

Once the depth processing chip has calculated the depth data, it is combined with
the RGB data from the RGB sensor to produce a complete image containing depth infor-
mation. This image has multiple applications, including 3D scanning, augmented reality,
and robotics.
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4.1.2. System Architecture

The 3D localization system described in this paper consists of three main components:
an object detection model, a depth camera, and Intel RealSense SDK 2.0 [48] for object
localization. The object detection model used in this system is a modified version of the
YOLOv5s model which has been retrained on a dataset of ADL objects (see Section 3). The
model was implemented using the PyTorch deep learning framework [49] and trained on
a dataset containing objects commonly found in ADL scenarios, such as apples, oranges,
cucumbers, and bottles.

This system employs a depth camera, which captures both RGB and depth data.
RealSense SDK is used to access depth data and perform localization of objects. RealSense
SDK provides a collection of APIs for accessing and processing depth data.

The localization algorithm follows a series of steps to complete the entire procedure.
The system loads the pre-trained model for detecting ADL objects and initializes the depth
camera by checking the connection between the camera and the system. If there is no issue
with the connection, it starts reading RGB and depth frames from the camera. Then, the
detection model takes the RGB frame as input and detects different ADL objects within the
frame. The system then uses the bounding box information from the model to calculate the
distance of the center point of the objects using the depth frame. The pseudocode of this
localization system is illustrated in Algorithm 1.

Algorithm 1: The pseudocode of the localization algorithm

Initialization of detection model, display, and depth camera;
if The camera is connected then

while If the exit command is not pressed do
Take RGB and depth frames as input;
Pass the RGB frame through the detection model;
Assigns an index number to each object;
Computes 2D coordinate of the target;
Generate 3D coordinate using the depth frame;
Displays the RGB frame with annotations and coordinates;

end
end

The system then uses the x- and y-coordinates of the center point and the point’s
depth to generate 3D coordinates of different objects. Here, the x- and y-coordinates are in
pixel value, and the z-coordinate (depth) is in millimeters. To use these coordinates for our
application, we use a map function (in Section 5) to map all the coordinates into a single
Cartesian coordinate system.

4.2. Results

After computing experiments with various objects, we found that the system could
successfully detect and localize different objects, such as apples, oranges, capsicum, bottles,
cups, etc., presented in front of the camera. After the detection model detects the ADL
objects, the system generates the 3D coordinates in real time. Using this approach, the
system can operate at 15–20 frames per second without issues. During the experiment, the
depth frame accuracy is estimated as follows: 97.8% at short range (less than 50 cm), 93.4%
at medium distance (51–100 cm), and 92.5% at larger distances (100–200 cm). A mean error
of 4.8 cm is computed for the depth measurement throughout the experiment.

5. Design of the System Architecture to Perform the ADL Task

Performing ADL tasks is a crucial aspect of maintaining independence and improving
quality of life. Assistive robots have the potential to improve the ADL performance of
people with physical disabilities significantly. In this research, UFACTORY’s xArm6 robot
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is employed as an assistive robot manipulator [13]. This section presents the system
architecture for semi-autonomously performing an ADL task using this assistive robot
leveraging vision.

Our system utilizes the pre-trained object detection model from Section 3, which
is trained to detect a wide range of ADL objects (as presented in Table 1). To localize
these objects, we use the localization algorithm from Section 4 that integrates the output
of the detection model with data from a RealSense depth camera. The RealSense depth
camera provides detailed 3D information about the surroundings, allowing for precise
object localization even in dynamic environments.

Once the system localizes any target object, the robot uses a distance-based control
algorithm to manipulate the end-effector and approach the object. The system continuously
monitors the distance between the end-effector and the target object, adjusting the robot’s
movement to minimize this distance. Once the end-effector is close enough to the object,
the robot safely picks up the object, returns to its home position, and drops the object.

5.1. UFACTORY’s xArm6

UFACTORY’s xArm6 is a robotic manipulator designed for various applications,
including as an assistive robot for individuals with physical disabilities. The xArm6 is a six-
axis robotic manipulator programmed to perform various tasks, from simple pick-and-place
operations to more complex manipulation tasks. This robot uses brushless motors with a
5 kg payload capacity and 0.1 mm repeatability. xArm6 is a high-precision, multifunction
robotic manipulator with a 700 mm workspace.

One of the key features of the xArm6 is its high degree of flexibility and adaptability.
The manipulator is designed to be easily integrated with various sensors and end-effectors,
allowing it to be adapted to a wide range of applications. This adaptability makes it an
ideal platform for assistive robots, as it can be adapted to meet the specific requirements of
individual users.

The xArm6 is designed with safety in mind, in addition to its adaptability. The
manipulator is equipped with various sensors and safety features to ensure that it can
operate safely in close contact with humans. For instance, the robot is equipped with
torque sensors that can stop the arm’s movement if it collides with an object or a person
to prevent injury. Overall, the xArm6 from UFACTORY is an example of an assistive
robot that has the potential to improve the ADL performance of individuals with physical
disabilities significantly. The arm’s flexibility, adaptability, and safety features make it an
ideal platform for our research, which aims to provide ADL assistance for performing
“pick-and-place“ tasks.

Kinematics and Dynamics of the xArm6 Robot

For the kinematic analysis, modified Denavit–Hartenberg (DH) parameters are used,
whereas the iterative Newton–Euler approach is used for the dynamic analysis. Figure 3
shows the link-frame attachment for the modified DH parameters of the xArm6 robot,
where the yellow circles indicate the direction heading into the viewing surface, the blue
dot indicates the direction facing outwards from the surface, and the z-axis determines the
rotation axis of each joint.

Table 2 illustrates the modified DH parameters for link-frame allocation to derive
the forward kinematics of the robot [50]. Here, a, α, d, and θ, represent the common
normal length, common normal angle, prior z-axis offset, and joint angle (in radians) of
the robot.
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Table 2. Modified DH parameters of the robot.

i ai−1 αi−1 di θi

1 0 0 267 0
2 0 −π/2 0 0
3 289.4886 0 0 0
4 77.5 −π/2 342.5 0
5 0 π/2 0 0
6 76 −π/2 97 0

Equation (2) presents the general form of the homogeneous transformation matrix
(HTM) that correlates two sequential coordinate frames. Multiplying different transforma-
tion matrices generates the homogeneous matrix relating frame 6 to frame 0 (Equation (3)).
Here, Equation (3) reflects the end-effector’s frame locations and orientations relative to
frame 0.

Figure 3. Modified DH parameters of the robot.

i−1
i T =


cos θi − sin θi 0 αi

cos αi sin θi cos αi cos θi − sin αi −d sin αi
sin αi sin θi sin αi cos θi cos αi di cos αi

0 0 0 1

 (2)

0
6T =

[0
1T.12T.23T.34T.45T.56T

]
(3)

τ = M(θ)θ̈ + V(θ, θ̇) + G(θ) (4)

The xArm6 robot’s dynamic formula is derived from the Newton–Euler equation,
presented in Equation (4). Here, M(θ), θ̈, V(θ, θ̇), and G(θ) represent the 6 × 6 mass matrix
of the manipulator, 6 × 1 acceleration vector, 6 × 1 vector of centrifugal and Coriolis terms,
and 6 × 1 vector of gravity terms. Here, Table 3 illustrates the range of motion for each joint
of the xArm6 robot.
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Table 3. Range of motion for each joint of the xArm6 robot.

Joint i Working Range

Joint 1 ±360 (deg)
Joint 2 −118 to 120 (deg)
Joint 3 −225 to 11 (deg)
Joint 4 ±360 (deg)
Joint 5 −97 to 180 (deg)
Joint 6 ±360 (deg)

Maximum Speed 180 (deg/s)

5.2. Methodology

The proposed system executes a series of steps to complete the entire procedure. The
system’s pseudocode is illustrated in Algorithm 2. The system initially loads the YOLOv5s
pre-trained model for detecting ADL objects. The model is loaded using PyTorch, which
reads an image and returns an object list with bounding boxes. The system then initializes
the display and depth camera and checks whether the camera is connected. If the camera is
attached, the system initializes the robot object using the xArm-Python-SDK for further
processing by using the robot’s IP address to create a link between the robot and the system.

The system then begins processing the RGB and depth frames taken from the depth
camera as input. First, the RGB frame is passed through the detection model. The model
detects various ADL objects within the RGB frame and returns the bounding box informa-
tion to the system. The system then displays the RGB frame with annotations to the user
and checks whether or not the object pick-up mode is enabled.

If the object pick-up/tracking mode is disabled, the RGB frame, along with the object
labels and bounding boxes for each object in the frame, is displayed to the user. Users
can manipulate the robot’s end-effector in any direction using the movement commands.
Likewise, if the object pick-up/tracking mode is enabled, the system freezes the screen and
annotates various objects before displaying the freeze frame to the user. It also stores the
current location of the end-effector as the safe location to move back here after grabbing
the target object. Additionally, the system assigns an index number to each object on the
frame. Then, it asks the user which object should be picked up and takes the object’s index
number as input. Based on the user’s input, the system then computes the 2D coordinate
of the center point of the target object with respect to the depth camera. Utilizing the
depth channel of the camera, the system estimates the distance between the camera and
the center point of the target object and uses this as the third coordinate for 3D localization
of the target object. Using the mapping equation (Equation (5)), it converts the coordinates
from pixel values to robot Cartesian coordinates, where a, b, and c are constants and have
different values for different axes.

x′ = a ∗ x2 + b ∗ x + c (5)

As the distance estimation of the depth camera is not absolutely correct and can vary
due to distance range or lighting, we do not use the 3D coordinate of the target object to
manipulate the robot’s end-effector directly. Instead, we use the 2D coordinate of the target
object and manipulated the end-effector so that the target object’s center point aligns with
the RGB frame’s center point. Then, we calculate the distance between the camera and the
target object in real-time, estimate the distance error between them, and aim to minimize it
by maneuvering the robot toward the object.
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Algorithm 2: The pseudocode of the proposed system.

Initialization of detection model, depth camera, and xArm6 Robot;
if The camera is connected then

while If the exit command is not pressed do
Take RGB and depth frames as input;
Pass the RGB frame through the detection model;
Displays the RGB frame with annotations;
if The object pick-up mode is enabled then

Freezes the screen;
Assigns an index number to each object;
Input: Take index number of the target object;
Computes 2D coordinate of the target;
Generate 3D coordinate using the depth frame;
Maps the coordinate to robot cartesian coordinate;
Estimate the error between the end-effector and target;
while The target object is not in the center point of the camera do

Calculates the required adjustment to reduce error;
Adjust the end-effector as needed;

end
while The distance between the target object and the camera is bigger than a

threshold do
Calculates the required adjustment to reduce distance;
Adjust the end-effector as needed;

end
Move the end-effector to map camera-end-effector offset;
Grab the target object;
Move end-effector to the last command for safe dropping;
Go to the home position of the robot;
Drop the target object;
The object pick-up mode ceases;

else
Input: Take movement command;
Manipulate the end-effector according to the command;

end
end

end

All the manipulation of the end-effector is computed using the inverse kinematics
function of the xArm6 manipulator provided by the xArm SDK. To change the end-effector’s
position, we read the current position values, adjust them, generate the desired position
value for each step, and use the provided inverse kinematics function to reach the desired
location. To ensure the robot’s smooth adjustment, the end-effector’s manipulation is
restricted to one millimeter in each direction at a time. As of now, all the calculations are
conducted with respect to the camera and the target object. To grab the object, the robot’s
end-effector needs to move based on the offset between the robot’s end-effector and the
camera. So, when the error exceeds a certain threshold, the system manipulates the robot
based on the offset and grabs the object with a two-finger gripper.

To avoid any kind of collusion, the robot moves 5.0 cm upward after grabbing the
target object and moves back to the safe location. Then, the robot moves to the home
position of the system to drop the target object. After dropping the target object, the object
pick-up mode ceases, and the robot is now free to be manipulated using any external
command. Three different commands are also introduced among various controls: home,
error, and emergency. The home command moves the robot back to its home position.
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Whereas the error command clears any errors during the manipulation, and the emergency
command terminates the whole session immediately and holds the robot’s position.

From the user’s perspective, if they wish to control the robotic arm manually, this can
be achieved using a keypad or user interface; each key is dedicated to manipulating the
robot in one direction. A basic user interface was designed (Figure 4) to perform the testing
of the system using PySimpleGUI [51] library.

Figure 4. User interface of the system.

6. Experimental Implementation

This section outlines the experimental implementation of the proposed system archi-
tecture presented in Section 5, designed for a semi-autonomous assistive robot capable of
performing a specific ADL task. The primary objective of this section is to demonstrate the
effectiveness of the proposed system architecture in accomplishing the intended task.

6.1. Experimental Setup

In the conducted experiment, the vision sensor used for input is the Intel RealSense
depth camera (D435), and the robotic manipulator employed is the xArm6. This USB-
powered camera provides stereo depth information and precise depth sensing, featuring a
global photo shutter and a wide field of view. UFACTORY offers a graphical user interface
known as xArm Studio, along with software development kits (SDKs) for Python, Robot
Operating System (ROS), and C++. In this research, we utilize the Python SDK to control
the xArm6 robot. The robot’s end-effector is equipped with a two-finger gripper, which
can be replaced with other grippers such as a vacuum gripper, depending on specific
application requirements. For safety, a physical emergency switch is incorporated into
the robot.

Throughout both the development and experimental phases, the robot is affixed to
a stationary table (as depicted in Figure 5). To simulate objects on an upper shelf during
the experiments, various objects are positioned at four different locations, situated slightly
away from the robot’s base, as illustrated in Figure 5. These locations are characterized by
different heights and horizontal offsets from the robot’s base. Specifically, Location 1 has
a height of 30.0 cm and is 63.5 cm from the robot’s base, with a 7.5 cm offset to the right.
Location 2 stands at a height of 43.0 cm and is positioned 53.5 cm from the robot’s base,
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with a 12.5 cm rightward offset. Similarly, locations 3 and 4 have heights of 38.0 cm and
33.0 cm and are situated 56.0 cm and 68.5 cm from the robot’s base, with leftward offsets of
7.5 cm and rightward offsets of 18.0 cm, respectively.

Figure 5. Experimental setup and locations of different objects during the experiment.

Figure 6 provides a schematic representation of the system setup. In this configuration,
the robot connects wirelessly to a router via an Ethernet cable, facilitating communication
between the robot and the control computer. The camera interfaces with the control
computer via USB cables. A power source is linked to the robot’s control box, which
includes a physical emergency switch. The two-finger gripper on the robot’s end-effector
integrates a force sensor and is accompanied by the depth camera. All computational tasks
are executed on the control computer.

Figure 6. Schematic diagram of the proposed system.

6.2. Results and Discussions

The system’s performance during experiments is displayed in Figure 7, which offers
three viewpoints along with the position of the robot’s end-effector. Each image sequence
includes images captured by the depth camera, which is affixed to the robot’s end-effector
during the experiment, along with two additional viewpoints observing the system’s
performance. Here, the robot detects two ADL objects, an apple and a capsicum, presented
in front of the robot, and displays labels and bounding boxes to the user. The user then
enables the object pick-up/tracking mode and presses the target object’s index number as
input. Then, the system executes all the computations and tracks the target object. When
the robot’s end-effector approaches close to the target object and grabs that object, it moves
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back to a safe location to avoid any collision and then goes to the home position to drop
the object.

Figure 7. System performance from three different viewpoints, along with the end-effector’s position
during an experiment: (a) at the beginning of the experiment, (b) in the middle of the experiment,
and (c) at the end of the experiment.

The experiments encompass diverse objects, including apples, oranges, cups, and
capsicums, to assess the system’s performance. The overall success rate of the system is
computed to be 72.9%, with an average task completion time of less than 40 s after the
thorough experiment. Completing this task with manual joystick control takes, on average,
62 s, with 27 input commands from the user. So, the proposed system demonstrates
greater effectiveness and efficiency in task completion. We acknowledge that enhancements
are necessary for broader real-world applications. The system’s object recognition and
localization aspects show promising performance; however, improvements are particularly
needed in the grasping process and the precision of the depth camera. Future work will
explore alternative camera technologies to enhance the system’s reliability and applicability
in diverse real-world settings.

The success rates of the system in different locations are displayed in Figure 8, whereas
Figure 9 presents the success rate for each of the objects in different locations. From Figure 8,
we can see that the overall success rate of the system in location 1 is 75%. Similarly, the
success rates in locations 2–4 are 75%, 83%, and 58.33%. Figure 9 shows that the system
works well for objects like apples or capsicums, whereas it performs poorly for objects like
cups. The main issue behind this behavior of the system could be the object’s shape. While
the recognition and localization algorithm works well with different shapes of objects, the
performance of the grasping strategy differs with the shape. For real-world applications,
advancements are needed in the grasping process.

Figure 8. Success rate of the system in different locations.
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Figure 9. Success rate for each object in different locations.

From the experiments, we have also observed that, although the robot has a pretty
large workspace, due to the position of the camera and the constraints of the algorithms,
like moving upwards to avoid collisions or moving back to a safe location, the system can
operate precisely within a window with a height of 25.0 cm to 50.0 cm and a distance of
50.0 cm to 75.0 cm from the base of the robot. In other words, the system can perform the
pick-and-place ADL task semi-autonomously in this workspace, as shown in Figure 10.
This range is suitable to help a wheelchair user to pick up ADL objects from an upper shelf.

Figure 10. Operational workspace of the proposed system.

7. Conclusions and Scope for Future Work

This research aimed to design and implement a system architecture for an assistive
robot that can perform daily living tasks for individuals with physical disabilities, enabling
them to perform ADL tasks more independently and efficiently. The proposed system
architecture utilized UFACTORY’s xArm6 robot, a pre-trained object detection model based
on YOLOv5s, and a RealSense depth camera to perform object localization and distance-
based control. The methodology involved the retraining of the object detection model, the
development of an object localization algorithm, the design of a distance-based control
algorithm, and the integration of the system.
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The experimental implementation demonstrated that the proposed system architecture
has an overall accuracy of 72.9% in detecting, localizing, and performing one of the common
ADL tasks, “pick-and-place” of ADL objects, making it suitable for ADL assistance. The
proposed system architecture has the potential to positively impact the lives of individuals
with physical disabilities by providing them with greater independence and autonomy in
their daily lives. The system demonstrated high efficiency in performing the tasks, with
an average task completion time of less than 40 s. This research has established a proof
of concept for using a semi-autonomous system in robotic assistance for individuals with
such needs.

In the future, we will continue our research and further develop the system’s ability
to perform additional ADL tasks autonomously. The insights gained from this study will
be used to enhance the system’s performance and practicality in real-world settings. The
future work includes:

• Generate a labeled dataset of ADL objects from scratch using real objects to enhance
the detection model’s performance and explore alternative models.

• Explore alternative depth cameras and determine the most effective camera position
that does not restrict the system’s performance or workspace.

• Examine different approaches to control assistive robots and integrate orientation
estimation into the model to enable semi-autonomous ADL task completion in
complex environments.

• Integrate a user-friendly user interface with the system to offer more flexibility to
the user.

• Incorporate the proposed control system into a wheelchair-mounted assistive robot
and evaluate the performance with real users.
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The following abbreviations are used in this manuscript:

ADLs Activities of daily living
DoF Degrees of freedom
ULEs Upper and lower extremities
ULEDs Upper and lower extremities dysfunctions
UE Upper extremity
MVP Minimum viable product
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mR2A Multifunctional Robotic Assistive Arm
3D Three dimensional
CNNs Convolutional neural networks
DCNN Deep convolutional neural network
DNN Deep neural network
GNN Graph neural network
RNN Recurrent neural network
SVM Support vector machine
RL Reinforcement learning
COCO Common Objects in Context
mAP Mean average precision
IoU Intersection over union
DH Denavit–Hartenberg
HTM Homogeneous transformation matrix
SDK Software development kit
ROS Robot Operating System
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