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Abstract: Artificial neural networks (ANN) have a great promise in predicting the load-bearing
capacity of building structures. The purpose of this work was to develop ANN models to determine
the ultimate load of eccentrically compressed concrete-filled steel tubular (CFST) columns of circular
cross-sections, which operated on the widest possible range of input parameters. Short columns were
considered for which the amount of deflection does not affect the bending moment. A feedforward
network was selected as the neural network type. The input parameters of the neural networks
were the outer diameter of the columns, the thickness of the pipe wall, the yield strength of steel,
the compressive strength of concrete and the relative eccentricity. Artificial neural networks were
trained on synthetic data generated based on a theoretical model of the limit equilibrium of CFST
columns. Two ANN models were created. When training the first model, the ultimate loads were
determined at a given eccentricity of the axial force without taking into account additional random
eccentricity. When training the second model, additional random eccentricity was taken into account.
The total volume of the training dataset was 179,025 samples. Such a large training dataset size has
never been used before. The training dataset covers a wide range of changes in the characteristics of
the pipe metal and concrete of the core, pipe diameters and wall thicknesses, as well as eccentricities
of the axial force. The trained models are characterized by high mean square error (MSE) scores.
The correlation coefficients between the predicted and target values are very close to 1. The ANN
models were tested on experimental data for 81 eccentrically compressed samples presented in five
different works and 265 centrally compressed samples presented in twenty-six papers.

Keywords: concrete-filled steel tubular columns; load bearing capacity; ultimate equilibrium; artificial
neural networks; machine learning

1. Introduction

Concrete-filled steel tubular columns are a promising type of building structure.
They are widely used in the construction of high-rise buildings, transport structures, over-
passes, etc. [1–4]. Compared to traditional reinforced concrete elements, CFST structures
have a number of advantages, which primarily include an increase in load-bearing capac-
ity due to the work of concrete under conditions of triaxial compression [5], savings on
formwork and reinforcement work, etc.

Improving methods for calculating the load-bearing capacity of CFST columns is an
urgent task, which is confirmed by the large number of theoretical and experimental works
published recently on this topic [6–8].

When determining the load-bearing capacity of CFST columns, two approaches are
most common. The first approach is to use empirical dependencies obtained from ex-
perimental data [9]. These dependencies are quite simple and suitable for engineering
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calculations, but the range of parameter changes in which the experiments were carried
out limits their scope.

The second approach is finite element modeling in a three-dimensional setting, taking
into account the real deformation diagrams of concrete and steel, as well as the contact
interaction between the shell and the concrete core. A significant number of publications
are devoted to the issues of finite element modeling of the stress–strain state of CFST
columns [10–17]. This approach provides good agreement with experimental data but
requires great computational resources and time.

Recently, machine learning methods have been widely used in the task of predicting
the load-bearing capacity of CFST columns. In the work by Tran et al. [18], an empirical
formula was proposed to determine the load-bearing capacity of centrally compressed
square-section concrete tubular columns using an artificial neural network (ANN). ANN
training was performed on experimental data for 300 columns presented in the literature.
A comparative analysis showed greater stability and accuracy of the ANN compared to
other existing formulas.

In another work, Tran et al. [19] built an artificial neural network model to predict the
load-bearing capacity of centrally compressed CFST columns with a circular cross-section.
Unlike the previous work, training was carried out on the results of numerical experiments
rather than full-scale ones. To generate the dataset, three-dimensional finite element
analysis was used in a nonlinear formulation in the ABAQUS environment. The ANN
training database included data for 768 columns with different lengths, outer cross-sectional
diameters, pipe wall thickness, steel yield strength and concrete compressive strength.
For practical engineering calculations, the authors prepared a tool with a graphical interface.

In ref. [20], Du et al. proposed two ANN models to determine the ultimate load
under central compression of square-section CFST columns. Both models were trained on
experimental data for 275 samples, and 30 samples were used for testing. The output data of
the neural networks was compared with the results of calculations according to the design
codes of various countries, and it was found that the resulting functional dependence of
the load-bearing capacity on the main parameters differs somewhat from those presented
in the design codes.

In ref. [21], Al-Khaleefi et al. discussed the issues of predicting the fire resistance
of CFST columns using artificial neural networks. Based on neural network modeling, a
functional dependence of the CFST columns’ fire resistance index on the parameters that
determine the dimensions of the samples, material characteristics and loading conditions
was constructed. The total dataset included 35 experimental samples, of which 27 samples
were used for training and 8 for testing. Another study on predicting the fire resistance of
CFST columns using an ANN is presented in the work of Moradi et al. [22]. This paper is
based on a larger database, including testing of 300 samples.

In ref. [23], Zarringol et al. built artificial neural network models to predict the ulti-
mate load for CFST columns of rectangular and circular cross-sections under central and
eccentric compression. Compared to the previous works, larger datasets were used to train
the ANN: 895 experiments for centrally compressed rectangular columns, 392 experiments
for eccentrically compressed rectangular columns, 1305 experiments for centrally com-
pressed circular columns, and 499 experiments for circular columns subjected to eccentric
compression. The accuracy of ultimate load prediction was also compared with design
codes of various countries.

CFST columns are also the object of study of ref [24], in which the ultimate load under
central compression of columns was predicted using Multiphysics Artificial Intelligence.
This article compared models based on an artificial neural network, Adaptive Neuro-Fuzzy
Inference System (ANFIS), and Gene Expression Programming (GEP). The research dataset
contained data from 1667 experiments, of which 702 corresponded to short columns and
965 corresponded to long columns. Gene Expression Programming, in combination with
the finite element method, was also used in [25] to predict the strength of CFST columns
made of high-strength concrete.
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Ref [26] proposes a hybrid model that includes an ANN with a particle swarm opti-
mization (PSO) algorithm. This model was used to predict flexural bending capacity and
flexural stiffness at the initial and serviceability limits of CFST beams.

Among recent artificial intelligence techniques, the gradient boosting algorithm is
currently gaining great popularity. Ref [27] demonstrates the application of this algorithm
to predicting the strength of centrally compressed CFST columns of circular cross-sections.
A comparison was made with other machine learning algorithms, such as random forest
(RF), support vector machines (SVM), decision tree (DT) and deep learning.

In ref. [28], the following machine learning models were applied to solve the same
problem: back-propagation neural network (BPNN), genetic algorithm (GA)-BPNN, radial
basis function neural network (RBFNN), Gaussian process regression (GPR) and multiple
linear regression (MLR). The training dataset included 2045 centrally compressed columns
selected through an extensive literature review. This paper shows that forecasting efficiency
can be improved by dividing columns into subgroups depending on slenderness.

There are also publications in which machine learning methods are used not only to
predict the ultimate load but also to predict the load–strain curve. In ref. [29], Zarringol
et al. showed the successful use of an artificial neural network in engineering calculations,
which predicts the complete deformation diagram of centrally compressed CFST columns
of round and square sections. For training, a database was used that included the results
of 1152 finite element calculations in the ABAQUS environment, as well as the results of
392 full-scale experiments.

The review shows that machine learning methods are a promising tool in predicting
the load-bearing capacity of CFST columns. At the same time, most existing publications
refer to centrally compressed elements. For eccentrically compressed columns, compared
to centrally compressed structures, an additional parameter affecting the load-bearing
capacity is the eccentricity of the axial force. Therefore, to build ANN models that predict
the load-bearing capacity of eccentrically compressed CFST columns, a significantly larger
dataset size is required. The purpose of this work is to develop artificial neural network
models that could predict with high accuracy the ultimate load for the entire possible range
of parameters affecting the load-bearing capacity of eccentrically compressed columns.
In our case, neural networks will be trained on synthetic data obtained on the basis of a
theoretical model, followed by comparison with experimental data.

2. Materials and Methods

The process of building a model of any artificial neural network includes choosing
its architecture and training. As an environment for implementing the ANN model, the
MATLAB package (Neural Network Toolbox) was selected.

The CFST columns of circular cross-sections were selected as the object of study since
this cross-sectional shape is the most common in the designs of buildings and structures
for various purposes. The prediction of the ultimate load Nult (kN) in the developed ANN
models was carried out according to 5 input parameters: outer diameter of the column Dp
(mm), pipe wall thickness tp (mm), yield strength of steel Ry (MPa), compressive strength
of concrete Rb (MPa) and relative eccentricity e/Dp. We were considering short columns
for which deflection did not lead to a significant increase in the bending moment, so the
length of the elements was not included in the input parameters. Columns, according
to [30], are considered short if their slenderness (the ratio of the calculated length to the
radius of gyration of the section) does not exceed 14.

A feedforward network architecture was selected as it is one of the most common
neural network types. The developed ANN model contains 2 hidden layers. The number
of neurons in each hidden layer is 16. The TANSIG (hyperbolic tangent) function was used
as the activation function for neurons in both layers. The architecture of the developed
neural networks is shown schematically in Figure 1.
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Figure 1. Artificial neural network architecture.

Unlike most previous works, where training is carried out on experimental data, in
our work the neural networks were trained on synthetic data. Experimental data were
not used for training, since they are not so numerous and could not cover the full variety
of column sizes and concrete and steel characteristics. However, after training the neural
networks, their performance was tested using experimental data.

When generating a dataset for training, the provisions presented in the Russian design
codes for composite steel and concrete structures SR 266.1325800.2016 [30] were used.
Columns without bar reinforcement were considered, in which only a steel pipe acts as a
reinforcement. When determining the breaking load, the stress diagrams in concrete and
steel in the limit state were assumed to be rectangular; the work of tensile concrete was
not taken into account. The diagram for determining the ultimate load under eccentric
compression of a CFST column is shown in Figure 2.
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The strength calculation of normal sections of eccentrically compressed CFST elements
without bar reinforcement according to SR 266.1325800.2016 is performed by the limit
equilibrium method from the condition:

N·e ≤ 2
3

r3
b Rbpsin3 α +

1
π

Aprpsin α
(

Ry + Rpc
)
, (1)

where N is the axial force, e is the eccentricity of the axial force, rb =
(

Dp − 2tp
)
/2 is

the radius of the concrete core, Rbp is the compressive design strength of concrete taking
into account the effect of lateral compression, α is the angle that determines the size of
the compressed zone of concrete, Ap = πDptp is the cross-sectional area of the steel pipe,
rp =

(
Dp − tp

)
/2 is the average radius of the steel pipe, Rpc is the design strength of a steel

pipe under compression.
The compressive design strength of concrete taking into account the effect of lateral

compression in [30] is determined by the formula:
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Rbp = Rb + ∆Rb · m;

∆Rb =
(

2 + 2.52·e− 1
c (Ry Ap+Rb Ab)

)
tp

Dp−2tp
Rp;

m =

{
1 − 7.5e

Dp−2tp
, i f Dp − 2tp − 7.5e ≥ 0

0, i f Dp − 2tp − 7.5e < 0
.

(2)

The coefficient c in Formula (2) is taken equal to 25 MN.
The design strength of a pipe under compression is determined by the formula:

Rpc = Ry(1 − 0.25 · m). (3)

Angle α in Formula (1) is determined from the equation:

r2
b

(
α − 1

2
sin 2α

)
Rbp +

α

π
ApRpc −

(
1 − α

π

)
ApRy = N. (4)

Expression (1) allows one to check the fulfillment of the column strength condition but
does not find the ultimate load at a given eccentricity. For a given eccentricity of the axial
force e, determining the magnitude of the ultimate load based on the SR 266.1325800.2016
method is a very non-trivial task. Equation (4) is transcendental and requires the use of
numerical methods to solve. The task of determining the ultimate compressive force at a
known value of e was solved by us by stepwise increasing the load from 0 to Nult,0, where
Nult,0 is the ultimate load for a given sample under central compression. At each step, the
root of Equation (4) was numerically determined, and then the fulfillment of Condition (1)
was checked. When generating the training sample, the range of changes in the compressive
strength of concrete Rb was taken from 10 to 65 MPa; the yield strength of the steel varied
from 240 to 440 MPa. The relative eccentricity e/Dp varied from 0 to 0.65. The values of
outer diameters of pipes and wall thicknesses used during training corresponded to the
Russian assortment of electric-welded straight-seam pipes GOST 10704-91 (Table 1).

For quantities Rb and Ry, 5 different values were used from Rb,min (Ry,min) to Rb,max
(Ry,max) with uniform steps. For wall thickness tp, 11 different values from tp,min to tp,max
were used in uniform increments. For the relative eccentricity, 21 different values e/Dp
were taken from 0 to 0.65 with equal steps. Thus, the size of the training sample was 5 × 5
× 11 × 21 × 31 = 179,025.

During training, the sample was randomly divided into 3 parts: “Train”, “Validation”
and “Test” in the proportion of 70%, 15% and 15%. To train the ANN, we used the
Levenberg–Marquardt algorithm. The value of the mean square error (MSE) was taken as a
criterion for the quality of training:

MSE =
1
ns

ns

∑
i=1

(di − yi)
2, (5)

where ns is the sample size, yi are the target values and di are the predicted values.

Table 1. The values of the outer diameters of pipes, as well as the minimum and maximum wall
thicknesses used in training.

№ Dp,mm
tp,mm

Min Max

1 102 1.8 5.5
2 108 1.8 5.5
3 114 1.8 5.5
4 127 1.8 5.5
5 133 1.8 5.5
6 140 1.8 5.5
7 152 1.8 5.5
8 159 1.8 8
9 168 1.8 8
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Table 1. Cont.

№ Dp,mm
tp,mm

Min Max

10 177.8 1.8 8
11 180 4 5
12 193.7 2 8
13 219 2.5 22
14 244.5 3 22
15 273 3.5 22
16 325 4 22
17 355.6 4 22
18 377 4 22
19 406.4 4 22
20 426 4 22
21 478 5 12
22 508 4.5 24
23 530 5 20
24 630 7 24
25 720 7 30
26 820 7 30
27 920 7 20
28 1020 8 32
29 1120 8 20
30 1220 9 32
31 1420 10 32

In addition to the ANN model trained to determine the maximum load at a given
eccentricity value e, another ANN model was also built to determine the value Nult, taking
into account additional random eccentricity. In accordance with Russian standards for the
design of composite steel and concrete structures [30], the largest of the values [0.01 m;
Dp/30; l/600] was taken as a random eccentricity, where l was the design length of the
column. Since short columns were considered, the value of random eccentricity was taken
as the largest of the two values [0.01 m; Dp/30].

3. Results and Discussion

Figure 3 shows the training performance graph for the model trained on ultimate
loads without taking into account additional random eccentricities. Figure 4 is the same for
the model trained taking into account additional random eccentricities. In the first case, the
learning process took 474 epochs, and in the second case, it took 682 epochs. The model
trained without taking into account additional random eccentricities is characterized by a
four-times-smaller MSE value: 4693 vs. 18,940. The MSE values for the “Train”, “Validation”
and “Test” parts of the sample are almost the same: the blue, green and red lines overlap
each other. A small difference in MSE for the “Train”, “Validation” and “Test” parts of the
sample indicates its sufficient volume.

Figures 5 and 6 show regression plots for the two models. The x-axis shows the target
values T of the ultimate load. The y-axis shows the predicted Y values of the ultimate load.
Most of the points on the graphs fit on the straight line Y = T. The correlation coefficients
R of both models are close to 1. High correlation coefficients between the target and
predicted values are achieved thanks to the two-layer neural network architecture, large
number of neurons in hidden layers and large dataset size.
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The constructed models were tested on experimental data for 81 eccentrically com-
pressed CFST columns of circular cross-sections, presented in five different works [31–35].
The diameter of the columns varied from 103 to 720 mm. The wall thickness changed from
1.81 to 11.95 mm. The yield strength of steel varied from 248.9 to 440 MPa. The compressive
strength of concrete changed from 21.5 to 63.8 Mpa. The ratio of the axial force eccentricity
to the outer diameter of the column e/Dp varied from 0.05 to 0.64. The results are summa-
rized in Table 2. In this table, N1 are the values of the ultimate loads determined by the first
ANN model (without taking into account additional random eccentricities), and N2 are the
values of the ultimate loads determined by the second ANN model (taking into account
additional random eccentricities).

From Table 2, it can be seen that for most samples the results predicted by the first
model are in good agreement with the experimental data. The average value of the ratio
N1/Nexp is 0.97, maximum value is 1.38 and minimum value is 0.79. The standard deviation
σ = 0.11 and the coefficient of variation CV = 10.9%.

Deviations of the predicted values from the experimental results can be explained, on
the one hand, by the scatter of experimental data and, on the other hand, by simplifications
adopted in the theoretical model, which is used to train the artificial neural network.
It should also be noted that, at present, there is no generally accepted criterion for CFST
columns to reach the limit state. Some researchers take the magnitude of deformation as
a criterion for destruction and others take the achievement of the pipe material’s yield
point, etc.
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Table 2. Results of testing the developed models of artificial neural networks on experimental data
for eccentrically compressed CFST columns.

№ Experiment e/Dp Dp, mm tp, mm Ry,
MPa

Rb,
MPa

Nexp,
kN N1, kN N1

Nexp
N2, kN N2

Nexp

Luksha and Nesterovich [31]

1 SB1 0.06 159 6 295 24.4 1406 1475 1.05 1044 0.74
2 SB2 0.13 159 6 295 25 1210 1045 0.86 850 0.70
3 SB3 0.26 159 6 295 26.9 932 831 0.89 700 0.75
4 SB4 0.06 159 6 295 35.7 1559 1659 1.06 1228 0.79
5 SB5 0.13 159 6 295 36.4 1412 1194 0.85 975 0.69
6 SB6 0.26 159 6 295 39 1066 936 0.88 797 0.75
7 SB7 0.06 219 8 290 36.1 2921 3084 1.06 2348 0.80
8 SB8 0.13 219 8 290 33.9 2698 2141 0.79 1841 0.68
9 SB9 0.26 219 8 290 35.7 1962 1667 0.85 1495 0.76

10 SB10 0.06 219 8 290 51.2 3308 3570 1.08 2797 0.85
11 SB11 0.13 219 8 290 48.2 3041 2498 0.82 2140 0.70
12 SB12 0.26 219 8 290 50.7 2289 1922 0.84 1719 0.75
13 SB13 0.13 159 6 440 43.2 1774 1624 0.92 1393 0.79
14 SB14 0.25 159 6 440 46.2 1346 1315 0.98 1144 0.85
15 SB15 0.38 159 6 440 42.2 1059 1004 0.95 888 0.84
16 SB16 0.13 159 6 440 60.3 1842 1890 1.03 1565 0.85
17 SB17 0.25 159 6 440 62.2 1515 1486 0.98 1269 0.84
18 SB18 0.38 159 6 440 63.8 1238 1162 0.94 1011 0.82
19 SB19 0.13 106 4 435 45 849 771 0.91 638 0.75
20 SB20 0.25 106 4 435 45.8 633 623 0.98 521 0.82
21 SB21 0.38 106 4 435 41.6 468 472 1.01 409 0.87
22 SB22 0.13 106 4 435 59 839 888 1.06 698 0.83
23 SB23 0.25 106 4 435 62.9 691 725 1.05 581 0.84
24 SB24 0.38 106 4 435 62.5 572 557 0.97 464 0.81
25 SB25 0.06 530 7.8 349.2 38.3 12,500 13,604 1.09 13,163 1.05
26 SB26 0.12 530 7.8 349.2 38.3 10,700 10,600 0.99 9227 0.86
27 SB27 0.06 530 11.95 322.6 38.3 14,500 15,636 1.08 15,350 1.06
28 SB28 0.12 530 11.95 322.6 38.3 12,500 11,519 0.92 10,636 0.85
29 SB29 0.06 630 6.6 303 28.4 12,000 13,351 1.11 12,977 1.08
30 SB30 0.13 630 6.6 303 28.4 10,500 9857 0.94 8877 0.85
31 SB31 0.06 630 9.8 311 38.8 17,000 18,821 1.11 18,655 1.10
32 SB32 0.13 630 9.8 311 38.8 15,000 13,189 0.88 12,613 0.84
33 SB33 0.06 720 7.7 395.4 31.4 18,500 20,793 1.12 20,405 1.10
34 SB34 0.13 720 7.7 395.4 31.4 16,000 15,096 0.94 13,589 0.85
35 SB35 0.06 720 9.6 315.6 31.4 18,500 20,587 1.11 20,504 1.11
36 SB36 0.13 720 9.6 315.6 31.4 16,000 14,660 0.92 13,751 0.86
37 SB37 0.06 720 11.74 274 31.4 19,000 20,943 1.10 20,377 1.07
38 SB38 0.13 720 11.74 274 31.4 16,650 14,649 0.88 13,765 0.83

Matsui et al. [32]

39 4-21 0.13 165.2 4.17 358.7 40.9 1265 1190 0.94 1053 0.83
40 4-63 0.38 165.2 4.17 358.7 40.9 767 726 0.95 661 0.86
41 4-105 0.64 165.2 4.17 358.7 40.9 558 482 0.86 447 0.80
42 P-78-2 0.07 106 3 298.9 37.1 603 639 1.06 441 0.73
43 P-78-3 0.13 106 3 298.9 37.1 531 491 0.92 406 0.76
44 P-78-4 0.23 106 3 298.9 37.1 405 411 1.01 346 0.85
45 P-78-5 0.3 106 3 298.9 37.1 345 354 1.03 308 0.89
46 P-78-6 0.42 106 3 298.9 37.1 256 285 1.11 257 1.00
47 P-78-7 0.57 106 3 298.9 37.1 200 230 1.15 214 1.07

Huixian et al. [33]

48 0.07 106 3 299 35.2 603 624 1.03 431 0.71
49 0.14 106 3 299 35.2 531 491 0.92 392 0.74
50 0.24 106 3 299 35.2 405 394 0.97 334 0.82
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Table 2. Cont.

№ Experiment e/Dp Dp, mm tp, mm Ry,
MPa

Rb,
MPa

Nexp,
kN N1, kN N1

Nexp
N2, kN N2

Nexp

51 0.32 106 3 299 35.2 345 333 0.97 294 0.85
52 0.45 106 3 299 35.2 255 267 1.05 244 0.96
53 0.6 106 3 299 35.2 200 218 1.09 205 1.03
54 0.1 108.6 4.6 271.9 30.7 674 630 0.93 444 0.66
55 0.15 108.6 4.6 271.9 30.7 612 561 0.92 408 0.67
56 0.2 108.6 4.6 271.9 30.7 551 504 0.91 379 0.69
57 0.25 108.6 4.6 271.9 30.7 431 452 1.05 351 0.81
58 0.3 108.6 4.6 271.9 30.7 433 408 0.94 326 0.75
59 0.33 108.6 4.6 271.9 30.7 445 385 0.87 311 0.70
60 0.35 108.6 4.6 271.9 30.7 433 372 0.86 302 0.70

Zhong et al. [34]

61 A1 0.05 108.1 4.21 300.9 21.5 776 754 0.97 547 0.70
62 A2 0.1 103 2 300.9 21.5 285 348 1.22 310 1.09
63 A3 0.15 108 4.21 300.9 21.5 623 505 0.81 385 0.62
64 A4 0.15 108.5 4.75 300.9 21.5 669 551 0.82 409 0.61
65 A5 0.15 103 1.81 300.9 21.5 333 306 0.92 280 0.84
66 A6 0.2 108.1 4.33 300.9 21.5 563 466 0.83 362 0.64
67 A7 0.25 103 4.83 300.9 21.5 314 434 1.38 334 1.06
68 A8 0.25 103.3 2.02 300.9 21.5 289 265 0.92 248 0.86
69 A9 0.3 105.3 3.1 300.9 21.5 353 304 0.86 265 0.75

Cai et al. [35]

70 PA2-3 0.06 166 5 277.3 38.2 1642 1589 0.97 1208 0.74
71 PA2-4 0.06 166 5 277.3 38.2 1568 1589 1.01 1208 0.77
72 PA2-5 0.12 166 5 329.3 38.2 1568 1286 0.82 1078 0.69
73 PA2-6 0.12 166 5 294 41.1 1568 1250 0.80 1032 0.66
74 PA2-7 0.18 166 5 286.2 41.1 1127 1079 0.96 896 0.80
75 PA2-8 0.18 166 5 248.9 41.1 1201 1009 0.84 817 0.68
76 PA2-9 0.24 166 5 313.6 38.2 1039 962 0.93 836 0.80
77 PA2-10 0.24 166 5 279.3 38.2 990 902 0.91 763 0.77
78 PA2-11 0.36 166 5 279.3 38.2 735 702 0.96 615 0.84
79 PA2-12 0.36 166 5 296 38.2 843 726 0.86 647 0.77
80 PA2-13 0.6 166 5 296 41.1 564 507 0.90 459 0.81
81 PA2-14 0.6 166 5 296 41.1 510 507 0.99 459 0.90

The second model predicts the maximum load with a safety margin for most samples.
The average value of the N2/Nexp ratio is 0.82, the maximum value is 1.11 and the minimum is
0.61. The standard deviationσ= 0.124 and the coefficient of variation CV = 15.1%. In the design
practice, the second model should be used, which takes into account random eccentricities.

Also, the first model, which predicts the values of the ultimate load without taking into
account additional random eccentricities, was tested on experimental data for 265 centrally
compressed columns, presented in 26 different works [31,36–60]. A comparison of the
predicted values with the experimental data is given in Table 3. The diameter of the columns
in papers [31,36–60] varied from 100 to 1020 mm, the wall thickness varied from 0.86 to
13.25 mm, the yield strength of steel varied from 165.8 to 853 MPa and the compressive
strength of concrete varied from 16.7 to 114.3 MPa.
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Table 3. Comparison of ANN predicted values with experimental data for centrally compressed
CFST columns.

№ Experiment Dp, mm tp, mm Ry, MPa Rb, MPa Nexp, kN N1, kN N1
Nexp

M.H. Lai, J.C.M. Ho [36]

1 CNO-1-114-30 111.5 0.96 370 31.4 479 513 1.07
2 CNO-1-114-30_1 111.6 0.95 370 31.4 456 513 1.13
3 CNO-1-114-80 111.6 0.96 370 79.9 955 1041 1.09
4 CNO-1-114-80_1 111.8 0.96 370 79.9 979 1043 1.07
5 CNO-3-114-30 114.8 2.86 284.9 31.4 719 709 0.99
6 CNO-3-114-80 114.7 2.86 284.9 79.9 1199 1198 1.00
7 CND-4-139-30_S 139 3.96 289.5 31.7 1010 1073 1.06
8 CN0-4-139-30_R 139 3.97 289.5 30.6 1022 1059 1.04
9 CNO-4-139-50 139 3.99 289.5 51.7 1297 1362 1.05

10 CNO-4-139-100_S 138.7 4 289.5 104.5 2070 1883 0.91
11 CNO-4-139-100_R 139.1 3.94 289.5 101.6 2040 1887 0.93
12 CNO-5-114-50 114.5 4.98 422.6 51.4 1274 1429 1.12
13 CNO-5-114-50_1 114 5.03 422.6 51.4 1379 1430 1.04
14 CNO-5-114-120 114.3 5.01 422.6 114.3 1876 1691 0.90
15 CN0-5-168-30 169.2 4.93 369 29.1 1727 1743 1.01
16 CNO-5-168-60 169.2 5.04 369 61.2 2556 2442 0.96
17 CNO-5-168-80 168.7 4.97 369 85.4 2926 2855 0.98
18 CNO-8-168-30 168.7 7.76 383.6 38.1 2507 2591 1.03
19 CNO-8-168-80 168.2 7.8 361.6 75.2 3101 3181 1.03
20 CNO-10-168-30 168.4 9.91 386.4 27 2533 2879 1.14
21 CNO-10-168-90 168.7 9.96 386.4 95.1 3940 3873 0.98

Gardner and Jacobson [37]

22 3 101.7 3.07 650.1 34.1 1112 987 0.89
23 4 101.7 3.07 650.1 31.2 1067 958 0.90
24 8 120.8 4.06 451.6 34.4 1200 1198 1.00
25 9 120.8 4.09 451.6 34.1 1200 1200 1.00
26 10 120.8 4.09 451.6 29.6 1112 1149 1.03
27 13 152.6 3.18 415.1 25.9 1200 1191 0.99
28 14 152.6 3.07 415.1 20.9 1200 1083 0.90

Luksha and Nesterovich [31]

29 SB1 530 7.8 349.2 38.3 14,000 13,518 0.97
30 SB2 630 6.6 303 28.4 13,700 13,327 0.97
31 SB3 630 7 225 40 16,200 15,588 0.96
32 SB4 630 7 291.4 40 16,660 16,775 1.01
33 SB5 630 7.61 349.5 38.9 18,000 17,982 1.00
34 SB6 630 7.9 300 40 17,200 17,540 1.02
35 SB7 630 7.9 300 77.8 28,700 28,830 1.00
36 SB8 630 8.44 350 38.3 18,600 18,476 0.99
37 SB9 630 10.21 323.3 42.7 20,500 20,433 1.00
38 SB10 630 11.6 347.2 51.1 24,400 24,500 1.00
39 SB11 720 7.7 395.4 31.4 21,000 20,820 0.99
40 SB12 720 7.93 388.4 37.8 25,500 23,313 0.91
41 SB13 720 8.3 312 16.7 15,000 13,796 0.92
42 SB14 820 8.93 331 50 33,600 34,696 1.03
43 SB15 1020 9.64 336 18.8 30,000 27,689 0.92
44 SB16 1020 13.25 368.7 32.1 46,000 44,305 0.96

Sakino and Hayashi [38]

45 L-20-1 178 9 283 21.3 2120 2191 1.03
46 L-20-2 178 9 283 21.3 2060 2191 1.06
47 H-20-1 178 9 283 43.6 2720 2624 0.96
48 H-20-2 178 9 283 43.6 2730 2624 0.96
49 L-32-1 179 5.5 249 21.2 1410 1447 1.03
50 L-32-2 179 5.5 249 22.9 1560 1484 0.95
51 H-32-1 179 5.5 249 42 2080 1898 0.91
52 H-32-2 179 5.5 249 42 2070 1898 0.92
53 L-58-1 174 3 266 22.9 1220 1042 0.85
54 L-58-2 174 3 266 22.9 1220 1042 0.85
55 H-58-1 174 3 266 43.9 1640 1494 0.91
56 H-58-2 174 3 266 43.9 1710 1494 0.87
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Table 3. Cont.

№ Experiment Dp, mm tp, mm Ry, MPa Rb, MPa Nexp, kN N1, kN N1
Nexp

Kato [39]

57 C04LB 301.5 4.5 381.2 26.6 3851 3758 0.98
58 C06LB 298.5 5.74 399.8 26.6 4537 4361 0.96
59 C08LB 298.4 7.65 384.2 26.6 4919 5046 1.03
60 C12LB 297 11.88 347.9 26.6 5909 6197 1.05
61 C04MB 301.5 4.5 381.2 34.2 4547 4251 0.93
62 C06MB 298.5 5.74 399.8 31 5125 4635 0.90
63 C08MB 298.4 7.65 384.2 34.1 5821 5501 0.95
64 C12MB 297 11.88 347.9 34.2 7222 6632 0.92
65 C2MBH 301.3 11.59 471.4 34.2 8594 8312 0.97
66 C06HB 298.5 5.74 399.8 79.1 7938 7685 0.97
67 C08HB 298.4 7.65 384.2 79.1 8388 8262 0.98
68 C12HB 297 11.88 347.9 79.1 9388 9170 0.98

Saisho et al. [40]

69 H-30.1 101.6 2.99 377.3 59.9 921 991 1.08
70 H-30.2 101.6 2.99 377.3 59.9 921 991 1.08
71 H-30.3 101.6 2.96 377.3 59.9 901 987 1.10
72 H-50.1 139.8 2.78 341 55 1323 1330 1.01
73 H-50.2 139.8 2.78 341 55 1391 1330 0.96
74 H-50.3 139.8 2.78 341 55 1313 1330 1.01
75 11-60.1 139.8 2.37 462.6 59.9 1558 1509 0.97
76 H-60.2 139.8 2.37 462.6 68 1577 1648 1.05
77 H-60.3 139.8 2.37 462.6 68 1577 1648 1.05
78 H-60.4 139.8 2.37 462.6 68 1626 1648 1.01
79 L-30.1 101.6 2.96 377.3 24.4 676 658 0.97
80 L-30.2 101.6 2.99 377.3 26.6 715 679 0.95
81 L-30.3 101.6 2.99 377.3 28.2 715 693 0.97
82 L-50.1 139.8 2.78 341 24.4 931 867 0.93
83 L-50.2 139.8 2.78 341 26.6 950 899 0.95
84 L-60.1 139.8 2.37 462.6 26.6 1098 964 0.88
85 L-60.2 139.8 2.37 462.6 26.6 1107 964 0.87
86 L-60.3 139.8 2.37 462.6 26.6 1078 964 0.89

Yamamoto et al. [41]

87 C10A-2A-1 101.4 3.02 371 22.3 660 642 0.97
88 C10A-2A-2 101.9 3.07 371 22.3 649 652 1.00
89 C10A-2A-3 101.8 3.05 371 22.3 682 649 0.95
90 C20A-2A 216.4 6.66 452 22.3 3568 3184 0.89
91 C30A-2A 318.3 10.34 331 23.2 6565 5783 0.88
92 C10A-3A-1 101.7 3.04 371 38.6 800 785 0.98
93 C10A-3A-2 101.3 3.03 371 38.6 742 780 1.05
94 C20A-3A 216.4 6.63 452 36.7 4023 3619 0.90
95 C30A-3A 318.3 10.35 339 37.6 7933 6861 0.86
96 C10A-4A-1 101.9 3.04 371 49.2 877 887 1.01
97 C10A-4A-2 101.5 3.05 371 49.2 862 885 1.03
98 C20A-4A 216.4 6.65 452 44.9 4214 3890 0.92
99 C30A-4A 318.5 10.38 339 50.1 8289 7739 0.93

Schneider [42]

100 C1 140.8 3 285 28.2 881 891 1.01
101 C2 141.4 6.5 313 23.8 1367 1445 1.06
102 C3 140 6.68 537 28.2 2010 2192 1.09

O’Shea and Bridge [43]

103 S30CS50B 165 2.82 363.3 48.3 1662 1611 0.97
104 S20CS50A 190 1.94 256.4 41 1678 1421 0.85
105 S16CS5013 190 1.52 293.1 48.3 1695 1586 0.94
106 S12CS50A 190 1.13 185.7 41 1377 1178 0.86
107 S10CS50A 190 0.86 165.8 41 1350 1108 0.82
108 S30CS80A 165 2.82 363.3 80.2 2295 2260 0.98
109 S20CS80B 190 1.94 256.4 74.7 2592 2300 0.89
110 S16CS80A 190 1.52 293.1 80.2 2602 2427 0.93
111 S12CS80A 190 1.13 185.7 80.2 2295 2139 0.93
112 S10CS80B 190 0.86 165.8 74.7 2451 1933 0.79
113 S30CS10A 165 2.82 363.3 108 2673 2506 0.94



CivilEng 2024, 5 163

Table 3. Cont.

№ Experiment Dp, mm tp, mm Ry, MPa Rb, MPa Nexp, kN N1, kN N1
Nexp

114 S20CS10A 190 1.94 256.4 108 3360 2813 0.84
115 S16CS10A 190 1.52 293.1 108 3260 2828 0.87
116 S12CS10A 190 1.13 185.7 108 3058 2478 0.81
117 SI10CSI10A 190 0.86 165.8 108 3070 2371 0.77

Elremaily et al. [44]

118 CU-040 200 5 265.8 27.2 2004 1798 0.90
119 CU-070 280 4 272.6 31.2 3025 2925 0.97
120 CU-150 300 2 244.2 27.2 2608 2261 0.87

Johansson [45]

121 SFE4 159 5 390 36.6 1770 1812 1.02
122 SFE5 159 6.8 402 36.6 2130 2244 1.05
123 SFE6 159 10 355 36.6 2500 2680 1.07
124 SFE7 159 5 390 93.8 2740 2758 1.01
125 SFE8 159 6.8 402 93.8 3220 3110 0.97

Yu et al. [46]

126 G4-1a 165 1 222 73.4 1773 1568 0.88
127 G2-2b 151 2 405 69.6 1933 1707 0.88
128 G4-2c 165 2 338 73.4 2077 1927 0.93
129 G4-2d 165 2 338 73.4 1930 1927 1.00
130 G4-2e 165 2 338 73.4 1920 1927 1.00
131 G2-4.5b 151 4.5 438 69.6 2572 2292 0.89
132 G2-6a 159 6 405 69.6 2957 2686 0.91
133 G2-8a 159 8 438 69.6 3173 3235 1.02
134 G2-8b 159 8 438 69.6 3267 3235 0.99
135 G2-8c 159 8 438 69.6 3330 3235 0.97

Giakoumelis and Lam [47]

136 C3 114.4 3.98 343 25.1 826 863 1.04
137 C4 114.6 3.99 343 78.1 1308 1420 1.09
138 C7 114.9 4.91 365 27.9 1050 1068 1.02
139 C8 115 4.92 365 87.7 1787 1663 0.93
140 C9 115 5.02 365 47.4 1390 1285 0.92
141 C11 114.3 3.75 343 47.4 1013 1060 1.05
142 C12 114.3 3.85 343 25.6 826 848 1.03
143 C14 114.5 3.84 343 82.6 1359 1438 1.06

Gu et al. [48]

144 0-1.5 127 1.5 350 48.2 890 888 1.00
145 0-2.5 129 2.5 350 48.2 1140 1063 0.93
146 0-3.5 131 3.5 310 48.2 1173 1178 1.00
147 0-4.5 133 4.5 310 48.2 1408 1347 0.96

Han and Yao [49]

148 scsc1-1 100 3 303.5 48.2 708 780 1.10
149 sch1-1 100 3 303.5 48.2 766 780 1.02
150 scv1-1 100 3 303.5 48.2 780 780 1.00
151 scsc2-1 200 3 303.5 48.2 2320 2083 0.90
152 scsc2-2 200 3 303.5 48.2 2330 2083 0.89
153 sch2-1 200 3 303.5 48.2 2160 2083 0.96
154 sch2-2 200 3 303.5 48.2 2160 2083 0.96
155 scv2-1 200 3 303.5 48.2 2383 2083 0.87
156 scv2-2 200 3 303.5 48.2 2256 2083 0.92

Sakino et al. [50]

157 CC4-A-2 149 2.96 308 25.4 941 942 1.00
158 CC4-A-8 149 2.96 308 77 1781 1789 1.00
159 CC6-A-2 122 4.54 576 25.4 1509 1409 0.93
160 CC6-A-4-1 122 4.54 576 40.5 1657 1587 0.96
161 CC6-A-4-2 122 4.54 576 40.5 1663 1587 0.95
162 CC6-A-8 122 4.54 576 77 2100 2098 1.00
163 CC6-C-2 239 4.54 507 25.4 3035 3159 1.04
164 CC6-C-4-1 238 4.54 507 40.5 3583 3734 1.04
165 CC6-C-4-2 238 4.54 507 40.5 3647 3734 1.02
166 CC6-C-8 238 4.54 507 77 5578 5218 0.94
167 CC6-D-2 361 4.54 460.7 25.4 5633 5482 0.97
168 CC6-D-4-1 361 4.54 460.7 41.1 7260 6923 0.95
169 CC6-D-4-2 360 4.54 462 41.1 7045 6902 0.98
170 CC6-D-8 360 4.54 462 85.1 11,505 11,056 0.96
171 CC8-A-2 108 6.47 853 25.4 2275 1944 0.85
172 CC8-A-4-1 109 6.47 853 40.5 2446 2161 0.88
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Table 3. Cont.

№ Experiment Dp, mm tp, mm Ry, MPa Rb, MPa Nexp, kN N1, kN N1
Nexp

173 CC8-A-4-2 108 6.47 853 40.5 2402 2137 0.89
174 CC8-A-8 108 6.47 853 77 2713 2730 1.01
175 CC8-C-2 222 6.47 843 25.4 4964 5401 1.09
176 CC8-C-4-1 222 6.47 843 40.5 5638 5822 1.03
177 CC8-C-4-2 222 6.47 843 40.5 5714 5822 1.02
178 CC8-C-8 222 6.47 843 77 7304 6972 0.95
179 CC8-D-2 337 6.47 703.3 25.4 8475 8587 1.01
180 CC8-D-4-1 337 6.47 703.3 41.1 9668 9635 1.00
181 CC8-D-4-2 337 6.47 703.3 41.1 9835 9635 0.98
182 CC8-D-8 337 6.47 703.3 85.1 13,776 12,735 0.92

Zhang and Wang [51]

183 L-A-1-92h 167.4 3.32 354 39.9 1704 1554 0.91
184 L-A-2-99h 167.3 3.35 354 39.9 1668 1559 0.93
185 L-A-3-98h 167.5 3.33 354 39.9 1700 1558 0.92
186 L-B-1-85h 138.9 3.29 332 34.8 1140 1081 0.95
187 L-B-3-89h 139.5 3.37 332 34.8 1180 1100 0.93
188 L-C-1-87h 139.9 3.58 325 34.8 1222 1128 0.92
189 L-C-2-101h 139.9 3.54 325 34.8 1242 1121 0.90
190 M-A-1-97h 167 3.37 354 56.1 2075 1907 0.92
191 M-A-2-100h 167.1 3.33 354 56.1 2105 1900 0.90
192 M-A-3-95h 167.8 3.33 354 56.1 2055 1912 0.93
193 M-B-1-20h 138.6 3.31 332 49.5 1480 1300 0.88
194 M-C-3-86h 139.7 3.61 325 48.6 1540 1337 0.87
195 M-E-1-21h 133.4 5.17 351 56.1 1810 1655 0.91
196 M-E-2-27h 133.2 5.03 351 56.1 1770 1630 0.92
197 H-B-2-309h 138.7 3.28 332 61.4 1680 1478 0.88
198 H-D-1-311h 159.3 5.36 356 61.4 2480 2261 0.91
199 H-D-2-308h 160.2 5.01 356 61.4 2440 2213 0.91
200 H-F-1-307h 133.3 5.43 392 61.4 1820 1873 1.03
201 H-F-2-313h 133.1 5.44 392 61.4 1915 1871 0.98

Han et al. [52]

202 CA2-1 100 1.87 282 70.9 822 834 1.01
203 CA2-2 100 1.87 282 70.9 845 834 0.99
204 CA3-1 150 1.87 282 70.9 1701 1501 0.88
205 CA3-2 150 1.87 282 70.9 1670 1501 0.90
206 CA4-1 200 1.87 282 70.9 2783 2461 0.88
207 CA4-2 200 1.87 282 70.9 2824 2461 0.87
208 CA5-1 250 1.87 274 70.9 3950 3706 0.94
209 CA5-2 250 1.87 274 70.9 4102 3706 0.90
210 CB2-1 100 2 404 70.9 930 982 1.06
211 CB2-2 100 2 404 70.9 920 982 1.07
212 CB3-1 150 2 404 70.9 1870 1711 0.91
213 CB3-2 150 2 404 70.9 1743 1711 0.98
214 CB4-1 200 2 366.3 70.9 3020 2662 0.88
215 CB4-2 200 2 366.3 70.9 3011 2662 0.88
216 CB5-1 250 2 293.1 70.9 4442 3789 0.85
217 CB5-2 250 2 293.1 70.9 4550 3789 0.83
218 CC2-1 150 2 404 75 1980 1783 0.90
219 CC2-2 150 2 404 75 1910 1783 0.93
220 CC3-1 250 2 293.1 75 4720 3974 0.84
221 CC3-2 250 2 293.1 75 4800 3974 0.83

Tan [53]

222 GH1-1 125 1 232 97.2 1275 1181 0.93
223 GH1-2 125 1 232 97.2 1239 1181 0.95
224 GH2-1 127 2 258 97.2 1491 1366 0.92
225 GH3-1 133 3.5 352 97.2 1995 1843 0.92
226 GH3-2 133 3.5 352 97.2 1991 1843 0.93
227 GH3-3 133 3.5 352 97.2 1962 1843 0.94
228 GH4-1 133 4.7 352 97.2 2273 2001 0.88
229 GH4-2 133 4.7 352 97.2 2158 2001 0.93
230 GH4-3 133 4.7 352 97.2 2253 2001 0.89
231 GH5-1 127 7 429 97.2 2404 2397 1.00
232 GH5-2 127 7 429 97.2 2370 2397 1.01
233 GH5-3 127 7 429 97.2 2364 2397 1.01



CivilEng 2024, 5 165

Table 3. Cont.

№ Experiment Dp, mm tp, mm Ry, MPa Rb, MPa Nexp, kN N1, kN N1
Nexp

234 GH6-3 108 4.5 358 88.6 1518 1479 0.97

Gupta et al. [54]

235 D4M3C1 112.6 2.89 360 19.8 670 662 0.99
236 D4M3C2 112.6 2.89 360 23 646 693 1.07
237 D4M3C3 112.6 2.89 360 22.4 661 687 1.04
238 D4M4C1 112.6 2.89 360 30.4 786 764 0.97
239 D4M4C2 112.6 2.89 360 32.5 752 786 1.05
240 D4M4C3 112.6 2.89 360 30.6 765 766 1.00

Yu et al. [55]

241 SZ3S6A1 165 2.73 350 64.1 2080 1903 0.91
242 SZ3S4A1 165 2.72 350 46.9 1750 1537 0.88
243 SZ3C4A1 165 2.75 350 37.8 1560 1353 0.87

Lai et al. [56]

244 F0-102 204 2 226 42.2 1864 1596 0.86
245 F0-135 203 1.5 242 42.1 1699 1509 0.89
246 F0-202 202 1 181.4 35.9 1380 1141 0.83

Liao et al. [57]

247 cn-1 180 3.8 360 53 2110 2177 1.03
248 cn-2 180 3.8 360 53 2070 2177 1.05

Uy et al. [58]

249 C20-100*1.6A 101.6 1.6 320 20 421 417 0.99
250 C20-100*1.6B 101.6 1.6 320 20 426 417 0.98
251 C30-100*1.6A 101.6 1.6 320 30 477 497 1.04
252 C30-100*1.6B 101.6 1.6 320 30 477 497 1.04
253 C30-150*1.6A 152.4 1.6 279 30 904 792 0.88
254 C30-150*1.6B 152.4 1.6 279 30 890 792 0.89
255 C30-200*2.0A 203.2 2 259 30 1537 1285 0.84
256 C30 200*2.0B 203.2 2 259 30 1550 1285 0.83

Xue et al. [59]

257 N3-0-A 219 3 313 51.6 2647 2571 0.97
258 N4-0-A 219 4 313 51.6 2896 2822 0.97
259 N5-0-A 219 5 313 51.6 3218 3066 0.95

Abed et al. [60]

260 CFSTf60D167t3.1 167 3.1 300 60 1873 1820 0.97
261 CFSTf60D114t3.6 114 3.6 300 60 1095 1106 1.01
262 CFSTf60D114t5.6 114 5.6 300 60 1297 1338 1.03
263 CFSTf44D167t3.1 167 3.1 300 44 1710 1486 0.87
264 CFSTf44D114t3.6 114 3.6 300 44 1034 938 0.91
265 CFSTf44D114t5.6 114 5.6 300 44 1240 1181 0.95

Despite the fact that some values of the input parameters in Table 3 are outside the
range in which the neural network was trained, it showed good ability to extrapolate data.
The average value of the ratio N1/Nexp is 0.96. The maximum value of the ratio N1/Nexp is
1.14, the minimum is 0.77. The standard deviation σ = 0.06 and the coefficient of variation
CV = 5.9%.

4. Conclusions

During the conducted study, the following main results were obtained:
1. Two models of artificial neural networks have been developed to predict the

ultimate load of eccentrically compressed short concrete-filled steel tubular columns of
circular cross-sections either without taking into account or taking into account additional
random eccentricities. The developed ANNs are based on the theoretical model of the
limiting equilibrium of CFST columns. Machine learning models are trained on the entire
possible range of the diameters and wall thicknesses of metal tubes, as well as on the wide
range of changes in the design strength of concrete and steel. The volume of the training
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dataset was 179,025 samples, which is hundreds and thousands of times larger than the
sample sizes previously used by other researchers.

2. Training of the ANN models on synthetic data was successful; the trained models
are characterized by good performance in terms of mean squared error, and the correlation
coefficients between the predicted and target values are close to 1.

3. The results of predicting ultimate loads using artificial neural networks were com-
pared with the results of experiments for 81 eccentrically compressed samples presented in
five different works and 265 centrally compressed samples presented in twenty-six papers.
The first ANN model, which was trained on ultimate loads determined without taking into
account random eccentricities, showed good agreement with experimental data for most
samples. The second model, which takes into account random eccentricities in accordance
with the requirements of design standards, predicts the maximum load with a safety margin
for most prototypes. This model can be used in the design process to quickly determine the
bearing capacity of columns at a given eccentricity.

In this work, when training artificial neural networks, the basis was a simplified
model for determining the ultimate load, in which the stress diagrams in concrete and
steel in the limit state were assumed to be rectangular, and the work of tensile concrete
was not taken into account. The goal of our further research will be the development
of artificial neural networks based on more complex models [61–63]. In this case, the
nonlinearity of the diagrams of concrete and steel, as well as the dilatation effect, will be
taken into account. Also, this article considers only short columns, for which the additional
eccentricity of the axial force caused by the deflection of the element can be neglected.
In the future, it is planned to build ANN models to predict the load-bearing capacity of
slender CFST columns.

It should also be noted that artificial neural networks are not the only machine learning
algorithm. In some cases, other algorithms turn out to be more effective when applied
to concrete and reinforced concrete structures, for example, support vector regression
(SVR) [64], multi-objective grasshopper optimization algorithm (MOGOA) [65] and others.
In the future, it is also planned by us to use alternative algorithms to analyze the datasets
generated in this work.
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