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Article

Smith–Watson–Topper Parameter in Partial Slip Bimodal
Oscillations of Axisymmetric Elastic Contacts of Similar
Materials: Influence of Load Protocol and Profile Geometry
Emanuel Willert

Institute of Mechanics, Technische Universität Berlin, Sekretariat C8-4, Straße des 17. Juni 135,
10623 Berlin, Germany; e.willert@tu-berlin.de

Abstract: Based on a very fast numerical procedure for the determination of the subsurface stress
field beneath frictional contacts of axisymmetric elastic bodies under arbitrary 2D oblique load-
ing, the contact mechanical influences of loading parameters and contact profile geometry on the
Smith–Watson–Topper (SWT) fatigue crack initiation parameter in elastic fretting contacts with su-
perimposed normal and tangential oscillations are studied in detail. The efficiency of the stress
calculation allows for a comprehensive physical analysis of the multi-dimensional parameter space
of influencing variables. It is found that a superimposed normal oscillation of the contact can sig-
nificantly increase or decrease the SWT parameter, depending on the initial phase difference and
frequency ratio between the normal and tangential oscillation. Written in proper non-dimensional
variables, the rounded flat punch always exhibits smaller values of the SWT parameter, compared to
a full paraboloid with the same curvature, while the truncated paraboloid exhibits larger values. A
small superimposed profile waviness also significantly increased or decreased the SWT parameter,
depending on the amplitude and wave length of the waviness. While both the load protocol and the
profile geometry can significantly alter the SWT parameter, the coupling between both influencing
factors is weak.

Keywords: axisymmetric contacts; friction; bimodal oscillation; fatigue crack initiation; flat punch
superposition; method of dimensionality reduction

1. Introduction

Mechanical contacts that are subject to small oscillations often suffer from various
forms of damage, which are summarized under the term “fretting” and which can sig-
nificantly decrease the lifetime or performance of the contacting materials and bodies.
Depending on the characteristic extent of the stick and slip zones in the contact during the
oscillation, it is common to distinguish different “fretting regimes” [1], mainly the partial
slip and the sliding regime.

The two main damage phenomena associated with fretting are fretting wear and
fretting fatigue; while the dominant damage mode in the partial slip regime is often fretting
fatigue, the sliding regime mostly suffers from fretting wear. Nevertheless, both phenomena
interact with each, and a numerical routine for the life prediction of a fretting contact should
account for both wear and fatigue ([2–4]). However, doing so in a rigorous way—especially
considering that, in the partial slip regime, the wear debris material will act as a “third
body” in the contact—has proven to be extremely difficult [5].

The amount of influencing mechanisms and governing parameters in fretting is vast.
Some of these have a contact mechanical origin, while others are of a more general tribo-
logical (physico-chemical) nature. One of the almost strictly contact mechanical aspects of
fretting is the fatigue crack initiation due to the intricate, multiaxial, and rapidly chang-
ing stress field beneath the frictional contact under complex cyclic loading [6]. For the
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prediction of fatigue crack nucleation, there are different well-established mechanical frame-
works [7]. One of the most common approaches is using critical plane parameters [8], like
the Smith–Watson–Topper (SWT, [9]) parameter.

Based on the SWT parameter (or similar critical plane approaches), different aspects
of the fatigue crack initiation problem in fretting have already been analyzed numerically
and experimentally in the literature. In that regard, especially in the past decade, a lot of
research interest was dedicated to the impact of the loading protocol and the contact profile
geometry on crack initiation, as these are influence factors that can be controlled more
or less easily in design and construction of fretting contacts. With respect to the loading
protocol, the influences of out-of-phase loading [10] and phase difference ([11,12]) (however,
mainly with focus on a phase difference between bulk stresses and contact loads), as well as
more complex cyclic loading paths ([13,14]), were studied. On the other hand, regarding the
influence of the surface geometry on crack initiation, the overall contact geometry ([15,16])
and macroscopically worn profiles [17], as well as the surface microgeometry [18], surface
pit treatment [19] and machined surface texture [20] have been considered.

Most of the aforementioned numerical studies are based on the Finite-Element Method
(FEM); while the FEM, due to its flexibility with respect to the physical modeling, can ac-
count for a wide variety of mechanisms and phenomena in a specific fretting contact—and
thus achieves good predictive power under sufficiently well-defined circumstances—its
demands for computational power and calculation time often make large parameter studies
for the comprehensive analysis of different influencing factors unfeasible.

One solution to this problem consists of the application of data science and machine
learning approaches, e.g., artificial neural networks [21]. These, however, sacrifice the
aspiration of a physical description and understanding of the system for the purpose of a
robust prediction of only a few concrete output variables, e.g., the fatigue life.

Another approach may be the reduction and simplification of the physical modeling. If
the model description of the system is simple enough—so that the numerical solution of the
resulting system of equations can be executed sufficiently fast to allow for a comprehensive
analysis of a large parameter space—one is able to obtain a broad and deep physical
understanding of the reduced model. While the results of such a reduced model, in most
cases, will not achieve a very high quantitatively predictive power, they can provide a
broad, physically-based set of ideas, whose parameter combinations can be worthwhile to
analyze deeper with more elaborate modeling, e.g., based on the FEM.

The latter approach shall be pursued in the present work. As was pointed out above,
fretting fatigue crack initiation is mainly due to the complex oscillating mechanical stress
field beneath a frictional contact under cyclic tangential (or multimodal) loading. For the
elastic frictional contact of smooth, convex, axisymmetric bodies (this characterization
constitutes the aforementioned model reduction), very recently an extremely efficient
procedure has been suggested for the determination of the subsurface stress state beneath
the frictional contact under arbitrary 2D oblique loading [22], which reduces the problem
of calculating the subsurface stresses to the evaluation of elementary one-dimensional
integrals. Once the subsurface stress state is known, the critical plane parameters for the
prediction of fatigue crack initiation can be determined easily, allowing for the very fast
analysis of a specific set of geometrical and loading parameters.

Based on this procedure, in the present manuscript, the influence of the loading
protocol and the contact profile geometry on the SWT parameter in partial slip bimodal
oscillations of axisymmetric elastic contacts is theoretically studied. This will provide
general insights into the coupled (contact mechanical) dependencies of fretting fatigue life
on these two classes of input parameters, i.e., load and geometry.

The remainder of the manuscript is structured as follows: In Section 2, the ana-
lyzed problem is formulated in a physically rigorous form. After that, in Section 3, the
semi-analytical and numerical procedures for the solution of the contact problem and the
determination of the subsurface stress state, as well as the fatigue crack initiation criterion,
are described in detail. Section 4 presents the obtained numerical results with respect for
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the influence of load and profile geometry on the SWT parameter. A discussion of the
results finishes the manuscript.

2. Problem Statement

Let us consider the contact of axisymmetric elastic bodies, made of linear, isotropic,
and homogeneous materials that are elastically similar to each other (to avoid elastic
coupling between the normal and tangential contact problems), i.e., whose shear moduli Gi
and Poisson ratios νi (at least, approximately) satisfy the relation

1− 2ν1

G1
=

1− 2ν2

G2
. (1)

Moreover, the bodies shall also obey the restrictions of the half-space approximation; in
that case, the contact between the two elastic bodies is equivalent to the one between an
elastic half-space, having the effective moduli

E∗ =
(

1− ν1

2G1
+

1− ν2

2G2

)−1
and G∗ =

(
1− 2ν1

4G1
+

1− 2ν2

4G2

)−1
, (2)

and a rigid indenter having the axisymmetric profile z = f (r), with the polar radius r
in the contact plane and the contact normal direction z; f is given by the gap between
the contacting surfaces in the instant of first contact. Microscopic surface roughness
is neglected.

We will consider different profile functions f ; specifically, the paraboloid (i.e., the
axisymmetric Hertzian contact),

f (r) =
r2

2R
, (3)

with the curvature radius R; the cylindrical rounded flat punch,

f (r) =
(r− b)2

2R
H(r− b) (4)

with the radius b of the flat face of the punch, the curvature radius R of the rounded edge,
and the Heaviside step function H; the truncated paraboloid

f (r) =
r2 − b2

2R
H(r− b); (5)

and the paraboloid with superimposed small waviness,

f (r) =
r2

2R
+ h
[

1− cos
(

2πr
λ

)]
, (6)

with the amplitude h and wave length λ of the waviness. The analyzed contact problems
are shown schematically in Figure 1.

The contacts shall be subject to displacement-controlled bimodal harmonic oscillations;
that is to say, the indentation depth δ as a function of the time t shall be

δ(t) = δ0 + δA sin(ω1t + ψ), (7)

with the average indentation depth δ0, the amplitude δA, and angular frequency ω1 of the
normal oscillation, and a phase angle ψ; moreover, for the macroscopic relative tangential
displacement between the contacting bodies u,

u(t) = uA sin(ω2t), (8)

with the amplitude uA and angular frequency ω2 of the tangential oscillation.
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Figure 1. Schematic representation of the considered contact profiles. (A): paraboloid; (B): flat punch
with rounded corners; (C): truncated paraboloid; (D): paraboloid with small waviness.

Note that in the recent literature variable amplitude fretting oscillations have also
been considered ([23,24]). This would in principle be possible to analyze within the frame-
work described in the present manuscript but would too significantly extend the relevant
parameter space.

The tangential contact problem with friction will be solved within the framework of
the Cattaneo–Mindlin approximation ([25,26]), specifically

1. the validity of a local Amontons–Coulomb friction law between normal and frictional
surface tractions, with a globally constant coefficient of friction µ;

2. neglect of the lateral (i.e., orthogonal to the loading plane) elastic surface displacements—
which would slightly violate the isotropy of the friction law.

Munisamy et al. [27] compared the Cattaneo–Mindlin approximate theory to a rigorous
numerical contact solution for the frictional Hertzian contact under shear load and found
that the error of the approximation in terms of the contact tractions is generally small.

We are interested in the Smith–Watson–Topper (SWT, [9]) multiaxial fatigue crack
initiation parameter due to the oscillating subsurface stress and deformation fields. It
belongs to the group of critical plane criteria of (fretting) fatigue crack initiation [7]; that is
to say, it evaluates a certain characteristic scalar quantity of the intricate time-evolution of
the subsurface stress and deformation fields in each material plane at a specific material
point. The plane with the highest value of the scalar quantity is deemed critical, i.e., most
prone to crack nucleation.

In the case of the SWT parameter, the scalar quantity is given by the product of the
maximum normal stress σmax

n and the normal strain amplitude ∆εn/2 in the specific plane,

swt =
[

σmax
n

∆εn

2

]
max

, (9)

where the upper index “max” of the stress and the strain amplitude are to be understood
over one (stationary) oscillation cycle; the lower index “max” indicates maximizing with
respect to the orientation of the plane [28]. The SWT parameter is thus defined for every
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material point with the Cartesian coordinates (x, y, z); we will be interested only in the
maximum value of the field,

SWT = max[swt(x, y, z)], (10)

which can be connected to the specimen lifetime (measured in oscillation cycles to initiate a
crack of given length) [8]. In that regard, it has to be kept in mind that because of the highly
localized character of the contact stress fields—and therefore also the SWT parameter—such
a strictly local version of the crack initiation criterion will provide very conservative lifetime
estimates [6]. To obtain better lifetime predictions, the local field of the parameter can either
be averaged over a certain volume [29], or evaluated at a certain critical distance [30] from
the strictly local maximum. Both the averaging volume and the critical distance depend
on the specifics of the fretting contact, e.g., the material pairing. As the present work does
not aim for concrete lifetime predictions—but rather aspires to analyze the behavior of the
criterion (9) under different contact mechanical conditions—and therefore characteristics
like the concrete material pairing are not specified, we will use a local formulation of
the SWT parameter. However, theoretically speaking, the averaged or critical distance
formulations can easily be obtained from the local field as well.

Finally, it should be noted that very recently the crack orientation prediction within
the SWT framework has also been significantly improved, based on the critical direction
method [31].

3. Methods

In this section, the semi-analytical and numerical procedures for the solution of the
problem formulated above are described. First, the contact solver, which is based on the
method of dimensionality reduction (MDR), is detailed. After that, the determination of
the subsurface stress fields and the SWT parameter are discussed.

3.1. Contact Solution

There are different formalisms for the solution of the axisymmetric tangential contact
problem with friction under arbitrary 2D oblique loading, within the framework of the
Cattaneo–Mindlin approximation; namely, Jäger’s algorithm [32], the method of memory
diagrams (MMD, [33]), and the method of dimensionality reduction (MDR, [34,35]). All
these are equivalent to each other and can, in fact, be “translated” into one another. Depend-
ing on the specific task which is to be executed, all methods have their own advantages
and disadvantages. To solve the problem at hand, for reasons that will become clear below,
the most efficient and direct approach is the MDR.

Within the framework of MDR, the contact between axisymmetric elastic bodies is
mapped exactly onto an equivalent contact between a rigid plane profile g and a one-
dimensional foundation of independent linear springs. Sketches of the original three-
dimensional contact and the equivalent contact within MDR are shown in Figure 2.

g (ξ)

δ(t)

r, x, ua(t)

z

F  (t)N

f (r)

ξ, x, u

z

A B

F (t)x

δ(t)

a(t)

F  (t)N
F (t)x

Figure 2. (A) Original axially symmetric tangential contact problem between a rigid indenter with
the profile f (r) and an elastic half-space. (B) Equivalent problem within the MDR.
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For the mapping procedure to be exact, the MDR profile g must correspond to the
relation between indentation depth δ and contact radius a in the original axisymmetric
system. Hence ([35], p. 7),

g(ξ) = |ξ|
∫ |ξ|

0

f ′(r) dr√
ξ2 − r2

, (11)

where the prime denotes the derivative.
Moreover, the spring elements of the elastic foundation must have normal and tangen-

tial values of line stiffness according to ([35], p. 131)

dkN = E∗dξ , dkx = G∗dξ, (12)

with the effective moduli defined in Equation (2) and the spacing dξ between the elastic
elements.

For the exact mapping of the tangential contact problem with friction, the spring ele-
ments only have to obey a local Amontons–Coulomb friction law with the same coefficient
of friction as in the original system ([35], p. 132).

If these mapping rules are implemented and evaluated according to the given load
protocol—in our case, given by Equations (7) and (8)—the relationships between the
macroscopic displacements (δ and u) and contact forces (FN and Fx) as well as the radii
of the contact and the inner stick zone (a and c) in the MDR model will exactly match
the ones in the original three-dimensional system, for arbitrary 2D oblique loading of the
contact ([36], p. 102).

Moreover, the MDR solution of the contact problem allows for a very fast determina-
tion of the subsurface elastic stress fields for the original contact, as will be discussed below.

3.2. Subsurface Stress Fields and SWT Parameter

The determination of the subsurface stress field is based on the understanding of the
partial slip tangential contact as a superposition of incremental rigid translations of circular
contact domains—which originally stems from Mossakovski [37] and later Jäger [38]—and
this superposition’s very close relationship to the MDR contact solution.

Suppose that the original axisymmetric bodies are brought into contact over a circular
contact area with the radius ξ, and two remote points of the bodies on the axis of symmetry
are moved to one another by an incremental indentation depth dδ. Then, the two bodies
will experience an increment in the contact pressure p of ([35], p. 12)

dp(r; ξ) =
E∗

π

dδ√
ξ2 − r2

, r < ξ, (13)

which corresponds to the pressure under the incremental indentation by a rigid cylindrical
flat punch with the radius ξ. Similarly, if two remote points on the axis of symmetry are
moved relative to one another in the tangential direction by an incremental displacement
du (without slip and without tilting), the bodies will experience incremental tangential
surface tractions ([35], p. 137)

dq(r; ξ) =
G∗

π

du√
ξ2 − r2

, r < ξ. (14)

The subsurface stress fields due to the surface tractions (13) and (14) have been very
recently determined analytically and in closed form by the author [22].

As the tangential contact with friction under 2D oblique loading can be thought of as
a specific series of incremental (normal and tangential) rigid translations of circular contact
domains with varying radius ξ, the corresponding subsurface elastic stress field can be
superimposed from the “basic” fields that originate from the surface tractions (13) and (14).
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Hence, the subsurface stress field due to the normal contact load is given by [22]

σnorm
jk (x, y, z; a) =

∫ a

0
σ
(1)
jk (x, y, z; ξ) δ′(ξ) dξ, (15)

where σ
(1)
jk denotes the stress field due to the unit indentation by a rigid cylindrical flat

punch (which is known explicitly). The subsurface stress field due to the tangential contact
load is analogously given by [22]

σ
tang
jk (x, y, z; a) =

∫ a

0
σ
(2)
jk (x, y, z; ξ) u′(ξ) dξ, (16)

where σ
(2)
jk denotes the stress field due to the (rigid) unit tangential displacement without

slip of a circular contact domain (which is also known explicitly).
However, what are the correct “histories” of rigid translations δ(ξ) and u(ξ)—which

are required for the evaluation of the superposition integrals (15) and (16)—to reproduce
the contact configuration of the partial slip contact under oblique loading?

As it turns out, these are directly “encoded” in the MDR solution to the contact
problem. Let the normal and tangential displacements of the spring elements in the MDR
model be wMDR(ξ, t) and uMDR(ξ, t), respectively. These displacements can be calculated
very easily based on the MDR rules described in the previous subsection. Any of the spring
elements at position ξ corresponds to a rigid cylindrical flat punch with radius ξ in the
original system. Therefore, the histories of rigid translations can be calculated from the
MDR displacements according to

δ(ξ, t) = wMDR(ξ = 0, t)− wMDR(ξ, t), (17)

and
u(ξ, t) = uMDR(ξ = 0, t)− uMDR(ξ, t). (18)

The problem of determining the subsurface stress fields has thus been reduced to the
(numerical) calculation of the elementary one-dimensional integrals (15) and (16). Once the
stress fields are known, it is easy to implement a numerical routine for the evaluation of
the definitions (9) and (10) for the SWT parameter.

4. Results
4.1. Scaling Laws

The characteristic scale of the SWT parameter is the scale of the elastic energy density,

SWT0 = E∗ε2
0 = E∗

δ0

R
, (19)

with the characteristic deformation scale in an axisymmetric Hertzian contact, ε0 =
√

δ0/R.
Dimensional analysis and numerical solutions of the problem stated in Section 2 show

that the SWT parameter, normalized for its characteristic scale (19), will only depend on a
few non-dimensional parameters, specifically

s =
SWT
SWT0

= s
(

ν, µ,
δA
δ0

,
ω2

ω1
,

G∗uA
µE∗δ0

, ψ, κi

)
. (20)

Here, κi denote the non-dimensional parameters for the characterization of the profile
geometry, which will be detailed in Section 4.3.

It can be noted that, while the modulus of the elastic half-space itself only enters the so-
lution as a scaling parameter in Equation (19), the ratio of tangential and
normal modulus,

G∗

E∗
=

2− 2ν

2− ν
, (21)
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influences the normalized SWT parameter both via the Poisson ratio and the non-dimensional
tangential oscillation amplitude, G∗uA/(µE∗δ0). On the other hand, the dependencies of
the non-dimensional SWT parameter on the friction coefficient and the non-dimensional
tangential oscillation amplitude are rather elementary (increasing these parameters with
all others held constant increases s) and shall not occupy us further. The dependence on
Poisson’s ratio is intricate but very weak. Therefore, the remaining dependencies, that will
be analyzed in the following, are the ones on the normalized normal oscillation amplitude,
δA/δ0, the frequency ratio between tangential and normal oscillation, ω2/ω1, the (initial)
phase difference ψ, and the profile parameters κi.

Unless stated otherwise explicitly, the simulations used the fixed non-dimensional
parameters listed in Table 1.

Table 1. List of used fixed non-dimensional parameters for the simulations (unless stated otherwise
in the text).

Parameter ν µ δA
δ0

ω2
ω1

G∗uA
µE∗δ0

ψ

Value 0.3 0.3 3/4 1 5/6 0

It should be pointed out, that for basically all simulations, the critical point (with
the maximum SWT parameter) was in the contact surface, in the plane y = 0, and well
outside the region of permanent stick. The orientation of the critical plane was always
close to perpendicular in the material (i.e., the normal vector of the critical plane pointed in
the tangential x-direction). This is in agreement with respective experimental data in the
literature [7].

4.2. Influence of Load Parameters in Parabolic Contact

First, let us analyze in detail the influence of the bimodal loading protocol parameters
δA/δ0 (normalized amplitude of normal oscillation), ω2/ω1 (frequency ratio between
tangential and normal oscillation), and ψ (phase angle between normal and tangential
oscillation at the beginning of the stationary cycle), on the non-dimensional SWT parameter
in a parabolic contact.

In the case of oscillations with the same frequency (ω2 = ω1), the remaining function
s = s(δA/δ0, ψ) could, in theory, be demonstrated comprehensively in a contour diagram.
However, this presentation would be hard to read; therefore, in Figure 3, the normalized
SWT parameter is shown as a function of the phase angle ψ for different values of the
normal oscillation amplitude.
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Figure 3. Normalized maximum SWT parameter for the same-frequency bimodal contact oscillation
between a paraboloid and a flat, as a function of the phase angle ψ, for different values of the normal
oscillation amplitude.
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Without normal oscillation, there would, of course, be no dependence on the phase
angle. Therefore, for small normal oscillation amplitudes, the curves in Figure 3 are almost
constant. Expectedly, for large normal oscillations, the dependence on the phase angle
increases and turns out to be actually very relevant; for δA/δ0 = 8/9, the maximum and
minimum values of the SWT parameter, as a function of the phase angle, differ by almost a
factor of two!

Moreover, there is a very interesting effect with regard to the coupled dependencies on
the frequency ratio and the phase angle, which is shown in Figure 4. There, the normalized
SWT parameter is shown as a function of the phase angle for different frequency ratios,
and small (A, left) or large normal oscillations (B, right).
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Figure 4. Normalized maximum SWT parameter for the different-frequency bimodal contact oscilla-
tion between a paraboloid and a flat, as a function of the phase angle ψ, for different values of the
frequency ratio. (A): δA = 0.25 δ0; (B): δA = 0.75 δ0.

The variation of the crack initiation criterion with the phase angle seems to be the
most prominent for frequency ratios of 1/4, 1/2, and 3/2; other values were tested but
showed little influence on the SWT parameter; this is probably because the cycle duration
of the full stationary cycle is very long for less commensurate frequencies, and thus, the
precise form of the loading protocol becomes less relevant, as normal and tangential
contact configurations become statistically less correlated. Furthermore, there seems to
be a periodicity in the function s = s(ψ), whose period length decreases with increasing
frequency of the tangential oscillation.

Once again, all effects are amplified for larger amplitudes of the normal oscillation.

4.3. Influence of Profile Geometry

Let us now turn our attention to the influence of the contact profile geometry on the
crack initiation criterion.

4.3.1. Rounded Flat Punch and Truncated Paraboloid

In the popular case of the cylindrical flat punch with rounded corners—the contact pro-
file was given in Equation (4)—the only governing profile parameter in the non-dimensional
formulation (20) is the ratio between the radius b of the flat face of the punch and the
Hertzian contact radius aH =

√
Rδ0. Note that the curvature radius R of the rounded

corners also enters the scale SWT0 of the SWT parameter in Equation (19); that is to say, if
the curvature radius is reduced, the scale of the crack initiation criterion (and accordingly,
the criterion itself) increases; the limit R→ 0 corresponds to the sharp flat punch, which
will be extremely prone to crack nucleation, due to the oscillating stress singularity at the
edge of the punch.

For the truncated paraboloid with the profile given in Equation (5), once again, the
only influencing profile parameter in the non-dimensional formulation is the ratio between
the radius b of the indenter’s flat face and the Hertzian contact radius
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In Figure 5, the normalized maximum SWT parameter is shown for the same-frequency
bimodal contact oscillation, as a function of the phase angle ψ, for different values of the
normalized radius of the punch face, b/aH , for the rounded flat punch (A, left) and the
truncated paraboloid (B, right).
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Figure 5. Normalized maximum SWT parameter for the same-frequency bimodal contact oscillation
between a flat face indenter and a flat, as a function of the phase angle ψ, for different values of the
radius of the punch face. (A): rounded flat punch; (B): truncated paraboloid.

Obviously, in these cases, the dependence on the profile geometry is rather simple: For in-
creasing values of b/aH, the normalized SWT parameter globally and monotonously decreases
for the rounded flat punch—which is in agreement with the analysis by Zhang et al. [15]—and
increases for the truncated paraboloid.

Furthermore, there seems to be only a very weak coupling between the profile geome-
try as an influencing factor and the loading protocol—especially for the rounded punch,
for which this coupling is basically negligible—as the curves for different profile param-
eters differ only slightly in their dependence on the loading protocol (i.e., in the case of
Figure 5, the phase angle). This phenomenon is highlighted again in Figure 6, showing the
normalized SWT parameter for the different-frequency oscillation of a rounded flat punch,
as a function of the normalized radius of the punch face b/aH , for different values of the
frequency ratio between tangential and normal oscillation, for a phase angle ψ = 0 (A, left)
and a phase angle ψ = π (B, right).
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(A): phase angle ψ = 0; (B): phase angle ψ = π.
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Interestingly, no coupling between profile and loading influences can be detected in
Figure 6, as all curves exhibit exactly the same decreasing behavior; the influence of the
loading protocol on the crack initiation criterion for the rounded flat punch seems to be the
same as for the paraboloid, which was discussed in detail in Section 4.2.

4.3.2. Paraboloid with Small Waviness

An intriguing problem is the question of whether small waviness influences the
crack initiation criterion. As it turns out, there are two non-dimensional parameters to
characterize the waviness, as given in the profile function (6): the normalized waviness
amplitude h/δ0 and the normalized wave length λ/

√
hR. Note that for the contact area

to remain compact (which is a necessary prerequisite for the contact solution within the
MDR), the wave length has to be large enough; this has been checked in the simulations.

In Figure 7, the normalized maximum SWT parameter for the same-frequency bimodal
contact oscillation is shown as a function of the waviness amplitude, for different values of
the normalized wave length, for small (A, left) or large (B, right) normal oscillations.
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Figure 7. Normalized maximum SWT parameter for the same-frequency bimodal contact oscillation
between a paraboloid with small waviness and a flat, as a function of the normalized waviness ampli-
tude, for different values of the normalized wave length; (A): for δA = 0.25 δ0; (B): for δA = 0.75 δ0.

It is apparent that even very small waviness can have a significant impact, especially
the waviness amplitude. In that regard, it is interesting that this impact is only slightly
affected by the normal oscillation, as both diagrams in Figure 7, qualitatively and quanti-
tatively, show quite similar behavior. Another noteworthy effect is the oscillations of the
crack initiation parameter for small waviness amplitudes, which decrease in period length
and amplitude, as the waviness amplitude decreases.

To analyze the coupling between the influencing variables of contact profile and load
protocol for this indenter type, in Figure 8, the normalized SWT parameter for the different-
frequency oscillation is shown, as a function of the normalized waviness amplitude h/δ0,
for different values of the frequency ratio between tangential and normal oscillation, for a
phase angle of ψ = 0 (A, left) and a phase angle of ψ = π (B, right).

As was also the case for the paraboloid without waviness, the most significant dif-
ference in the SWT parameter for different phase angles appears for a frequency ratio of
ω2/ω1 = 1/2. Moreover, there seems to be weak coupling between the profile and load
influences, as all curves in Figure 8 quantitatively are quite distinct from each other but
qualitatively all exhibit similar trends.
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Figure 8. Normalized maximum SWT parameter for the different-frequency bimodal contact oscil-
lation between a paraboloid with small waviness with λ2 = 20hR and a flat, as a function of the
normalized waviness amplitude, for different values of the frequency ratio between tangential and
normal oscillation. (A): phase angle ψ = 0; (B): phase angle ψ = π.

5. Summary and Discussion

As was laid out in the Introduction, the obtained results are not necessarily intended
as quantitative predictions of fretting fatigue life but give a comprehensive general under-
standing of the coupled contact mechanical influences of loading and profile geometry on
the SWT parameter—which is a very valid indicator for possible fatigue crack initiation—in
elastic fretting contacts. Various interesting trends and ideas have been identified, which
are worthwhile to analyze deeper with physically more flexible numerical procedures, e.g.,
the FEM, and to test in fretting fatigue experiments.

On the other hand, the shown results could be used for the informed design of fretting
contacts with a higher fatigue resistance. For example, as was demonstrated theoretically, a
superimposed normal contact oscillation can (but does not have to) significantly reduce the
risk of crack initiation, if chosen properly.

The calculations have been performed within the framework of several simplifying
model assumptions, which should be kept in mind when applying the results to real
engineering contacts, most prominently linear elasticity, the validity of a local–global
Amontons–Coulomb friction law, and the neglect of microscopic surface roughness. In that
regard, it should be noted that the influences of both plasticity [39] and an unstable friction
law [40] on fretting fatigue crack initiation have already been considered in the literature.

Moreover, as was pointed out very recently [41], the SWT parameter has the drawback
that it gives one specific value for the mean stress sensitivity, regardless of the material
or stress level, specifically 1− 2−1/2 ≈ 0.29; it should therefore not be used for materials
whose mean stress sensitivity differs significantly from that value.

A desirable extension of the proposed formalism, which remains for future work, is the
inclusion of bulk stress (which is also necessary to propagate nucleated fatigue cracks from
the vicinity of the contact into the bulk material) into the calculation of the subsurface stress
fields, that was already carried out successfully very recently for plane fretting contacts [42].
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