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Abstract: The integration of renewable energy sources, such as wind and solar, into co-located
hybrid power plants (HPPs) has gained significant attention as an innovative solution to address
the intermittency and variability inherent in renewable systems among plant developers because of
advancements in technology, economies of scale, and government policies. However, it is essential
to examine different challenges and aspects during the development of a major work on large-
scale hybrid plants. This includes the need for optimization, sizing, energy management, and
a control strategy. Hence, this research offers a thorough examination of the present state of co-
located utility-scale wind–solar-based HPPs, with a specific emphasis on the problems related to
their sizing, optimization, and energy management and control strategies. The authors developed a
review approach that includes compiling a database of articles, formulating inclusion and exclusion
criteria, and conducting comprehensive analyses. This review highlights the limited number of
peer-reviewed studies on utility-scale HPPs, indicating the need for further research, particularly
in comparative studies. The integration of machine learning, artificial intelligence, and advanced
optimization algorithms for real-time decision-making is highlighted as a potential avenue for
addressing complex energy management challenges. The insights provided in this manuscript will
be valuable for researchers aiming to further explore HPPs, contributing to the development of a
cleaner, economically viable, efficient, and reliable power system.

Keywords: control strategies; energy management strategies; hybrid power plant; optimal sizing;
optimization; utility-s

1. Introduction

The importance of sustainable energy sources in mitigating global greenhouse gas
emissions and ensuring a reliable energy supply is underscored by both the Paris Agree-
ment and the United Nations Sustainable Development Goals [1]. Adopting new, clean,
and renewable energy sources (RESs) helps decarbonize the transportation and power
generation industries. Research and development, economies of scale, and government
policies have driven recent improvements in wind and solar energy technology. As a result,
wind and solar are becoming more cost-competitive with conventional fossil fuels [2,3],
and traditional power plants are gradually decommissioning [4].

There is limited market penetration for wind and solar energy, resulting in a lesser
need for dispatchable renewable energy plants. As renewable energy usage increases, these
facilities will play a crucial role in providing grid services, ensuring a consistent electricity
supply [3], and addressing any issues arising from unknown resources, grid problems,
or unusual situations [5]. Unpredictable weather patterns and geographical location-
dependent availability limit the effectiveness of renewable energy, severely impacting the
reliability and stability of their power supply and necessitating the use of complementary
sources like batteries.
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Several studies have looked into ways to deal with the problem that wind and solar
resources change over time. These have included storing and limiting resources [6–8] to
make them more useful, combining hybrid resources like hydropower [9], bioenergy [10],
hydrogen/fuel cells [11], and the possibility of wind and solar resources working to-
gether [2,12–14]. Previous studies [13,15–18] have highlighted that researchers mainly
studied wind and solar hybrid systems for off-grid environments, focusing on small-scale
generation units to reduce reliance on fossil fuel generators and fulfill specific energy needs.
Therefore, this study refers to HPPs (>1 MW) as co-located utility-scale wind farms and
solar farms with or without battery storage connected at the point of common connection
(PCC). Several key factors drive the main motivations behind HPPs compared with stan-
dalone renewable power plants or standalone energy storage [2,7,12,14]. Wind and solar
power combine to counteract each energy source’s intermittent power output, ensuring sta-
ble, continuous power output. Wind turbines generate power on windy days with limited
sunlight, while solar panels produce electricity on cloudy or low-wind days, ensuring a
stable electricity supply. The negative correlation between wind and solar resources helps
provide more consistent power for hybrid plants [2]. In markets with no direct correlation
between wind and solar resources, HPPs can benefit from power dispatching. If electricity
market prices show a negative correlation with wind power, HPPs can capitalize on their
solar resources to generate revenue during high market prices [2]. They promote energy
independence by reducing reliance on centralized power plants and distant energy sources,
ensuring a reliable and stable electricity supply. Therefore, HPPs that consist of wind, solar,
and energy storage have been active in research.

Manufacturers and project developers are currently developing HPPs to ensure their
economic viability in markets with a high demand for predictable and manageable energy
supply to maintain grid reliability and dispatchability [13]. However, the installation
costs remain high. On top of this, combining these technologies intensifies the complexity,
requiring additional models specific to each discipline, understanding power generation
sources, and accommodating supplementary design variables [2]. Therefore, efficient sizing
and optimization methodologies, as well as energy management and control strategies,
are essential to exploring the optimal configuration of parameters such as system cost,
reliability, and the size of photovoltaic systems, batteries, and wind turbines.

Researchers have documented numerous methodologies in the literature related to
sizing [3,19–22], optimization [23,24], and various tools [2,25–27] that consider economic
and reliability factors. The economic assessment of renewable energy entails an analysis
of total expenses, cost of energy (COE), annualized system cost (ASC), levelized cost of
energy (LCOE), and life cycle cost (LCC) [21,22,28]. It takes into account initial investment,
operational and maintenance costs, as well as replacement expenses. The assessment of
reliability involves examining the disparity between the supply of renewable energy and
the corresponding demand, employing several metrics such as loss of load probability
(LLP), loss of power supply probability (LSSP), renewable fraction (RF), energy unmet, and
renewable energy factor (REF).

Constraints related to minimizing grid-injected power, decreasing fluctuation rates,
and improving the utilization factor guide system size optimization. These considerations,
along with the main objective of minimizing costs, collectively shape the optimization
process [29]. Achieving the best possible design of an HPP requires careful consideration of
technical, economic, reliability, environmental, and social factors to ensure the best possible
design feasibility. The Appendix A (Table A1) provides a detailed description of these
factors.

Recent research has shown a preference for hybrid methodologies over traditional
methods, as well as an increase in modern algorithmic techniques [30], relying on individual
artificial intelligence (AI) algorithms and hybrid methods, which are gaining prominence
compared with traditional methods because of their capabilities in resolving intricate
optimization challenges. These techniques primarily consider multi-objective functions,
mainly cost and LPSP [31,32], with other criteria like COE, LPSP, REF, etc., as constraints [33].
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Iterative, graphical, probabilistic, and analytical techniques, including algorithms like
the genetic algorithm (GA) and particle swarm optimization (PSO) [23,24], achieved the
objectives. Commercially available software tools, such as HOMER, aid in sizing and
optimizing standalone solar photovoltaic and wind-based systems, identifying optimal
energy system sizes, and conducting sensitivity analyses to explore varying input variables
or uncertainties. Energy management [11,34,35] and control strategies [3,13,34,36–42] drive
the effective functioning of HPPs, enhance system performance, and meet energy demands.
Various methods, such as centralized, distributed, and hybrid, control hybrid renewable
power systems. Most energy management methods focus on power requirements and
economic, technical, and techno-economic-oriented strategies [42,43], making it critical to
establish a well-defined and suitable management approach. Figure 1 illustrates the overall
scope of this study. Appendix A (Table A2) summarizes the essential findings from the
review studies.
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Contribution of this Review Paper

The absence of a universally agreed-upon definition for HPPs presents a challenge in
exploring this emerging field. This discrepancy could lead to misleading conclusions, given
the limited literature on co-located utility-scale HPPs. Despite the potential benefits of
HPPs, particularly in co-locating wind and solar farms, their long-term economic viability
remains uncertain. However, the studies conducted thus far have not placed significant
attention on the exploration of optimization, size, and energy management, specifically
within the context of utility-scale operations. This study aims to fill this research gap
by examining various energy management and control tactics, optimization techniques,
and sizing methodologies employed by the research community over the past decade
using wind and solar energy. Researchers use an interdisciplinary approach to bridge
the knowledge gap and enhance the efficiency of utility-scale HPPs in the renewable
energy sector. This study also serves as a valuable resource for developers and researchers
engaged in HPPs, providing them with the means to evaluate decision-making tools, energy
management, and control strategies to optimize the financial performance of these projects.
This assessment considers various factors, including local resources, land availability,
costs, and market prices. Recent developments in HPPs are comprehensively analyzed
in this article, offering readers a convenient source of information categorized according
to their specific interests. Additionally, this study aims to enhance knowledge and foster
discussions among policymakers, academics, and industry professionals.
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This study includes sections that cover a review approach, exploration of various
available topologies in the scientific literature, the global status of HPPs, optimization
techniques, sizing methodologies, energy management systems and control strategies,
discussions, challenges, and future aspects of HPPs, and conclusions.

2. Review Approach

The evaluation of the existing literature on the sizing, optimization, energy manage-
ment, and control strategies of utility-scale HPPs involved the following procedure: The
first stage involved gathering a wide range of scholarly articles from several databases
and online platforms, such as Science Direct, Google Scholar, IEEE Xplore, and Web of
Science. Since utility-scale HPPs are in their early stages, there is limited research, which
mainly comprises wind and solar. By extrapolating key findings and methodologies from
HRES studies, the authors intend to shed light on the potential applicability and viability
of these insights within the context of HPPs. The data collection process involved a four-
step approach, as shown in Figure 2. Initially, a Boolean search was conducted, utilizing
the following combination of keywords: (“large-scale hybrid power plant” OR “hybrid
renewable energy system”) AND (“optimization software tools” OR (“optimal sizing” OR
sizing”) OR (“energy management” AND “control strategies”). The focus was limited to
the database’s topic section, encompassing article titles, abstracts, and keywords, as well as
all possible combinations thereof. All articles chosen exclusively covered hybrid systems
that incorporated both wind and PV elements.
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Subsequently, the acquired research papers underwent a screening process adhering to
predetermined criteria for inclusion and exclusion. Inclusion criteria encompassed studies
focused on co-located wind and solar plants coupled with or without energy storage.
This hybrid must include either optimization techniques, sizing methodologies, energy
management systems, or control strategies. Exclusion criteria pertained to studies out of
scope, centered on single-source renewable energy systems, and those that did not employ
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optimization techniques or energy management systems and control strategies. This study
also excluded the hybrid system used for residential applications, papers that required a
paid subscription, and papers not published in the English language. The results from the
chosen studies were then put together to give a full picture of the latest progress in system
optimization, EMS, and control strategies for HPPs that store energy.

Utility-scale HPPs are in the early stages of implementation compared with the hybrid
renewable energy system (HRES); therefore, the authors mainly focused on a decade-
long timeframe, i.e., 2014–2023. Initially, the search yielded 672 articles from the IEEE
Xplore, Google Scholar, Science Direct, and Web of Science (WoS) databases, as illustrated
in Figure 2. Endnote software version 20 was used to merge the results and eliminate
duplicates. The abstract and conclusion sections of the remaining articles were scrutinized
to ascertain the relevance to the objectives of this review study. This narrowed down the
number of articles to 171. To summarize, each collected article was meticulously studied to
acquire a comprehensive grasp of the research findings.

3. Topologies and Configuration

The basic components of the reviewed HPPs mainly comprise wind farms, solar farms,
and battery storage. Several studies have analyzed the arrangement of co-located wind–
solar hybrid power facilities. Petersen et al. [36] described two different configurations
for co-located wind solar-based HPPs, in which wind is the main energy source. These
configurations provide choices for either grid connection or off-grid operation. Addi-
tionally, Vivas illustrated different topologies based on grid connection and integration
techniques [11]. The deployment of HPPs as standalone or grid-connected operations
depends on the application’s requirements and available funds. Standalone HPP systems
continue to meet load demands while operating independently from the grid. However,
because of resource constraints and excess energy waste, this strategy poses performance
and reliability issues [11]. Technically and economically, it works best when connecting to
the grid is either too expensive or unfeasible.

On the other hand, a grid-connected system allows for bidirectional power flow by
integrating an HPP with the main electrical grid. When the production of renewable energy
is inadequate, this feature enables the system to take power from the grid and return excess
energy when the need for renewable energy is greater [11,44]. Solar and wind power
plants can be set up in three different ways, as explained in [7,11,45,46], including the
following: an AC-coupled topology (Figure 3), a DC-coupled topology (Figure 4), or a
hybrid DC/AC-coupled topology (Figure 5). Several studies have noted the AC-coupled
system as the most common form of hybrid power plants [3,8,37–39]. Table 1 compares the
advantages and disadvantages of each method with the coupling topology.
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Table 1. A comparison of coupling topologies with advantages and disadvantages [7,17,46].

Configuration Advantage Disadvantage Application

DC-coupled

• Synchronization not
needed.

• Fewer components used.

• Requires a large number of
conversion components.

• If converter is out of order, the
whole supply is disturbed.

• Low voltage.
• DC microgrid.
• Long-distance

transmission.

AC-coupled

• Standard interface and
modular structure.

• Protection system is
easier.

• Ready to grid
connection.

• Potential risks to system stability
and integrity due to the need for
power quality correction
elements.

• Synchronization required.
• Not suitable for long

transmission.

• Medium- and
high-production
applications.

• AC microgrid.

Hybrid

• Flexible system
compared with AC and
DC.

• High efficiency.

• Controlling and managing energy
is complex.

• Domestic and industrial
applications.

In the AC-coupled topology, all HPP resources are interconnected to a common AC
bus using dedicated power electronics interfacing [7,11,17]. The wind farm is connected
to the AC bus, but the solar farm utilizes a system inverter (DC-AC) to convert the DC
output into AC. Using a bidirectional DC-AC converter, the Battery Energy Storage System
(BESS) is linked to the AC bus, guaranteeing a consistent supply–demand balance at its
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pre-established capacity. An AC/DC rectifier can power DC loads. In the AC-coupled
architecture, the only bidirectional energy transfer takes place between the grid and the
AC bus [36]. In certain cases, if the hybrid installation is located close to a grid source, the
inverter may provide an on-grid or off-grid option that permits grid connection. When
the BESS is completely charged, excess electricity generation may be sent to the grid.
Alternatively, the inverter connects to the grid to maintain energy balance at times when
daily output from renewable energy sources is small and BESS discharge is fully used.

In the DC-coupled topology, all energy sources are linked to a shared DC bus via power
electronics interfacing, offering cost savings in capital expenditure [11,36]. DC loads receive
direct power from the DC bus, while AC loads require a DC/AC inverter for operation.
In this setup, wind and solar farms generate variable electric energy, while the electronic
interface helps regulate electric energy to meet system demands. The bidirectional DC-DC
converter connects BESS to the DC bus, ensuring a consistent supply–demand balance at
its designated capacity.

In the DC/AC-coupled topology, a combination of DC and AC-coupled features is uti-
lized. The solar farm is connected through a DC-DC converter, while the wind farm is linked
to the DC bus through a rectifier and DC/DC converter. A bidirectional DC/AC inverter fa-
cilitates energy conversion between the DC and AC buses. The AC bus can power multiple
AC loads and connect to the grid when available. The hybrid configuration offers higher
efficiency and lower system cost for domestic and industrial applications [7,11,17], but
managing energy can be challenging as a result of accommodating AC and DC loads/grid.

4. Global Status of HPPs

Hybrid plants are becoming more and more popular because of advancements in
battery technology, variable renewable energy, and cost reduction. For many years, different
hybrid configurations and the integration of multiple energy sources have been an essential
part of the energy landscape. Most of the current emphasis has been on connecting solar
plants with batteries. The wind-based hybrid power plant (HPP) has acquired significant
traction lately [12,13,47]. An updated list of co-located HPPs that are now operating
and planned throughout the world—particularly those that are using solar and wind
energy—is provided in this section. Plants with a capacity of one megawatt or more are the
main emphasis; smaller projects are becoming more common but are not included in this
data synthesis. In 2017, WindEurope [12] shared a database on co-located power plants
integrating wind and storage technologies. To further promote awareness and knowledge
about HPPs, WindEurope expanded this database to include HPPs that combined both
wind and solar technologies, with or without storage components, as shown in Figure 6.

There are presently only a small number of operating or in-development HPPs based
on solar and wind energy in the world, and these projects’ business cases are still in the
planning or assessment phases. Utility-scale HPPs have attracted interest throughout the
last five years, especially in the USA and Europe [12,13,47]. HPPs aim to maximize energy
production, improve grid stability, and ensure a steady supply of electricity by using wind,
solar sources, and energy storage. This section highlights these fundamental features,
which are explained briefly in the following paragraphs. Table 2 summarizes some of the
innovative initiatives undertaken by HPP developers.

Vattenfall has developed a commercial PV–wind hybrid project in Cynog Park, U.K.,
to evaluate the feasibility of combining solar and wind technologies. In 2016, the project
underwent upgrades to incorporate a 4.95 MWp solar PV farm and a 3.6 MVA onshore
wind farm, showcasing the advantages of integrating a battery storage system to optimize
energy production. Manufacturers emphasize the need for regular curtailment simulations
to manage output and ensure efficient energy utilization, such as every 10 or 15 min,
according to WindEurope [12] and Klonari [47].

Haringvliet, a Dutch project integrating wind (21 MW), solar (41 MW), and battery
power capacity (12 MW), aims to stay competitive and generate revenue by participating
in the wholesale electricity market and Guarantees of Origin. The plant provides frequency
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containment reserves and time-shifting services, ensuring its sustainability and competitive-
ness [12,47]. The Kennedy Energy Park in northwest Queensland, Australia, is a 60.2 MW
hybrid renewable energy facility that combines 19.3 MW solar PV, 43.2 MW wind, and
4 MWh lithium-ion energy capacity to meet local energy demand without excessive storage
capacity [12,48].
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The Minnesota Community Site in the USA is the first U.S. wind and solar HPP,
combining wind (5 MW) and solar (0.5 MW) to generate electricity for a local municipality,
but ensuring grid connection compliance remains a significant challenge [12,47]. The
Kavithal Solar Wind Project in Raichur, India, combines a 50 MW wind farm with a
28.8 MW solar PV site to create a hybrid system to address grid-integration challenges with
fluctuating renewable energy output and benefits from shared transmission infrastructure
and operations, leading to cost reductions [49].

Siemens Gamesa in La Muela, Spain, developed a PV–wind hybrid initiative, combin-
ing an 850 kW wind turbine, a 245 kW PV module, 222 kW diesel generators, and a 429 kW
battery power capacity system to provide dependable green power to remote areas without
access to the main electricity grid and minimize diesel consumption [50]. The Ollague
Microgrid in Chile uses wind (0.3 MW), PV (0.205 MW), lithium-ion battery power capacity
(0.3 MW), and a diesel generator to provide a continuous 24-h energy supply. Storing
the grid’s surplus energy in the BESS for nighttime use in an off-grid village results in
significant energy and cost savings compared with relying solely on a diesel generator [47].

The Tilos hybrid plant in Greece is the first energy-self-sufficient island, consisting
of wind (0.8 MW), PV (0.16 MW), and storage power capacity (0.8 MW) systems [12]. It
will meet 70% of the island’s energy needs, reducing costs and enhancing stability. Excess
energy will charge electric vehicles for local transportation [51]. Wheatridge Renewable
Energy Facilities in the USA are the first utility-scale HPP plant in North America, featuring
a 300 MW wind farm, 50 MW solar facility, and 30 MW storage power capacity system
aiming to reduce greenhouse gas emissions by at least 80% by 2030 [52].

The Grand Ridge Project in Illinois, USA, combines 210 MW of wind, 20 MW of
solar, and 36 MW of battery storage power, offering advantages like shorter development
timelines, reduced construction costs, enhanced energy supply stability, and optimized
infrastructure productivity [53]. Graciosa, Portugal, uses a hybrid plant that combines
wind (4.5 MW), PV (1 MW), storage power capacity (6 MW), and a diesel generator to meet
70% of the island’s power needs, with diesel generators serving as backup plants.
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Table 2. HPP projects operating, under development, or approved.

Wind + Solar Project

Project Location Wind
(MW)

Solar
(MW)

Storage
(MW/MWh) Main Function Status Reference

Cynog park U.K. 3.6 5 Maximizing grid utilization Operating (2016) [47]
Minnesota Community Site U.S. 5 0.5 Local municipality, but ensuring grid connection compliance Operating (2018) [12]

Kavithal Solar Wind Project India 50 28.8 Enhanced and flatter power output, shared transmission
infrastructure Operating (2018) [49]

Louzes Greece 24 1 Operating (2012) [12]

Wind + Solar + Battery

Haringvliet Netherlands 21 41 12 Frequency containment reserve services and time-shifting services Operating (2020) [12,47]
Kennedy Energy Park Australia 43.2 15 2/4 * Meet local energy demand without excessive storage capacity Operating (2017) [12,47]

La Plana Spain 0.85 0.245 0.4/0.5 * Support remote areas without access to the gird and minimize
diesel consumption Operating (2017) [50]

Tilos Hybrid Plant Greece 0.8 0.16 0.8 Power demand and enhanced stability Operating (2018) [51]
Wheattridge Renewable Energy USA 300 50 30 Contribution to GHG reduction Operating (2020) [52]
Graciosa Portugal 4.5 1 6 Meet power demand Operating (2020)
Grand Ridge USA 210 20 36 Enhanced energy supply stability Operating (2020) [53]

Upcoming, under development, and approved [12]

Kendinin Australia 120 50 N/A Enhanced and flatter power output Under feasibility
study

[12]

Clarke Creek Australia 800 N/A N/A Enhanced and flatter power output Under feasibility
study

Andra Pradesh hybrid project India 16 25 10 Enhanced and flatter power output Contracted
Tender Project India N/A N/A N/A Enhanced and flatter power output Approved
Three Gorges, Inner Mongolia China 2.7 GW 300 880 Enhanced and flatter power output Under construction
Northwest Ohio USA 105 3.5 1 Enhanced and flatter power output Under development
Megisti hybrid project Greece 1 0.85 1.44 Weak power grid Under licensing
Angios Elestratios Green Island Greece 1 0.101 0.72 Weak power grid Under development
Endesa Portugal 264 365 168 Enhanced and flatter power output Under Planning

* Battery storage energy capacity.
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5. Optimization Techniques

Optimization in energy systems aims to achieve optimal outcomes within specific
conditions and constraints, considering stakeholders’ needs. Optimization entails opti-
mizing resource utilization, including energy sources, sizing, financial means, control,
and energy management, while adhering to grid requirements and constraints. Selecting
multiple parameters to maximize or minimize can achieve optimization (as depicted in
Figure 7). Common optimization approaches include classical methods, artificial meth-
ods, and hybrid methods (as depicted in Figure 8), which are used in various applica-
tions [11,20,34,42,43,54,55]. The main objectives of optimizations could be to optimize
existing infrastructure by combining multiple energy sources in a single power plant, re-
duce redundant infrastructure, maximize land use efficiency, achieve higher profitability,
and minimize energy loss [12,13].
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Classical optimization methods use mathematical formulations to determine glob-
ally optimal solutions in a deterministic fashion, but they face challenges when dealing
with complex variables. Classical approaches, such as iterative, analytical, graphical, and
probabilistic analyses, use differential calculus to compute energy models. Methods are
limited by objective functions that lack continuity or differentiability. Examples of iterative
techniques include the linear programming model (LPM) [25], multi-choice goal program-
ming [56], multi-objective evolutionary algorithms (MOEAs) [57], mixed-integer linear
programming (MILP) [58–60], and nonlinear programming (NLP) [61]. These techniques
aim to achieve outcomes like null energy deficits, minimized system costs, and consistent
power supply. The optimal arrangement for a hybrid system varies depending on factors
such as location and demand patterns. However, because of their limited optimization
capacity, these methods are limited in use among researchers. Probabilistic approaches
provide statistical explanations for variable designs, whereas deterministic approaches
view load demand and resources as predictable quantities with known time-series variation.
Graphical construction procedures are created when optimization functions and outlines
are drawn in the same graph, focusing on the implementation region.
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In the literature [11,34,42,43,55], many artificial techniques, including GA, PSO, the
harmony search algorithm (HSA), simulated annealing (SA), the ant colony algorithm
(ACA), the bacterial foraging algorithm (BFO), the artificial bee colony algorithm (ABC),
and cuckoo search (CS), have been reported for sizing renewable sources. These algorithms
are capable of addressing the non-linear characteristics of renewable energy system compo-
nents or the intermittent behavior of solar and wind energy sources. These algorithms have
shown reduced computation times, improved accuracy, and superior convergence rates
compared with conventional methods. However, the focus in this section is directed solely
towards the methods that have been commonly and recently employed by researchers.

In hybrid renewable energy systems, evolutionary heuristic search methods use GA to
optimize dimensions. Researchers have successfully used it in several different areas, such
as planning day-ahead schedules for hybrid plants [62], optimizing the design and layout
of hybrid wind–solar-storage plants [21], and balancing life cycle cost, system embodied
energy, and the chance of losing power supply in PV–wind–battery hybrid systems [63].
However, the success of these approaches depends on steady wind speeds and consistent
voltage output from PV cells, which can be challenging in real renewable energy setups.
PSO is an optimization search algorithm that minimizes LCOE while maintaining a suitable
production range. It has been used for many things, like lowering the cost of energy
storage [64] in HPPs, lowering the cost of energy (COE) [65], LPSP, total annual cost (TAC),
and emissions [66], solving multi-objective optimization problems, making sure the system
works reliably, and lowering the total cost, unmet load, and fuel emissions [67].

Artificial neural networks (ANNs) are dynamic adaptive computing systems that can
process information in parallel. Enhancing HPP performance has resulted in improved
efficiency, reliability, and cost-effectiveness [68]. These methods enable better resource
allocation, load management, and overall system operation. They also improve energy
capture, reduce energy waste, and optimize power generation. Neural network optimiza-
tion also shows promise in predictive maintenance, preventing costly breakdowns and
downtime. Faria et al. [69] and Singh and Lather [70] introduced ANNs as a power man-
agement approach for hybrid PV–energy storage systems, analyzing the State of Charge
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(SOC) of individual ESSs. Mohandes et al. [71] used neural networks to predict hourly
energy distribution for renewable energy sources and battery storage systems. However,
this approach did not consider the gradual deterioration of energy storage systems, which
can significantly impact an HPP’s operational performance.

Fuzzy logic control (FLC) is a method that is easier to understand and less affected
by changes in parameters compared with ANNs. It operates based on rules [11] defined
by membership functions. Athari and Ardehali [72] used FLC to analyze the impact
of changing electricity prices on energy storage performance in a grid-connected HRES.
The shuffled frog leap algorithm was used to fine-tune membership functions, aiming to
minimize operational expenses and improve the performance of HRES energy storage
components. Fuzzy logic has been used to manage energy flux in hybrid systems with
solar, wind, and battery components, demonstrating successful control of energy flux [73].
Yahyaoui and De La Peña [74] used fuzzy logic to enhance energy management systems
for wind, solar, battery, and diesel generator systems. Ammari et al. [34] identified various
fuzzy logic algorithms, such as the adaptive neuro-fuzzy inference system (ANFIS), the
fuzzy analytic hierarchy process (FAHP), ANP, fuzzy clustering, the genetic algorithm,
fuzzy particle swarm optimization, fuzzy honeybee optimization, and quantum-behaved
particle swarm optimization.

Hybrid methods are techniques that combine multiple algorithms to address the limi-
tations of a single algorithm. This flexibility allows soft computing approaches to manage
complex optimization problems more effectively, leading to more accurate results [42]. Tito
et al. [75] optimized a hybrid PV, WT, and battery system using GA and an exhaustive
search. Singh et al. [76] used enhanced differential evolution and PSO to determine the
best sizes for each component of their sizing model. Hybridization can take various forms;
a few examples include Monte Carlo simulation with multi-energy balance and financial
equations [77] or the fusion of GA and PSO (GAPSO) [32]. Alshammari and Asumadu [78]
used Harmony Search, Jaya, and particle swarm optimization to find the best configuration
for an HRES comprising wind, photovoltaic, biomass, and battery technologies. The pri-
mary goal was to meet customers’ electricity needs in a cost-effective and reliable manner
while ensuring efficiency.

Furthermore, many approaches to optimizing hybrid renewable resources focus on
cost reduction, including LPSP constraints to lower system expenses. Other constraints
include minimizing grid-injected power, decreasing fluctuation rates, and enhancing the
utilization factor. These considerations drive the optimization process, with cost reduction
as the single objective [29,79]. In contrast to single-objective and multi-criteria decision-
making techniques, multi-objective optimization methods offer a range of optimal solutions.
Modern techniques using AI algorithms and hybrid methods are gaining popularity over
traditional methods for resolving complex optimization challenges. These techniques
consider multi-objective functions, primarily cost and LPSP, with constraints like COE,
LPSP, and REF [31–33].

Summary and Evaluation

HPPs are complex because of uncertainties and limitations, leading to the adoption of
soft computing methods with meta-heuristic algorithms. These techniques, which come
in single-objective optimization (SOO) and multi-objective optimization (MOO), offer in-
creased adaptability and accuracy. However, their complexity is a common drawback.
Traditional methods are highly effective but have limitations due to parameters. Contem-
porary optimization approaches require robust hardware performance because of their
intricate procedures and codebase. Their strengths include efficiency, rapidity, and accuracy.
Combining conventional and modern optimization techniques creates an approach with
remarkable speed and resilience, requiring sophisticated design and code creation. Table 3
and the Appendix A (Tables A3 and A4) outline the advantages and disadvantages of each
method and summarize the study of single and multiple objective functions.
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Table 3. Advantages and disadvantages of optimization methods adapted from [25,43,54].

Techniques Advantage Disadvantage

Classical

• Efficient multi-objective
solutions that are valuable
for investment
decision-making.

• Quicker processing time.

• Limitations in optimizing space,
and exhibit linear relationships
with the variables.

• Require a mix of discrete and
continuous probability.

Artificial
• Offer more efficiency.
• More accurate.
• Fast convergence.

• Complex solving process.
• Require more memory space.

Hybrid

• High convergence.
• Offer time efficiency.
• Robustness.
• Quick convergence.

• Design complexity.
• Code generation challenges.

6. Sizing Methodologies

In HPPs, determining the appropriate wind farm, solar farm, and battery storage
energy capacity is crucial for establishing the system’s capacity. Incorrect sizing can
lead to undersized or oversized systems. Designing HPPs considers factors like cost
reduction, reliability enhancement, and emissions reduction [28]. Accurately assessing
real loads as well as wind and solar metrological data is critical, as climatic conditions
affect energy availability at specific locations [54]. Researchers often rely on average
data from hours [75,80] or months [17] to analyze system performance. Figure 9 shows
how size optimization methodologies fall into classical, modern, and software-based
approaches. Traditional methods use iterative, numerical, analytical, probabilistic, and
graphical methods based on differential calculus, simplifying the process of identifying
optimal continuous and differentiated solutions, while modern techniques use artificial and
hybrid methods [43,46,54]. Commercially available software tools, such as HOMER, aid in
sizing and optimizing standalone solar photovoltaic and wind-based systems, identifying
optimal energy system sizes, and conducting sensitivity analyses to explore varying input
variables or uncertainties.
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6.1. Sizing HPPs Using the Classical Approach

Several studies [33,54,81] explored various approaches for sizing solar and wind-
based hybrid systems. A classical approach includes probabilistic, graphical, analytical,
numerical, and iterative methods. However, only widely used approaches are considered
in this study. Iterative methodologies are used to evaluate performance in HPPs using a
recursive process. The framework uses the LPSP model for power reliability and integrates
LCOE and net present value (NPV) models to account for system costs. Identifying the
optimal system configuration is based on achieving the lowest LCOE/NPV, leading to cost
reduction through linear parameter adjustments or linear programming methods. Akram
et al. [80] presented two iterative search algorithms for optimal sizing components in a
grid-connected microgrid configuration for maximum reliability and minimum cost.

The probabilistic approach is a method for determining system size, but its results
may not be suitable for identifying the optimal solution. Li et al. [82] proposed a new
probabilistic method for optimizing an off-grid hybrid energy system, estimating power
distribution probability in the South China Sea region. Lian et al. [83] highlighted the use
of probabilistic methodologies for assessing reliability simultaneously. Analytical methods
describe HPPs using computational models that determine the size of the hybrid system
based on feasibility [84]. The approach is faster than the Monte Carlo simulation and
requires less time. This approach views the hybrid system as a numerical model and
defines its size as a function of viability [15]. Karve et al. [85] used mathematical methods
and improved particle swarm optimization (IPSO) to find the best size for a hybrid PV–
wind–battery system that could work on its own. They performed the study to lower the
system’s annual costs.

6.2. Modern Methods

Modern methods utilize artificial intelligence and hybrid methodologies, enhancing
their adaptability and ability to handle complex optimization challenges with more accurate
results [43,55]. The design of renewable HPPs is complex because of uncertainties, technical
considerations, and site limitations. Conventional methods are inadequate, leading to a shift
towards soft computing techniques, often relying on meta-heuristic algorithms [42,43,55].
Contemporary techniques incorporate both single and hybrid algorithms to address a wider
range of challenges, enabling more efficient and refined optimization outcomes [42]. Nu-
merous techniques have been documented in the literature [11,28,34,42,46,54,55], including
GA, PSO, HSA, SA, ACA, BFO, ABC, and CS. These algorithms can address the non-linear
characteristics of renewable energy system components or the intermittent behavior of
solar and wind energy sources. Kiehbadroudinezhad et al. [86] used a division algorithm
and an enhanced genetic algorithm to model, design, and optimize wind, PV, and battery
hybrid systems for water desalination. Muthukumar and Balamurugan [87] used a bee
algorithm and neural architecture to optimize wind and solar hybrid systems, as well as
test various solar irradiance and wind velocities. Roy et al. [64] used PSO in HPPs to reduce
energy storage costs by utilizing multiple energy storage systems.

Hybrid techniques combine different methods to achieve optimal design outcomes.
Riaz et al. [88] presented a hybrid of PSO with grey wolf optimization (GWO) used for
optimal power flow. Ghorbani et al. [32] used the fusion of GA and PSO (GAPSO). Zhang
et al. [89] developed a hybrid approach that combined the Harmony Search Optimization
(HSO) method with the simulated annealing (SA) technique, enhancing chaotic search and
demonstrating better results for optimizing HRES sizing than either method individually.
Abdelshafy et al. [90] used a PSO-GWO approach to find the best HRES design. The method
converges optimally faster and better.

6.3. Sizing HPPs Using Software Tools

Software tools efficiently and cost-effectively design, analyze, optimize, and assess
HPPs. These tools are designed to operate under optimal conditions for investment and
power reliability [17,34,35,43,83,91]. The National Renewable Energy Laboratory (NREL)
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developed HOMER to evaluate energy based on resource costs and availability. Several
studies [92–96] have used HOMER software (Homer Pro) to determine the most cost-
effective configuration for hybrid systems, with some finding a combination of solar panels
and wind turbines as the optimal approach. Other software tools used for sizing include
IHOGA, HYBRIDS2, TRNSYS, and RETScreen.

The Renewable Energy Research Laboratory (RERL) at the University of Massachusetts
developed Hybrid2 software (version 1.3), a computer model for analyzing hybrid power
systems that include electrical loads, wind turbines, photovoltaic installations, diesel gener-
ators, battery storage units, and power conversion devices [34]. The Electric Engineering
Department at the University of Zaragoza developed HOGA as a hybrid system optimiza-
tion tool, while HYBRIDS is a Microsoft Excel spreadsheet-based application used for
renewable energy assessments [97].

For simulation purposes, TRNSYS software (version 18) from the University of Wiscon-
sin allows programmers to define time steps ranging from 0.01 s to 1 h. TYRSYN optimizes
generation system combinations and sizes energy storage capacity to achieve the LCOE
across renewable energy fractions [98]. RETScreen evaluates the technical and financial
viability of renewable energy, energy efficiency, and cogeneration projects.

Table 4 displays a comparison of various tools, revealing their respective qualities and
limitations [25,26,34,43,99]. Table 5 provides a comprehensive overview of various size
methodologies, including the system components and objective functions.
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Table 4. Summary of the input and output for sizing optimization software tools.

Software Input Output Limitations Availability

HOMER

• Load demand.
• System control.
• Resource input.
• Component details.
• Emission data.
• Constraints.
• Capital and maintenance cost.

• Sizing optimization.
• Techno-economic analysis.
• Environmental analysis.
• Risk assessment and sensitivity

analysis.
• Analytical probability.

• Use first order linear equations.
• Time series data cannot be used.
• Needs more information to get

started.

Free access
www.homerenergy.com (accessed on 15

Decmeber 2023)

HYBRID2

• Load demand.
• Resource input.
• Component details.
• Financial data.

• Sizing optimization.
• Percentage of GHG emissions.
• Techno-economic analysis.

• Simulations take a long time.
• Only one configuration can be

simulated at a time.

Free access
https://www.umass.edu/

windenergy/research/topics/tools/
software/hybrid2 (accessed on 7

Februaryr2024)

HYBRIDS • Component details.
• Cost of energy.
• Percentage emission of GHGs. -

IHOGA

• Resource input.
• Constraints.
• Economic data.
• Component details.
• Emission data.

• Cost of energy.
• Multi-objective optimization.
• Life cycle emission.
• Sizing optimization.
• Analytical probability.

• Only one configuration can be
simulated at a time.

• Lacks sensitivity analysis and
probability analysis.

The EDU version is free, while the PRO
version is priced

www.ihoga.unizar.es/en/ (accessed on
7 February 2024)

RETScreen

• Resource input.
• Load data.
• Project database.
• Product database.

• Costs.
• Techno-economic analysis.
• Emission reduction.
• Sensitivity and risk analysis.
• Analytical probability.

• Input data are reduced.
• Time series data cannot be used.

Free access
www.retscreen.net (accessed on 22

Decmeber 2023)

TRNSYS
• Resource input.
• Inbuilt model/

• Dynamic simulation behavior.
• Technical evaluation.
• Thermal behavior.

• No option for optimization.
Priced

www.trnsys.com (accessed on 20
Decmeber 2023)

www.homerenergy.com
https://www.umass.edu/windenergy/research/topics/tools/software/hybrid2
https://www.umass.edu/windenergy/research/topics/tools/software/hybrid2
https://www.umass.edu/windenergy/research/topics/tools/software/hybrid2
www.ihoga.unizar.es/en/
www.retscreen.net
www.trnsys.com
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Table 5. Summary of various studies conducted on HPPs/HRES using sizing software tools.

Software
Energy Resources

Objective of the Study Reference
Wind Solar Battery Other

HOMER ✓ ✓ ✓ Cost-effective configuration of HRES Muller et al.
[92]

✓ ✓ FC Evaluate technical and financial
performance

Al-Badi et al.
[100]

✓ ✓ ✓ Sizing design of HRES Hoarca et al.
[101]

HYBRID2 ✓ ✓ ✓
Sizing method of standalone RES based
on techno-economic analysis and
object-oriented programming

Belmili et al.
[102]

IHOGA ✓ ✓ Optimal sizing of RES Fadaeenejad
et al. [103]

✓ ✓ ✓ Sizing design of HRES Hoarca et al.
[101]

HOMER
PRO ✓ ✓ Minimize LCOE, life cycle cost Ranaboldo et al.

[104]

HOMER ✓ ✓ ✓
Energy production, net present cost, and
levelized cost of electricity Baker [105]

HOMER ✓ ✓ ✓ Hydrogen Total net present cost Babatunde et al.
[106]

RETScreen ✓ ✓ ✓ Biomass Feasibility study based on economics and
the environment

Hossen and
Shezan [107]

TRNSYS ✓ ✓
Optimal sizing of wind–PV-based hybrid
system

Anoune et al.
[17]

✓ ✓ ✓ Energy performance of the system Mazzeo et al.
[108]

Summary and Evaluation

The speed and ease of use of traditional methods for scaling hybrid systems may be
overcome by using artificial intelligence techniques. AI techniques leverage multi-objective
functions to tackle complex challenges. Iterative approaches, which use recursive processes,
can mitigate the constraint but may overlook critical parameters. Artificial intelligence
offers versatility and favorable outcomes for complex tasks, but the complexity of the
codes in the algorithms poses challenges. Table 6 presents a comparison of various sizing
methods used in hybrid systems.
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Table 6. Comparison of various studies on sizing methods/tools.

Techniques/Tools Advantage Disadvantage Reference

Iterative

• User-friendly and capable of early-stage threat
detection.

• Easy to code.
• Use of linear variable parameters or linear

programming techniques is highly efficient in
achieving cost minimization.

• Suboptimal solutions result from linear adjustments in
decision variables, not optimizing factors like PV
module slope angle and wind turbine installation
height, which have a more significant effect on cost.

Chauhan and Saini [109]

Probabilistic

• The system is stochastic and can randomly identify
the optimal solution based on the provided data.

• Simple sizing methods do not require time-series data.

• Optimization considers limited performance
parameters, potentially not suitable for identifying
optimal solutions.

• Less efficient in representing the dynamic nature of
performance changes within a hybrid system.

Ganguly et al. [84]; Lian et al. [83]

Analytical
• Size determination is simpler and requires less

computational resources than Monte Carlo simulation.

• System design becomes less flexible as performance is
evaluated using computational models.

• Model is unable to predict the coefficient of the
mathematical equation related to position.

Lian et al. [83]

Graphical
• The most straightforward method for depicting

complex problems or situations involving numerous
mathematical equations.

• The method is limited to handling problems with
multiple dimensions because of scale and graphical
interpretation complexities, making its reliability
uncertain. It faces difficulties in graphing non-linear,
exponential, logarithmic, and trigonometric
expressions and is impractical when combined with
other approaches.

Rathore and Patidar [110]

LP
• The model exhibits a linear relationship among

variables, is renowned for its favorable convergence,
and is less stringent.

• The system may become stuck in a local search,
reducing accuracy and confidence over time, and not
considering variable evolution and changes.

Saiprasad et al. [111]
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Table 6. Cont.

Techniques/Tools Advantage Disadvantage Reference

GA

• GAs are powerful tools that can manage multiple
parameters, including integers, discrete values, and
non-differential attributes, simultaneously. Their
parallelism allows for simultaneous evaluation of
multiple strategies, enhancing the likelihood of
achieving optimal solutions. GA has proven superior
in cost and environmental analysis compared with
HOMER Pro software and SA.

• GAs are time-consuming but less computationally
intensive than the analytical method, as they are
specifically designed for local searches.

Iweh et al. [35]; Riaz et al. [88]

PSO

• Proficient in executing parallel computations,
achieving rapid convergence, efficiently finding the
optimal global solution, and effectively resolving
complex problems.

• The system exhibits poor local search performance
when dealing with complex problems with numerous
dimensions, with a notable tendency towards
premature convergence.

Dubey et al. [112];
Gad et al. [113]; Wang et al. [114];
Gupta and Srivastava [115]

ACO

• The algorithm quickly identifies optimal solutions
through feedback mechanisms, demonstrates
parallelism, is adaptable, and can be combined with
another algorithm for a potent, reliable approach. It
achieves the global minimum with fewer iterations
compared with particle swarm optimization.

• Insufficient parameter selection can lead to stagnation,
premature convergence, and inability to reach optimal
solutions, especially when addressing discrete
problems, with potential challenges in continuous
problems.

Gupta and Srivastava [115]

CS

• The algorithm, which incorporates Levi’s flight trait,
enhances its performance by enabling convergence
towards global optimal solutions, boasts robust
random searching paths and optimization capabilities,
and is highly prone to hybridization with other
algorithms.

• Incorrect initial parameters can lead to a local search
trap and slow convergence rate. Shen et al. [116]

SA

• The process of achieving optimal outcomes is
methodical and predictable, with programming being
straightforward, resilient, and flexible, enabling
smooth transitions between local and global search
modes.

• The system exhibits limited efficiency and prolonged
computational durations. Iweh et al. [35]
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Table 6. Cont.

Techniques/Tools Advantage Disadvantage Reference

HS

• The method requires fewer adjustable control
parameters, no initial decision variable configuration,
and operates without requiring derivative
information.

• Exhibits gradual and premature convergence, with
limited ability to constrain and adjust search ranges. Dubey et al. [112]

GWO
• Fewer parameters.
• Easy to implement.

• The algorithm’s precision and accuracy have been
reduced because of a slow convergence pace during
later iterations, resulting in a lack of local search
presence.

Wang et al. [114]

HOMER
• An expedient approach to obtaining a desired solution

for a singular objective.

• The linear equation model’s initial attributes are
undefined, and it assumes a fixed state throughout the
investigation. It does not allow users to choose
suitable equipment, does not consider future
developments, and is constrained by input parameters.
It does not support control strategies like iHOGA and
is overshadowed by nature-inspired algorithms. A
well-informed criterion is needed for a satisfactory
solution in the optimization process.

Saiprasad et al. [111]; Kavadias et al.
[117]

iHOGA
• Ability to directly implement a control strategy during

the sizing of HRES.
• The focus is on achieving individual objectives and

addressing non-linear problem scenarios. Saiprasad et al. [111]

RETScreen
• Drastically lowers the expenses linked to the

identification and evaluation of potential energy
projects in comparison with Homer Pro.

• The task involves manually compiling data into a
workbook or Excel sheet. Ramli et al. [118]
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7. Control and Energy Management Strategies

HPPs, which combine wind and solar power, face challenges such as power quality,
voltage fluctuations, network stability, frequency disparities, and efficient dispatch. To
ensure system reliability, effective power management, and optimal performance, an
effective control system and an energy management strategy (EMS) are crucial. The
approach can regulate power allocation from generators, stabilize voltage and frequency,
optimize resource utilization, minimize operational costs, and prolong the system’s lifespan.

7.1. Control Strategies

The literature [3,7,8,36–40] presents a variety of control systems for wind turbines, with
few studies focusing on the combination of HPPs with batteries. The typical composition
of HPP controllers includes a plant model and an embedded dispatch function. The plant
model includes power-generating units (PGUs) that contribute to power production at the
PCC. The controller is programmed with predefined reference values and can be adjusted
to parameters like curtailment set-points, grid limitations, or frequency variations [3,38,39].
The dispatch function optimizes power utilization from different PGUs by processing the
output. Few have adopted a supervisory hierarchical control framework with multiple
levels dedicated to specific objectives, such as active power management [39], frequency
regulation, reactive power and voltage control [38,39], and maximizing revenue [119].
This structure aims to optimize power management, maintain frequency stability, and
regulate voltage levels effectively. Petersen et al. [7] developed and verified a reduced-
order performance model for wind turbines, photovoltaic parks, and BESS, testing it in two
scenarios. For controller design, comprehensive resource simulations are essential.

HPPs can be controlled using various methods, such as centralized, distributed, and
hybrid [11,34,35], as shown in Figure 10, and proportional-integral control [8,39]. Moreover,
another study by Olatomiwa et al. [120] classifies control strategies into classical and
intelligent control. Traditional approaches include ANNs, FLC, multi-objective PSO, and
adaptive neuro-fuzzy inference systems. These strategies can enhance the cost-effectiveness
of the system and ensure seamless energy flow.
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Intelligent control algorithms drive the centralized approach for conventional energy
coordination control [80]. The STATCOM (Static Synchronous Compensator) system is
critical to efficiently managing power in multisource energy systems because it regulates
reactive power [80]. However, as wind farms, photovoltaic arrays, and composite energy
storage systems become more prevalent, the limitations of this centralized approach pose
challenges for large-scale integrated power-generation systems.

To overcome these drawbacks, the multi-agent system has emerged as a viable al-
ternative, offering intelligent and adaptable responses to varying working conditions
and demands [121]. Wu and Hua [121] created a multi-agent-based energy coordination
control system (MA-ECCS) to make large-scale wind–photovoltaic energy storage power-
generation units more stable, efficient, and good at making decisions. It enables non-fixed
client–server cooperation among agents by using a negotiation model inspired by the
contract net protocol.
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The flow chart algorithm [8,39], linear programming [122], model predictive con-
trol [123], the Pareto algorithm [124], and the adaptive neuro-fuzzy inference system [125]
are some of the control algorithms that are used. However, these algorithms require precise
models of the entire system, as well as accurate demand and weather resource data. Hybrid
systems often use distributed or hybrid control strategies for efficiency, system failure
minimization, and incorporating multiple control methods. Agrawal et al. [126] developed
a two-tier optimization approach to improve the operational efficiency of HRESs, while
Hashemi and Zarif [127] introduced a two-phase method to manage reactive power in
power systems. Shibl et al. [128] introduced a dual-phase energy dispatch management
framework for HPPs, integrating machine learning techniques.

Summary and Evaluation

Control methods in practical applications are chosen based on system complexity,
optimization, robustness, communication capabilities, and potential failure consequences.
Real-world systems employ various strategies to balance efficiency, adaptability, and
reliability, ensuring a harmonious equilibrium. Hybrid systems widely use distributed or
hybrid control methods because they effectively decentralize control, reduce system failures,
and integrate multiple control strategies, although the interconnection and processing codes
are complex. Table 7 provides a comprehensive overview of the various control categories,
outlining their advantages and disadvantages.

Table 7. A comparison of various control methods [28,34,35,43].

Control Method Advantage Disadvantage

Centralized

• Efficient optimization and coordination.
• Easier implementation and management for

simpler systems.
• Maintaining the lowest possible energy costs.

• Single point of failure.
• Scalability issues in complex systems.
• Lack of robustness in the face of controller

malfunctions.

Distributed
• Scalability for complex systems.
• Adaptability to environmental changes.
• Robustness against failures.

• Necessitate more intricate communication
and synchronization mechanisms.

• Most solutions are not optimal.
• Coordinating decisions among distributed

agents can be challenging.

Hybrid

• Combines the advantages of centralized and
distributed approaches.

• Customized control strategies for various
system components.

• Local controllers are seldom utilized.

• Management of both central and local
decision-making processes is complex.

• Present potential integration challenges.

7.2. Energy Management Strategies

Effective energy management of HPPs aims to achieve optimal efficiency and reliability
while minimizing costs, ensuring a continuous energy supply throughout the year [11]. This
can lead to benefits such as extended component lifespan, reduced economic parameters,
and enhanced overall system performance [15]. Energy management methods include rule-
based, optimization-based, reinforcement-based, and learning-based methods [35,42,129].
This review provides an overview of different EMSs studied in the literature [11,34,35,42].
Figure 11 illustrates the major management strategies.

The power-oriented strategy aims to meet energy demand by controlling the power
balance and battery state of charge, which define the operational limits of major energy
storage systems [11,34,42]. This strategy is simple and controlled through algorithms in
flowchart diagrams, guided by flowchart diagrams. Similarly, the technical objective-
oriented strategy aims to optimize the technical parameters of a hybrid system to meet
load demand [130,131], prolong equipment lifespan [132], enhance system performance,
ensure stability [133], extend storage component lifespan [134], and optimize generator



Eng 2024, 5 699

parameters. This involves using various algorithms like predictive control [135], PSO [136],
real-time optimization [137], neural network techniques [138], and software tools like
HOMER [137]. Implementing these strategies requires design constraints, power storage
system state management, and consideration of degradation parameters. Depending on the
optimization objectives, these strategies offer medium complexity and promising system
performance and lifespan outcomes. Brka et al. [139] employ a flowchart algorithm, while
Cano et al. [140] use model predictive control and fuzzy logic. A strategy’s effectiveness
is dependent on precise forecasting and reliable system models for accurate operations,
which affect the system’s performance.
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An economic-oriented strategy involves assessing energy demand and minimizing
system expenses. Research in this area uses various algorithms, including genetic algo-
rithms, differential evolution algorithms, model predictive control, mixed-integer linear
programming, fuzzy logic, and commercial software like HOMER. A dual-tier energy
management system for microgrids was developed using a hierarchical dispatch frame-
work, focusing on reducing operational expenses and mitigating forecast inaccuracies, as
outlined in Ju et al. [141]. However, the model does not account for stochastic variations in
renewable energy output.

Finally, a techno-economic objective-oriented approach improves system performance
by balancing supply and demand, taking into account technical and economic factors to
extend equipment lifespan and reduce maintenance costs [11,43]. It offers an ideal solution
compared with conventional generation alternatives. Existing approaches involve solving
nonlinear optimization problems by incorporating costs and equipment depreciation into
a multi-objective function. Various techniques ensure a harmonious power distribution
for optimal system functioning by determining the power output from each component.
The solution to extreme energy shortages depends on the system’s configuration. Hamdi
et al. [142] implemented an ANN and MATLAB program to examine LCOE, zero power
loss supply probability, and curtail energy for a wind- and solar-based hybrid system.

Summary and Evaluation

EMS is essential for managing power movement across various components. Utiliz-
ing strategies such as rule-based, optimization-based, learning-based, and reinforcement
learning (RL) enhances the efficiency of hybrid energy systems. Rule-based strategies com-
monly handle practical scenarios, while optimization-based approaches address complex
optimization issues using algorithms. Machine learning techniques train controllers in RL-
based energy management, enabling decisions based on system status and objectives. This
approach minimizes maintenance costs and prolongs the lifespan of equipment. However,
complex optimization algorithms may increase the complexity of the system in real-world
scenarios. Table 8 provides a comprehensive examination of the optimization objectives,
design constraints, and control algorithms associated with energy management strategies.



Eng 2024, 5 700

Table 8. Management methods and their characteristics [11,34,43].

Management Strategy Design Constraint Control Algorithm Advantages Disadvantages

Power requirements
• Power balance.
• Battery state of charge.

• Flow chart algorithm.
• SOC based on the algorithm.
• Supervisory centralized control

algorithm.
• Distributed control algorithm.
• Artificial intelligence method.
• Linear programming.
• Predictive control.

• Simplicity in design and
control.

• Lifetime not optimized.
• O and M not optimized.
• Performance not optimized.

Technical-oriented
• Power balance.
• Battery state of charge.
• Battery degradation.

• Flow chart algorithm.
• SOC based on the algorithm.
• Supervisory centralized control

power algorithm.
• Battery short time.

• Increase performance.
• Improve lifetime.
• Less complex.

• Operation and maintenance
cost are not optimized.

Economic-oriented
• Power balance.
• Battery state of charge.
• Cost function.

• Cost minimize algorithm.
• Power reference and priority

algorithm.

• Optimal system response.
• Minimize system cost.

• Complex algorithm.
• Increases operation and

maintenance costs.
• Not optimized for lifetime.

Techno-economic-oriented

• Power balance,
• Battery state of charge.
• Cost function.
• Battery degradation.

• Optimization algorithm is used to
determine the power reference of
a multi-objective function.

• High performance.
• Complex algorithm.
• Increases operation and

maintenance costs.
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8. Discussion

The lack of a universally accepted definition of HPPs poses a challenge to exploring
this emerging field. This disparity can lead to misguided conclusions, as there is limited
literature on co-located utility-scale HPPs. HPPs offer potential advantages, especially from
co-locating wind and photovoltaic facilities. However, their long-term economic viability
is uncertain because of a lack of standardized definitions and existing park instances.
Previous research has improved the understanding of hybrid systems on a small scale, but
there is a noticeable lack of comprehensive review articles on energy management and
control strategies and optimization methodologies for HPPs at the utility scale. This study
aims to address this gap by extrapolating key findings and methodologies from HRES
studies. The Discussion Section is categorized by the topics explored in this manuscript,
considering its structure and issues.

Topologies: Regarding the topologies and configurations of HPPs, there exists limited
research into the consequences of varying topologies on the outcomes of dimensioning.
Each topology, including AC-coupled, DC-coupled, and hybrid, has unique converters and
equipment, potentially affecting the system’s technological and economic efficiency. As a
result, it is imperative to undertake a comprehensive comparative assessment of distinct
HPP topologies.

Optimization: The primary goal of employing optimization techniques in HPP is
to achieve superior overall performance while also meeting grid requirements and con-
straints. Optimization studies primarily focus on three methodologies including classical,
artificial, and hybrid approaches. Classical methods are quick and efficient but limited
in optimization space. Artificial methods are efficient, precise, and fast, but they require
complex processing procedures. Research has shifted towards hybrid algorithms for multi-
objective optimization, with HOMER software becoming popular for its robustness and
cost-effectiveness. Artificial intelligence-based optimization models have shown superior-
ity over conventional methods because of their adaptability, enabling solutions for both
single and multi-objective design problems, but they face usability challenges and involve
complex implementation processes. Hybrid methods combine the strengths of conventional
and advanced optimization techniques to improve efficiency and reduce processing time.
However, the design and code delivery add to the complexity and the need for a specific
code. Based on the literature reviewed, most of the research is carried out using SOO,
while there has been an increase in the use of hybrid algorithm techniques to solve MOO
problems in the last five years, as shown in Figure 12.
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Sizing: The optimization of sizing and proportions for solar–wind hybrid system
components is crucial for cost reduction and operational satisfaction. However, as system
complexity increases because of uncertainties such as output fluctuations, load variation,
and constraints, a single algorithm may not be effective. A novel approach that combines the
strengths of multiple methods holds promise for optimized sizing with increased precision
and reduced computational time, addressing complex system dynamics challenges. Future
optimization of HPP sizes involves considering not only minimizing annual and fuel costs
but also enhancing reliability through factors like the human development index and job
market, as well as bolstering sustainability and resilience. Exploring sizing methodologies
that incorporate operational safety, sustainability, and resilience indicators could help
address these challenges. Figures 13 and 14 show the sizing methodologies and evaluation
criteria used in the literature. The occurrence frequency of meta-heuristic algorithms and
software tools is the highest.
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Control and Energy Management Strategies

Control strategies for HPPs employ various control strategies, including centralized,
distributed, and hybrid. Distributed and hybrid control methods are effective in managing
generators autonomously, reducing system failure risk, extending system lifespan, and
enabling advanced control techniques. However, the most challenging aspect lies in the
complexity of interconnections or programming logic processing within the system. Energy
management strategies are designed to optimize energy flow and determine operational
equipment and power levels. The complexity of a strategy depends on optimization goals,
system topology, and configuration. This study reveals that researchers favor rule-based
energy management strategies over complex optimization techniques because of their
ease of application and quick calculations. Economic considerations are a key factor in
sizing optimization models for HPPs. Simplistic strategies focus on demand fulfillment
but lack optimization parameters considering operating costs and equipment degradation.
Technical strategies aim to amplify the system response and minimize equipment wear,
while economic strategies aim to minimize cost functions by establishing priority and
reference power levels for system elements. However, these strategies require intricate
optimization algorithms, introducing an extra layer of complexity. Despite this complexity,
these strategies yield optimal solutions for energy storage systems, aiding in the design of
effective energy control systems to enhance overall system performance. In general, the
developed sizing optimization model is used to assess the HPP characteristics that charac-
terize a feasible project from the beginning. However, more sophisticated strategies must
be developed to take into consideration several variables, including battery deterioration,
the choice of turbine technology, uncertainties, diverse market engagement, and more. The
research community should focus on refining artificial intelligence techniques and strategi-
cally integrating them to address various objective functions. As autonomous microgrid
systems grow, robust communication and real-time energy management strategies are
crucial. Table 9 summarizes control algorithms, optimization objectives, limitations, and
descriptions of EMS from the recent literature.
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Table 9. Summary of the control algorithms, optimization goals, constraints, and EMS descriptions obtained from the recent literature.

Anagement
Strategies

Control Algorithm/
Approach Energy System Design Constraints Objectives Reference

Power requirement
Flowchart Wind/solar/FC Power balance, SOC, H2 stock Ensure demand sizing Cozzolino et al. [143]
Flowchart Wind/solar/H2 Power balance, SOC, H2 stock Ensure demand Zhang et al. [144]
Flowchart Wind/solar/battery Power balance, SOC Ensure demand Bade et al. [40]

Technical

ANN Wind/solar/battery Power balance, SOC, battery
degradation Redue LPSP, ensure demand Q. Li et al. [145]

Flowchart Wind/solar/battery Power balance, SOC Ensure demand, quality of service Long et al. [39]

PMC/multi-objective approach Wind/solar/battery/FC Power balance, SOC, battery
degradation, H2

Increase reliability, ensure demand Eriksson and Gray [135]

PSO
Recurrent neural network Wind/solar/battery/FC Power balance, SOC, battery

degradation, H2
Reduce LPSP, ensure demand Yan et al. [137]

Flowchart
Multi-stage machine learning Wind/solar/battery/FC Power balance, SOC, battery

degradation, H2
Ensure demand, reliability Shibl et al. [128]

Economical

Linear programing and
simulation Wind/solar/battery Power demand, SOC, cost Reduce system cost Nogueira et al. [146]

MLIP Wind/solar Power demand, SOC, cost Reduce total operating cost Lamedica et al. [147]

FL Wind/solar/battery/FC Power demand, SOC, cost, H2 Ensure demand Rouholamini and Mohammadian
[148]

Flowchart, supervisory
hierarchical control system Wind/solar/battery/auxiliary Power demand, SOC, cost Ensure demand, increase revenue Long et al. [39]

Techno-economic

FL Wind/solar Power balance,
cost Increase reliability and reduced loss García-Triviño et al. [149]

PSO Wind/solar/battery/FC Power demand, SOC, cost, H2, battery
and electrolyzer degradation

Ensure demand, minimize operating
and maintenance cost, increase

reliability and performance
Valverde et al. [150]

Lyapunov technique,
simultaneous perturbation
stochastic approximation

Wind/solar/battery Power demand, SOC, cost, battery
degradation Increase reliability and performance Ciupageanu et al. [151]

GA Wind/solar/battery/thermal
load Cost Cost reduction and sustainability Das et al. [152]

ANN, MATLAB Wind/solar/battery/electrolyzer/
FC/ LCOE Reduce LCOE, reduce power curtail Hamdi et al. [142]

HOMER Wind/solar/battery/electrolyzer/
FC/thermal load

Power demand, SOC, cost,
battery/FC/electrolyzer degradation, Ensure demand, cost of energy Priyanka et al. [153]

Improve search space
reduction Wind/solar/battery power demand, SOC,

cost
Ensure demand, reduce levelized cost

of energy Nirbheram et al. [154]
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9. Research Opportunities

Research gaps in hybrid power plants (HPPs) have been discovered, emphasizing the
need for more study to solve operational issues related to solar intermittency and wind
output curtailment. Because of the lack of long-term performance data from such systems,
research papers that use modeling tools for system design and optimization of hybrid
systems incorporating solar photovoltaic and wind turbine technologies frequently have
limitations because they are not always compared to real-world results.

HPP systems work in a complex way, with several controllers and control loops that
are connected via connections. Communication breakdowns may have a significant effect
on how well HPPs operate as a whole. The control architecture, goals, and topology of
the HPP determine how data are exchanged and communicated. Grid compliance and
auxiliary services need appropriate data exchange and communication frameworks, as well
as time resolution, management of communication failures, and determination of variables
transferred.

Moreover, with differing control techniques and flexibility in manipulating various
variables, the integration of controllers from multiple suppliers increases complexity. As
such, it is essential to examine these problems while designing the control architecture and
fine-tuning control settings.

Artificial intelligence (AI) has proven useful in several renewable energy-related fields.
Advanced dynamic modeling and the identification of various causes of uncertainty may
be accomplished via the application of AI and machine learning techniques. Notably,
AI-driven model-free methods for HPPs have not yet been investigated in the field of
regulating unknown parameters. The incorporation of such methodologies may affect
HPPs’ control structure, hence augmenting its dependability and resilience to uncertainties.

10. Future Trends

Anticipated advancements, government incentives, and policies in solar and wind
technologies are expected to decrease costs for renewable energy sources, contrasting
with the annual increase in expenses for traditional energy resources. As a result, this
combination of energy sources will become more cost-effective in the future, and the
positive environmental impacts are likely to promote its adoption.

Additionally, the integration of artificial intelligence into energy management is ex-
pected to enhance the hybrid system’s performance in the near term. This involves optimiz-
ing resource allocation based on demand and predicting renewable resource availability,
which can significantly cut down operational expenses. The future optimization of HPP
sizes involves considering not only minimizing annual and fuel costs but also maximizing
the profit and utilization of the infrastructure and environmental aspects like the human
development index and job market, as well as bolstering sustainability and resilience. This
requires implementing sophisticated control methods through a distributed and hybrid
controller, which holds the potential to enhance the efficiency of modular HPPs. Lastly,
applying modern control techniques to monitor the operation of these modular HPPs
further optimizes the utilization of renewable resources and enhances energy management.

11. Conclusions

This paper reviewed and analyzed the available research articles on sizing, opti-
mization, energy management, and control strategies to develop co-located wind- and
solar-based HPPs. This review shows that the number of published papers on HPPs has
increased because of growing interest from both the industry and the scientific community
in recent times. There are a large number of review articles related to the scope of this paper;
however, only a few of them have considered utility-scale wind- and solar-based HPPs
without explicitly covering them. Therefore, a comprehensive comparative assessment is
needed. This paper reviewed various approaches used by academics to optimize these sys-
tems, whether grid-tied or not. Meta-heuristic algorithms are the most popular methods for
sizing wind–solar hybrid systems. No single approach has outperformed across all problem
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types. Using a hybrid approach that combines two or more meta-heuristic optimization
techniques helped find the global best system configurations and made risk assessments
more thorough by taking into account more factors. HOMER stands out as the most widely
used software tool because of its comprehensive incorporation of renewable energy systems.
It facilitates optimization and sensitivity analyses, streamlining the evaluation process for a
multitude of potential system configurations. In terms of control and energy management
strategies, hybrid centralized and distributed control strategies appear to be effective for
efficient operation, meeting demand, and improving performance. Centralized control op-
timizes local groups, while distributed control ensures global coordination among groups,
minimizes system failure risks, and enables the integration of multiple control methods
within a single system. The findings suggest the need for further advancements in algo-
rithms and multi-objective strategies for widespread use in distributed energy applications.
Comparative studies are also needed to draw general conclusions about co-locating wind
and PV farms. Future research should address larger-scale challenges, complex objective
spaces, and inherent uncertainty, as well as incorporate a diverse range of methods to
develop robust hybrid algorithms.
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HPP hybrid power plant
RES renewable energy sources
MW mega watt
PCC point of common connection
COE cost of energy
ASC annualized system cost
LCOE levelized cost of energy
LCC life cycle cost
LLP loss of load probability
LPSP loss of power supply probability
RF renewable fraction
REF renewable energy factor
AI artificial intelligence
GA genetic algorithm
PSO particle swarm optimization
HOMER hybrid optimization of multiple energy resources
EMSs energy management strategies
PV photovoltaic
WT wind turbine
HRES hybrid renewable energy system
WoS Web of Science
AC alternate current
DC direct current
LPM linear programming model
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MOEA multi-objective evolutionary algorithms
MILP multi-integer linear programming
NLP non-linear programming
HSA harmony search algorithm
SA simulated annealing
ACA ant colony algorithm
BFO bacterial foraging algorithm
ABC artificial bee colony algorithm
CS cuckoo search
ANN artificial neural network
SOC state of charge
FLC fuzzy logic control
FL fuzzy logic
ANFIS adaptive neuro-fuzzy inference system
FAHP fuzzy analytic hierarchy process
GAPSO generic algorithm particle swarm optimization
SOO single-objective optimization
MOO multi-objective optimization
NPV net present value
IPSO improved particle swarm optimization
GWO grey wolf optimization
NREL National Renewable Energy Laboratory
HOGA hybrid optimization of generic algorithm
TRNSYS transient system simulation software
RETSCreen renewable-energy and energy-efficiency technology screening software
FC fuel cell
PGUs power generating units
STATCOM static synchronous compensator
MPC model predictive control
TLBO teaching learning-based optimization
EDE enhanced differential evolution
SSA slap swarm algorithm
FPA flower pollination algorithm
GSA gravitation search algorithm
CSA crow search algorithm
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Appendix A

See Tables A1–A4.

Table A1. Economic, reliability, social, energy efficiencies, and environmental indices, and their main formulas (adapted from: [129]).

Assessment Preferred Indicators Functions

Technical indicator LPSP LPSP =
∑T

t=1|Pload(t)−Psupply(t)|
∑T

t=1 Pload(t)

Economic indicator
NPC NPC = Cini +

Ns

∑
n=1

(
Cannual
(1+r)n +

Creplace

(1+r)NR
+

Csalvage

(1+r)Ns

)
ACS ACS = Cini + Creplacex

r( 1+r)Ns

(1+r)Ns−1
+ Cannual

LCOE
LCOE =

Cini+∑Ns
n=1

(
Cannual
(1+r)n +

Creplace

(1+r)NR
+

Csalvage
(1+r)Ns

)
∑

NS
n=1

E f irst (1−d)n

(1+r)n

Social political indicator HDI HDI = 0.0978 x ln
(

8760
∑

t=1
Eload(t)

)
− 0.0319

JC JC =
M
∑

m=1
jCm.Crenew.m

Energy Efficiency indicator ECR ECR = ∑T
t=1|Prenew(t)−Pload(t)|

∑T
t=1 Prenew(t)

Environmental indicator
Ecarbon Ecarbon =

T
∑

t=1

N
∑

n=1
θn·Pf ossil(t)

LCCF LCCF = Ecarbon +
N
∑

n=1
δn·C f ossil·n +

M
∑

m=1
δm·Crenew·m

LEOE LEOE =
Ecarbon+∑N

n=1 δn ·C f ossil·n+∑M
m=1 δm ·Crenew·m

∑
NS
n=1 E f irst(1−d)n

HDI = human development index. JC = job creation. Pload(t) = load demand at time t. Psupply(t) = power supply of HPP at time t. T = simulation period. Cini = initial investment cost.
Cannual = operation and maintenance cost. Creplace = replacement cost. Csalvage = salvage value at the end of lifetime. NR = year of component replacement. Ns = design lifetime. r =
discount rate. Efirst = first-year energy production. d = degradation rate. Eload(t) = load demand at time t. jcm = job creation factor of renewable installed capacity. jcn = job creation
coefficient of electricity generated by fossil-based technologies. Cfossil ·n = rated capacity of the n-th fossil-based technology. Crenew ·m = rated capacity of the m-th renewable energy
technology. Prenew(t) = renewable energy generation at time t. Pload(t) = load demand at time t. Ecarbon = direct carbon emissions produced by non-renewable energy technologies. θn =
direct carbon emission coefficient of fossil-based technologies per kilowatt-hour. Pfossil ·n(t) = power output of the n-th fossil-based technology at time t. δm and δn = indirect carbon
emission coefficients of renewable and fossil-based technologies per kilowatt-hour. Cfossil·n = rated capacity of the n-th fossil-based technology. Crenew·m = rated capacity of the m-th
renewable energy technology.
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Table A2. Highlights of review studies on sizing and optimization and energy management strategies of renewable energy-based hybrid systems from 2014 to 2023.

Reference/Year of
Study System Studied Topic Covered Highlights

Chauhan and
Saini [109] HRES

• Reviewed various configurations (AC/DC) and energy storage technology
options for system control and management.

• Mathematical models for wind, micro-hydro, solar, and biomass gasifier
energy systems.

• Sizing techniques including AI, multi-objective design, iterative approaches,
analytical methods, probabilistic approaches, and graphical construction
methods.

• Software tools including HOMER, HOGA, RETScreen, HYBRIDS, and
TRNSYS for assessing and analyzing hybrid energy systems.

• DC-AC-coupled is efficient and the least-cost scheme.
• A combination of centralized and distributed control

approaches is acknowledged as optimal to ensure strong
control in IRES without single point failure issues.

Siddaiah and
Saini [25] HRES

• Review on planning, configurations, and modeling and optimization
techniques of hybrid renewable energy systems for off-grid applications.

• Mathematical model for cost minimization.
• Optimization models including classic, artificial intelligence, and hybrid.
• Sizing methodologies including classical techniques, artificial intelligence,

and hybrid techniques.

• Reliability-centric models improve system performance
and reduce uncertainty in renewable energy resources.

Al-falahi et al. [55] HRES
• Various combinations of wind/solar.
• Sizing techniques including single algorithms and hybrid algorithms.
• Software tools including HOMER and iHOGA.

• AI algorithms are increasingly popular for solving complex
optimization challenges, while hybrid algorithms are
increasingly preferred because of their favorable results in
recent times.

Khan et al. [28]
Solar photovoltaic
and wind hybrid
energy systems

• Economic feasibility, sizing strategies, and future prospects.
• Optimization techniques including graphical construction, iterative

methodologies, direct programming, multi objectives optimization function,
and probabilistic.

• New approach including GA, PSO, SA, ACA, and ABC.

• Artificial intelligence and hybrid algorithms performed
better than traditional approach. However, the
hybridization of more than two algorithms is
recommended for better performance.

Anoune et al. [17] PV–wind based
HRES

• Various configurations of hybrid renewable energy systems.
• Hybrid systems’ performance metrics including reliability and system cost.
• Sizing methods including AI, GA, PSO, SA, CS, MOO, HSA, iterative,

probabilistic, and analytical.
• Software tools including HOMER, HYBRID2, HOGA, HYBRIDS, TRNSYS,

etc.

• The literature shows hybrid renewable energy systems lack
cost competitiveness compared with conventional fossil
fuel-based power systems.

• Methods of optimization, such as those centered around
artificial intelligence algorithms and heuristic techniques,
are more favorably received compared with conventional
approaches. Among these, HOMER stands out as the
predominantly utilized tool.
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Table A2. Cont.

Reference/Year of
Study System Studied Topic Covered Highlights

Lian et al. [83] HRES

• Various configurations of hybrid renewable energy systems.
• Sizing methodologies including analytical, probabilistic, iterative, numerical,

graphic construction, GA, PSO, SA, ACO, ABC, CS, and hybrid methods.
• Software tools including HOMER, iHOGA, HYBRIDS, and HYBRID2.

• Hybrid optimization techniques are recommended because
of their adaptability and optimization capabilities,
enabling a comprehensive exploration of the subject.

Lindberg et al.
[13]

Wind–solar
battery HPP

• Co-located wind and solar park modeling methodologies.
• Physical design, control strategies, market participation, and quantification of

possible synergies.

• Energy management systems require intelligence and
dispatch models to optimize resource utilization and
maximize resource utilization.

Ammari et al. [34] HRES

• Reviewed sizing, optimization, and control and energy management.
• Sizing methods including traditional and software,
• Optimization techniques including classical, artificial, and hybrid methods.
• Control methods including centralized, distributed, and hybrid control.
• Energy management objectives including technical, economic, and

techno-economic.

• Highlighted that the use machine learning, commercial
software, and neural networks is a good option for hybrid
systems.

• Hybrid renewable energy systems utilize fuzzy logic,
particle swarm optimization, neural networks, and
commercial software like HOMER for overseeing
components.

Emad et al. [91] Wind–solar
battery

• Reviewed mathematical formulations for wind, solar and energy storage
• Economic aspects including NPC, LCC, TAC, and COE TLBO.
• Sizing approaches including classical techniques, meta-heuristic techniques,

and hybrid techniques.
• Software tools including HOMER.

• Meta-heuristic optimization methods offer higher precision
and reduced computational time compared with
conventional techniques.

Thirunavukkarasu
et al. [81] HRES

• Reviewed various optimization techniques.
• Optimization techniques including classical, artificial, hybrid, and software

tools.
• Types of optimization problems included constraints, variables, problem

structure, nature of equations, permissible value of the design variables,
separability of the function, and the number of objective functions.

• Hybrid optimization algorithms provide a faster, more
reliable, and efficient method for problem-solving.

Iweh et al. [35] HRES

• Reviewed hybrid system performance indicators.
• Optimization methods including classical, meta-heuristic, and software.
• Software tools including HOMER, iHOGA, RETScreen, TRNSYS,

HYCROGEM, HYBRIDS, and INSEL.

• AI-based hybrid methodologies offer superior system
optimization effectiveness.
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Table A3. Summary of various studies on optimization methods for a single objective.

Optimization Method System Configurations Optimization Function Constraints Reference

GA
FL Wind/PV/battery Minimize total cost Power balance

State of charge Adbelhak et al. [155]

ACA, Integer LPM Wind/PV Minimize total cost Number of PV panels, wind turbines, and
batteries Fetanat et al. [156]

PSO
SA Wind/PV/battery Minimize total present cost Number of hybrid components, energy not

supplied, battery SOC Ahmadi et al. [157]

CS Wind/PV/battery Minimize total cost Seasonal variation in the load Sanajaoba and Fernandez, [158]

SA, CS, Improved HS PV–wind–reverse
osmosis–battery Minimize total LCC Surface area of PV arrays, wind turbine blades,

quantity of batteries, LPSP, and SOC Peng et al. [159]

TLBO, EDE, and SSA Wind–PV Minimize TAC,
reliability

Number of hybrid system components, LPSP,
DOD Khan et al. [20]

Jaya, TLBO Wind/PV/battery Minimize TAC Number of hybrid system components, LPSP,
SOC Khan et al. [160]

AC, firefly algorithm, PSO, GA Wind/PV/battery NPC Number of hybrid system components, SOC Javed et al. [161]

Crow and PSO Wind/PV/battery Minimize COE Distribution of power supply and demand
planning Guneser et al. [162]

GWO
Sine cosine Algorithm Wind/PV/H2 Minimize LCC Number of hybrid system components Jahannoosh et al. [163]
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Table A4. Summary of various studies on optimization methods for multiple objective functions.

Optimization Method System Configurations Optimization Function Constraints Reference

FPA
SA Wind/PV/battery Minimize LPSP

Maximize cumulative saving
PV panel tilt angle, number of PVs, wind

turbines, and batteries Tahani et al. [164]

PSO
GA Wind/PV/battery

Minimize LPSP
Minimize LCC

Minimize fluctuation rate
Minimize loss of energy probability

Numbers of PVs, wind turbines, and batteries Ma et al. [165]

PSO
Nelder Mead Algorithm PV/wind/fuel cell Minimize power loss Power balance, bus voltage Senthil et al. [166]

PSO
GSA PV/wind Minimize total energy loss

Maximize voltage profit
Power flow m bus voltage, load constraints,

PV/wind capacity Radosavljevic et al. [167]

Biogeography-based
optimization, PSO Wind/PV/battery Minimize cost

Minimize system index reliability Power balance between supply and demand Abuelrub et al. [168]

CSA, PSO Wind/PV/battery
Minimize cost
Minimize loss

Minimize voltage profile

Number of hybrid system components,
size of batteries, network

bus voltage constraint,
allowable current constraint,

peak capacity of each renewable
DG constraint, and power balance

constraint

Aliabadi et al. [169]



Eng 2024, 5 713

References
1. United Nation [UN]. Adoption of the Paris Agreement 2015; United Nation: New York, NY, USA, 2015.
2. Dykes, K.; King, J.; DiOrio, N.; King, R.; Gevorgian, V.; Corbus, D.; Blair, N.; Anderson, K.; Stark, G.; Turchi, C.; et al. Opportunities

for Research and Development of Hybrid Power Plants. National Renewable Energy Laboratory 2020; NREL/TP-5000-75026.
Available online: https://www.nrel.gov/docs/fy20osti/75026.pdf (accessed on 7 April 2023).

3. Das, K.; Hansen, A.D.; Vangari, D.H.; Koivisto, M.J.; Sørensen, P.E.; Altin, M. Enhanced Features of Wind-based Hybrid Power
Plants. In Proceedings of the 4th International Hybrid Power Systems Workshop 2019, Crete, Greece, 22–23 May 2019.

4. Kryonidis, G.C.; Kontis, E.O.; Papadopoulos, T.A.; Pippi, K.D.; Nousdilis, A.I.; Barzegkar-Ntovom, G.A.; Boubaris, A.; Papaniko-
laou, N. Ancillary services in active distribution networks: A review of technological trends from operational and online analysis
perspective. Renew. Sustain. Energy Rev. 2021, 147, 111198. [CrossRef]

5. Mar, A.; Pereira, P.; Martins, J. A survey on power grid faults and their origins: A contribution to improving power grid resilience.
Energies 2019, 12, 4667. [CrossRef]

6. Buonomano, A.; Calise, F.; D’Accadia, M.D.; Vicidomini, M. A hybrid renewable system based on wind and solar energy coupled
with an electrical storage: Dynamic simulation and economic assessment. Energy 2018, 155, 174–189. [CrossRef]

7. Petersen, L.; Iov, F.; Tarnowski, G.C.; Gevorgian, V.; Koralewicz, P.; Stroe, D. Validating Performance Models for Hybrid Power
Plant Control Assessment. Energies 2019, 12, 4330. [CrossRef]

8. Bade, S.O.; Meenakshisundaram, A.; Omojiba, T.; Tomomewo, O. Battery Uses for Regulating Active Power in Utility-scale
Wind-based Hybrid Power Plant. Am. J. Energy Res. 2023, 11, 82–92. [CrossRef]

9. François, B.; Hingray, B.; Raynaud, D. Increasing climate-related-energy penetration by integrating run-of-the river hydropower
to wind/solar mix. Renew. Energy 2016, 87, 686–696. [CrossRef]

10. Guangqian, D.; Bekhrad, K.; Azarikhan, P. A hybrid algorithm-based optimization on modeling of grid-independent biodiesel-
based hybrid solar/wind systems. Renew. Energy 2018, 122, 551–560. [CrossRef]

11. Vivas, F.; De Las Heras, A.; Segura, F.; Andújar, J.M. A review of energy management strategies for renewable hybrid energy
systems with hydrogen backup. Renew. Sustain. Energy Rev. 2018, 82, 126–155. [CrossRef]

12. Wind Europe. Renewable Hybrid Power Plants-Exploring the Benefits and Market Opportunities. 2019. Available online:
https://windeurope.org/wp-content/uploads/files/policy/position-papers/WindEurope-renewable-hybrid-power-plants-
dasbenefits-and-market-opportunities.pdf (accessed on 7 April 2023).

13. Lindberg, O.; Arnqvist, J.; Munkhammar, J.; Lingfors, D. Review on power-production modeling of hybrid wind and PV power
parks. J. Renew. Sustain. Energy 2021, 13, 042702. [CrossRef]

14. Lawan, S.M.; Abidin, W.A.W.Z. A review of hybrid renewable energy systems based on wind and solar Energy: Modeling, design
and Optimization. In Wind Solar Hybrid Renewable Energy System; IntechOpen: London, UK, 2020. [CrossRef]

15. Mahesh, A.; Sandhu, K.S. Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renew. Sustain.
Energy Rev. 2015, 52, 1135–1147. [CrossRef]

16. Khare, V.; Nema, S.; Baredar, P. Solar–wind hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2016, 58,
23–33. [CrossRef]

17. Anoune, K.; Bouya, M.; Astito, A.; Abdellah, A.B. Sizing methods and optimization techniques for PV-wind based hybrid
renewable energy system: A review. Renew. Sustain. Energy Rev. 2018, 93, 652–673. [CrossRef]

18. Jurasz, J.; Canales, F.A.; Kies, A.; Ma, T.; Beluco, A. A review on the complementarity of renewable energy sources: Concept,
metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [CrossRef]

19. Ding, Z.; Hou, H.; Yu, G.; Hu, E.; Duan, L.; Zhao, J. Performance analysis of a wind-solar hybrid power generation system. Energy
Convers. Manag. 2019, 181, 223–234. [CrossRef]

20. Khan, A.; Alghamdi, T.A.; Khan, Z.A.; Fatima, A.; Abid, S.; Khalid, A.; Javaid, N. Enhanced evolutionary sizing algorithms for
optimal sizing of a Stand-Alone PV-WT-Battery hybrid system. Appl. Sci. 2019, 9, 5197. [CrossRef]

21. Stanley, A.P.J.; King, J. Optimizing the physical design and layout of a resilient wind, solar, and storage hybrid power plant. Appl.
Energy 2022, 317, 119139. [CrossRef]

22. González-Ramírez, J.M.; Arcos-Vargas, Á.; Hernández, F.N. Optimal sizing of hybrid wind-photovoltaic plants: A factorial
analysis. Sustain. Energy Technol. Assess. 2023, 57, 103155. [CrossRef]

23. Hu, W.; Zhang, H.; Dong, Y.; Wang, Y.; Dong, L.; Xiao, M. Short-term optimal operation of hydro-wind-solar hybrid system with
improved generative adversarial networks. Appl. Energy 2019, 250, 389–403. [CrossRef]

24. Ishraque, M.F.; Shezan, S.A.; Ali, M.; Rashid, M.M. Optimization of load dispatch strategies for an islanded microgrid connected
with renewable energy sources. Appl. Energy 2021, 292, 116879. [CrossRef]

25. Siddaiah, R.; Saini, R. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy
systems for off grid applications. Renew. Sustain. Energy Rev. 2016, 58, 376–396. [CrossRef]

26. Ma, W.; Xue, X.; Liu, G. Techno-economic evaluation for hybrid renewable energy system: Application and merits. Energy 2018,
159, 385–409. [CrossRef]

27. Tripp, C.; Guittet, D.; King, J.; Barker, A. A simplified, efficient approach to hybrid wind and solar plant site optimization. Wind
Energ. Sci. 2022, 7, 697–713. [CrossRef]

28. Khan, F.A.; Pal, N.; Saeed, S.H. Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization
techniques and cost analysis methodologies. Renew. Sustain. Energy Rev. 2018, 92, 937–947. [CrossRef]

https://www.nrel.gov/docs/fy20osti/75026.pdf
https://doi.org/10.1016/j.rser.2021.111198
https://doi.org/10.3390/en12244667
https://doi.org/10.1016/j.energy.2018.05.006
https://doi.org/10.3390/en12224330
https://doi.org/10.12691/ajer-11-2-3
https://doi.org/10.1016/j.renene.2015.10.064
https://doi.org/10.1016/j.renene.2018.02.021
https://doi.org/10.1016/j.rser.2017.09.014
https://windeurope.org/wp-content/uploads/files/policy/position-papers/WindEurope-renewable-hybrid-power-plants-dasbenefits-and-market-opportunities.pdf
https://windeurope.org/wp-content/uploads/files/policy/position-papers/WindEurope-renewable-hybrid-power-plants-dasbenefits-and-market-opportunities.pdf
https://doi.org/10.1063/5.0056201
https://doi.org/10.5772/intechopen.85838
https://doi.org/10.1016/j.rser.2015.08.008
https://doi.org/10.1016/j.rser.2015.12.223
https://doi.org/10.1016/j.rser.2018.05.032
https://doi.org/10.1016/j.solener.2019.11.087
https://doi.org/10.1016/j.enconman.2018.11.080
https://doi.org/10.3390/app9235197
https://doi.org/10.1016/j.apenergy.2022.119139
https://doi.org/10.1016/j.seta.2023.103155
https://doi.org/10.1016/j.apenergy.2019.04.090
https://doi.org/10.1016/j.apenergy.2021.116879
https://doi.org/10.1016/j.rser.2015.12.281
https://doi.org/10.1016/j.energy.2018.06.101
https://doi.org/10.5194/wes-7-697-2022
https://doi.org/10.1016/j.rser.2018.04.107


Eng 2024, 5 714

29. Mahesh, A.; Sandhu, K.S. A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system
using energy filter algorithm. Front. Energy 2020, 14, 139–151. [CrossRef]

30. Ghofrani, M.; Hosseini, N.N. Optimizing hybrid renewable energy systems: A review. Sustain. Energy-Technol. Issues Appl. Case
Stud. 2016, 8, 161–176.

31. Belouda, M.; Hajjaji, M.A.; Sliti, H.; Mami, A. Bi-objective optimization of a standalone hybrid PV–Wind–battery system
generation in a remote area in Tunisia. Sustain. Energy Grids Netw. 2018, 16, 315–326. [CrossRef]

32. Ghorbani, N.; Kasaeian, A.; Toopshekan, A.; Bahrami, L.; Maghami, A. Optimizing a hybrid wind-PV-battery system using
GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 2018, 154, 581–591. [CrossRef]

33. Barakat, S.; Ibrahim, H.; Elbaset, A.A. Multi-objective optimization of grid-connected PV-wind hybrid system considering
reliability, cost, and environmental aspects. Sustain. Cities Soc. 2020, 60, 102178. [CrossRef]

34. Ammari, C.; Belatrache, D.; Touhami, B.; Makhloufi, S. Sizing, optimization, control and energy management of hybrid renewable
energy system—A review. Energy Built Environ. 2022, 3, 399–411. [CrossRef]

35. Iweh, C.D.; Clarence, S.G.; Roger, A.H. The optimization of hybrid renewables for rural electrification: Techniques and the design
problem. Int. J. Eng. Trends Technol. 2022, 70, 222–239. [CrossRef]

36. Petersen, L.; Hesselbak, B.; Martinez, A.; Borsotti-Andruszkiewicz, R.M.; Tarnowski, G.C.; Steggel, N.; Osmond, D. Vestas power
plant solutions integrating wind, solar PV and energy storage. In Proceedings of the 3rd International Hybrid Power Systems
Workshop, Tenerife, Spain, 8–9 May 2018.

37. Raducu, A.; Styliaras, N.; Funkqvist, J.; Ionita, C. Design and implementation of a hybrid power plant controller. In Proceedings
of the 3rd International Hybrid Power Systems Workshop, Tenerife, Spain, 8–9 May 2018.

38. Pombo, D.V.; Iov, F.; Stroe, D. A Novel Control Architecture for Hybrid Power Plants to Provide Coordinated Frequency Reserves.
Energies 2019, 12, 919. [CrossRef]

39. Long, Q.; Das, K.; Sørensen, P.E. Hierarchical Control Architecture of Co-located Hybrid Power Plants. IEEE TechRxiv 2021, 143,
108407. [CrossRef]

40. Bade, S.O.; Tomomewo, O.; Meenakshisundaram, A. Utility-Scale Wind-Based Hybrid Power Plants and Control Strategy. Sustain.
Energy 2023, 11, 12–20. [CrossRef]

41. Nallolla, C.A.; Vijayapriya, P.; Dhanamjayulu, C.; Padmanaban, S. Multi-Objective Optimization Algorithms for a hybrid AC/DC
microgrid using RES: A Comprehensive review. Electronics 2023, 12, 1062. [CrossRef]

42. Modu, B.; Abdullah, P.; Bukar, A.L.; Hamza, M.F. A systematic review of hybrid renewable energy systems with hydrogen
storage: Sizing, optimization, and energy management strategy. Int. J. Hydrogen Energy 2023, 48, 38354–38373. [CrossRef]

43. Khan, A.A.; Minai, A.F.; Pachauri, R.K.; Malik, H. Optimal Sizing, control, and Management Strategies for Hybrid Renewable
Energy Systems: A Comprehensive Review. Energies 2022, 15, 6249. [CrossRef]

44. Rullo, P.; Costa-Castelló, R.; Roda, V.; Feroldi, D. Energy Management strategy for a bioethanol isolated hybrid system: Simulations
and experiments. Energies 2018, 11, 1362. [CrossRef]

45. Silva, A.R.; Estanqueiro, A. From Wind to Hybrid: A contribution to the optimal design of Utility-Scale Hybrid Power Plants.
Energies 2022, 15, 2560. [CrossRef]

46. Upadhyay, S.; Sharma, M. A review on configurations, control and sizing methodologies of hybrid energy systems. Renew.
Sustain. Energy Rev. 2014, 38, 47–63. [CrossRef]

47. Klonari, V.; Fraile, D.; Rossi, R.; Schmela, M. Exploring the Viability of HybridWind-Solar Power Plants. 2019. Available
online: https://hybridpowersystems.org/crete2019/wp-content/uploads/sites/13/2020/03/3A_1_HYB19_063_paper_Klonari_
Vasiliki.pdf (accessed on 29 July 2023).

48. Australian Renewable Energy Agency [ARENA]. Knowledge Sharing (Finclose Report). 2018. Available online: https://arena.
gov.au/assets/2017/02/Kennedy-Park-FinClose-Report-Windlab.pdf (accessed on 30 July 2023).

49. India Energy Storage Alliance. Hero Launches India’s First Solar-Wind Hybrid Project, n.d. Available online: https://indiaesa.
info/buzz/news/industry-news/1192-hero-launches-india-s-first-solar-wind-hybrid-project (accessed on 29 July 2023).

50. Energymatters. Gamesa Commissions Hybrid System’s Battery Storage 2016. Available online: https://www.energymatters.com.
au/renewable-news/gamesa-offgrid-battery-em5744/ (accessed on 30 July 2023).

51. Kokkinidis, T. Tilos, Greece’s First Energy-Self-Sufficient Island. Greekreporter 2022. Available online: https://greekreporter.
com/2022/01/21/tilos-greece-first-energy-self-sufficient-island/ (accessed on 30 July 2023).

52. Gearino, D. A Clean Energy Trifecta: Wind, Solar and Storage in the Same Project. Inside Climate News 2022. Available online:
https://insideclimatenews.org/news/06102022/a-clean-energy-trifecta-wind-solar-and-storage-in-the-same-project/ (accessed
on 30 July 2023).

53. Invenergy. Grand Ridge Energy Center-Case Study Invenergy n.d. Available online: https://invenergy.com/projects/case-
studies/blt0d2f2a9438d0674c (accessed on 30 July 2023).

54. Eriksson, E.; Gray, E.M. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems—A critical
review. Appl. Energy 2017, 202, 348–364. [CrossRef]

55. Al-Falahi, M.D.; Jayasinghe, S.G.; Enshaei, H. A review on recent size optimization methodologies for standalone solar and wind
hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274. [CrossRef]

56. Chang, C. Multi-choice goal programming model for the optimal location of renewable energy facilities. Renew. Sustain. Energy
Rev. 2015, 41, 379–389. [CrossRef]

https://doi.org/10.1007/s11708-017-0484-4
https://doi.org/10.1016/j.segan.2018.09.005
https://doi.org/10.1016/j.energy.2017.12.057
https://doi.org/10.1016/j.scs.2020.102178
https://doi.org/10.1016/j.enbenv.2021.04.002
https://doi.org/10.14445/22315381/IJETT-V70I9P223
https://doi.org/10.3390/en12050919
https://doi.org/10.1016/j.ijepes.2022.108407
https://doi.org/10.12691/rse-11-1-2
https://doi.org/10.3390/electronics12041062
https://doi.org/10.1016/j.ijhydene.2023.06.126
https://doi.org/10.3390/en15176249
https://doi.org/10.3390/en11061362
https://doi.org/10.3390/en15072560
https://doi.org/10.1016/j.rser.2014.05.057
https://hybridpowersystems.org/crete2019/wp-content/uploads/sites/13/2020/03/3A_1_HYB19_063_paper_Klonari_Vasiliki.pdf
https://hybridpowersystems.org/crete2019/wp-content/uploads/sites/13/2020/03/3A_1_HYB19_063_paper_Klonari_Vasiliki.pdf
https://arena.gov.au/assets/2017/02/Kennedy-Park-FinClose-Report-Windlab.pdf
https://arena.gov.au/assets/2017/02/Kennedy-Park-FinClose-Report-Windlab.pdf
https://indiaesa.info/buzz/news/industry-news/1192-hero-launches-india-s-first-solar-wind-hybrid-project
https://indiaesa.info/buzz/news/industry-news/1192-hero-launches-india-s-first-solar-wind-hybrid-project
https://www.energymatters.com.au/renewable-news/gamesa-offgrid-battery-em5744/
https://www.energymatters.com.au/renewable-news/gamesa-offgrid-battery-em5744/
https://greekreporter.com/2022/01/21/tilos-greece-first-energy-self-sufficient-island/
https://greekreporter.com/2022/01/21/tilos-greece-first-energy-self-sufficient-island/
https://insideclimatenews.org/news/06102022/a-clean-energy-trifecta-wind-solar-and-storage-in-the-same-project/
https://invenergy.com/projects/case-studies/blt0d2f2a9438d0674c
https://invenergy.com/projects/case-studies/blt0d2f2a9438d0674c
https://doi.org/10.1016/j.apenergy.2017.03.132
https://doi.org/10.1016/j.enconman.2017.04.019
https://doi.org/10.1016/j.rser.2014.08.055


Eng 2024, 5 715

57. Wang, R.; Li, G.; Ming, M.; Wu, G.; Wang, L. An efficient multi-objective model and algorithm for sizing a stand-alone hybrid
renewable energy system. Energy 2017, 141, 2288–2299. [CrossRef]

58. Khan, A.; Naeem, M.; Iqbal, M.; Qaisar, S.; Anpalagan, A. A compendium of optimization objectives, constraints, tools and
algorithms for energy management in microgrids. Renew. Sustain. Energy Rev. 2016, 58, 1664–1683. [CrossRef]

59. Moretti, L.; Astolfi, M.; Vergara, C.; Macchi, E.; Pérez-Arriaga, J.I.; Manzolini, G. A design and dispatch optimization algorithm
based on mixed integer linear programming for rural electrification. Appl. Energy 2019, 233–234, 1104–1121. [CrossRef]

60. Wu, N.; Wang, H. Deep learning adaptive dynamic programming for real time energy management and control strategy of
micro-grid. J. Clean. Prod. 2018, 204, 1169–1177. [CrossRef]

61. Das, B.; Kumar, A. A NLP approach to optimally size an energy storage system for proper utilization of renewable energy sources.
Procedia Comput. Sci. 2018, 125, 483–491. [CrossRef]

62. Reddy, S.S.; Momoh, J.A. Realistic and transparent optimum scheduling strategy for hybrid power system. IEEE Trans. Smart Grid
2015, 6, 3114–3125. [CrossRef]

63. Abbes, D.; Martinez, A.; Champenois, G. Life cycle cost, embodied energy and loss of power supply probability for the optimal
design of hybrid power systems. Math. Comput. Simul. 2014, 98, 46–62. [CrossRef]

64. Roy, P.; He, J.; Liao, Y. Cost minimization of Battery-Supercapacitor hybrid energy storage for hourly dispatching Wind-Solar
hybrid power system. IEEE Access 2020, 8, 210099–210115. [CrossRef]

65. Sawle, Y.; Gupta, S.; Bohre, A.K. Techno-economic scrutiny of HRES through GA and PSO technique. Int. J. Renew. Energy Technol.
2018, 9, 84. [CrossRef]

66. Muleta, N.; Badar, A.Q.H. Designing of an optimal standalone hybrid renewable energy micro-grid model through different
algorithms. J. Eng. Res. 2023, 11, 100011. [CrossRef]

67. Sharafi, M.; ElMekkawy, T.Y. Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based
approach. Renew. Energy 2014, 68, 67–79. [CrossRef]

68. Sutikno, T.; Arsadiando, W.; Wangsupphaphol, A.; Yudhana, A.; Facta, M. A review of recent advances on hybrid energy storage
system for solar photovoltaics power generation. IEEE Access 2022, 10, 42346–42364. [CrossRef]

69. Faria, J.; Pombo, J.; Calado, M.; Mariano, S. Power Management Control Strategy Based on Artificial Neural Networks for
Standalone PV Applications with a Hybrid Energy Storage System. Energies 2019, 12, 902. [CrossRef]

70. Singh, P.; Lather, J.S. Dynamic power management and control for low voltage DC microgrid with hybrid energy storage system
using hybrid bat search algorithm and artificial neural network. J. Energy Storage 2020, 32, 101974. [CrossRef]

71. Mohandes, B.; Wahbah, M.; Moursi, M.S.E.; El-Fouly, T.H.M. Renewable energy Management System: Optimum design and
hourly dispatch. IEEE Trans. Sustain. Energy 2021, 12, 1615–1628. [CrossRef]

72. Athari, M.H.; Ardehali, M. Operational performance of energy storage as function of electricity prices for on-grid hybrid
renewable energy system by optimized fuzzy logic controller. Renew. Energy 2016, 85, 890–902. [CrossRef]

73. Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. Multi input-output fuzzy logic smart controller for a residential
hybrid solar-wind-storage energy system. Energy Convers. Manag. 2017, 148, 238–250. [CrossRef]

74. Yahyaoui, I.; De La Peña, N.V. Energy management strategy for an autonomous hybrid power plant destined to supply controllable
loads. Sensors 2022, 22, 357. [CrossRef] [PubMed]

75. Tito, S.R.; Lie, T.T.; Anderson, T. Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering
socio-demographic factors. Sol. Energy 2016, 136, 525–532. [CrossRef]

76. Singh, P.; Pandit, M.; Srivastava, L. Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent
technique. Energy 2023, 269, 126756. [CrossRef]

77. Gu, Y.; Zhang, X.; Han, M.; Chen, X.; Yuan, Y. Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for
building application in Sweden using Monte Carlo method. Energy Convers. Manag. 2018, 165, 8–24. [CrossRef]

78. Alshammari, N.; Asumadu, J. Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and
particle swarm optimization algorithms. Sustain. Cities Soc. 2020, 60, 102255. [CrossRef]

79. Akram, U.; Khalid, M.; Shafiq, S. Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. Iet Renew.
Power Gener. 2017, 12, 72–80. [CrossRef]

80. Kong, L.; Cai, G.; Xue, S.; Li, S. Modeling and coordinated control strategy of large-scale Grid-Connected Wind/Photovoltaic/Energy
Storage hybrid energy conversion system. Math. Probl. Eng. 2015, 2015, 682321. [CrossRef]

81. Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A comprehensive review on optimization of hybrid renewable energy systems using
various optimization techniques. Renew. Sustain. Energy Rev. 2023, 176, 113192. [CrossRef]

82. Li, W.; Jikang, L.; Hu, Z.; Li, S.; Chan, P.W. A novel probabilistic approach to optimize Stand-Alone Hybrid Wind-Photovoltaic
renewable energy system. Energies 2020, 13, 4945. [CrossRef]

83. Lian, J.; Zhang, Y.; Ma, C.; Yang, Y.; Chaima, E. A Review on Recent Sizing Methodologies of Hybrid Renewable Energy Systems.
Energy Convers. Manag. 2019, 199, 112027. [CrossRef]

84. Ganguly, P.; Kalam, A.; Zayegh, A. Solar–wind hybrid renewable energy system: Current status of research on configurations,
control, and sizing methodologies. In Hybrid-Renewable Energy Systems in Microgrids; Elsevier: Amsterdam, The Netherlands,
2018; pp. 219–248. [CrossRef]

https://doi.org/10.1016/j.energy.2017.11.085
https://doi.org/10.1016/j.rser.2015.12.259
https://doi.org/10.1016/j.apenergy.2018.09.194
https://doi.org/10.1016/j.jclepro.2018.09.052
https://doi.org/10.1016/j.procs.2017.12.062
https://doi.org/10.1109/TSG.2015.2406879
https://doi.org/10.1016/j.matcom.2013.05.004
https://doi.org/10.1109/ACCESS.2020.3037149
https://doi.org/10.1504/IJRET.2018.090106
https://doi.org/10.1016/j.jer.2023.100011
https://doi.org/10.1016/j.renene.2014.01.011
https://doi.org/10.1109/ACCESS.2022.3165798
https://doi.org/10.3390/en12050902
https://doi.org/10.1016/j.est.2020.101974
https://doi.org/10.1109/TSTE.2021.3058252
https://doi.org/10.1016/j.renene.2015.07.055
https://doi.org/10.1016/j.enconman.2017.05.046
https://doi.org/10.3390/s22010357
https://www.ncbi.nlm.nih.gov/pubmed/35009900
https://doi.org/10.1016/j.solener.2016.07.036
https://doi.org/10.1016/j.energy.2023.126756
https://doi.org/10.1016/j.enconman.2018.03.043
https://doi.org/10.1016/j.scs.2020.102255
https://doi.org/10.1049/iet-rpg.2017.0010
https://doi.org/10.1155/2015/682321
https://doi.org/10.1016/j.rser.2023.113192
https://doi.org/10.3390/en13184945
https://doi.org/10.1016/j.enconman.2019.112027
https://doi.org/10.1016/b978-0-08-102493-5.00012-1


Eng 2024, 5 716

85. Karve, G.M.; Kurundkar, K.; Vaidya, G.A. Implementation of Analytical Method and Improved Particle Swarm Optimization
Method for Optimal Sizing of a Standalone PV/Wind and Battery Energy Storage Hybrid System. In Proceedings of the 2019
IEEE 5th International Conference for Convergence in Technology, Bombay, India, 29–31 March 2019. [CrossRef]

86. Kiehbadroudinezhad, M.; Rajabipour, A.; Cada, M.; Khanali, M. Modeling, Design, and Optimization of a Cost-Effective and
Reliable Hybrid Renewable Energy System Integrated with Desalination Using the Division Algorithm. Int. J. Energy Res. 2021,
45, 429–452. [CrossRef]

87. Muthukumar, R.; Balamurugan, P. A Novel Power Optimized Hybrid Renewable Energy System Using Neural Computing and
bee Algorithm. Automatika 2019, 60, 332–339. [CrossRef]

88. Riaz, M.; Ahmad, S.; Hussain, I.; Naeem, M.; Mihet-Popa, L. Probabilistic Optimization Techniques in Smart Power System.
Energies 2022, 15, 825. [CrossRef]

89. Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting
and a hybrid search optimization algorithm. Energy Convers. Manag. 2019, 180, 609–621. [CrossRef]

90. Abdelshafy, A.M.; Hassan, H.; Jurasz, J. Optimal design of a grid-connected desalination plant powered by renewable energy
resources using a hybrid PSO–GWO approach. Energy Convers. Manag. 2018, 173, 331–347. [CrossRef]

91. Emad, D.; El-Hameed, M.A.; Yousef, M.T.; El-Fergany, A.A. Computational methods for optimal planning of hybrid renewable
microgrids: A comprehensive review and challenges. Arch. Comput. Methods Eng 2020, 27, 1297–1319. [CrossRef]

92. Müller, D.; Selvanathan, S.P.; Cuce, E.; Sudhakar, K. Hybrid solar, wind, and energy storage system for a sustainable campus: A
simulation study. Sci. Technol. Energy Transit. 2023, 78, 13. [CrossRef]

93. Ur Rehman, S.; Rehman, S.; Qazi, M.U.; Shoaib, M.; Lashin, A. Feasibility Study of Hybrid Energy System for off-Grid Rural
Electrification in Southern Pakistan. Energy Explor. Exploit. 2016, 34, 468–482. [CrossRef]

94. Das, B.; Hassan, R.; Tushar, M.S.H.K.; Zaman, F.; Hasan, M.; Das, P. Techno-economic and environmental assessment of a hybrid
renewable energy system using multi-objective genetic algorithm: A case study for remote Island in Bangladesh. Energy Convers.
Manag. 2021, 230, 113823. [CrossRef]

95. Elkadeem Younes, A.; Sharshir, S.W.; Campana, P.E.; Wang, S. Sustainable siting and design optimization of hybrid renewable
energy system: A geospatial multi-criteria analysis. Appl. Energy 2021, 295, 117071. [CrossRef]

96. Sambhi, S.; Sharma, H.; Bhadoria, V.S.; Kumar, P.; Chaurasia, R.; Fotis, G.; Vita, V. Technical and Economic analysis of Solar
PV/Diesel Generator Smart Hybrid Power Plant using different battery Storage Technologies for SRM IST, Delhi-NCR Campus.
Sustainability 2023, 15, 3666. [CrossRef]

97. Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205.
[CrossRef]

98. Brumana, G.; Franchini, G.; Ghirardi, E.; Perdichizzi, A.G. Techno-economic optimization of hybrid power generation systems: A
renewables community case study. Energy 2022, 246, 123427. [CrossRef]

99. Tawfik, T.; Badr, M.A.; EYEl-Kady; Abdellatif, O.E. Optimization and energy management of hybrid standalone energy system: A
case study. Renew. Energy Focus 2018, 25, 48–56. [CrossRef]

100. Al-Badi, A.; Wahaibi, A.A.; Ahshan, R.; Malik, A. Techno-Economic feasibility of a Solar-Wind-Fuel cell energy system in Duqm,
Oman. Energies 2022, 15, 5379. [CrossRef]

101. Hoarca, I.C.; Bizon, N.; Sorlei, I.S.; Thounthong, P. Sizing design for a hybrid renewable power system using HOMER and iHOGA
simulators. Energies 2023, 16, 1926. [CrossRef]

102. Belmili, H.; Haddadi, M.; Bacha, S.; Almi, M.; Bendib, B. Sizing stand-alone photovoltaic–wind hybrid system: Techno-economic
analysis and optimization. Renew. Sustain. Energy Rev. 2014, 30, 821–832. [CrossRef]

103. Fadaeenejad, M.; Radzi, M.A.M.; AbKadir, M.Z.A.; Hizam, H. Assessment of hybrid renewable power sources for rural
electrification in Malaysia. Renew. Sustain. Energy Rev. 2014, 30, 299–305. [CrossRef]

104. Ranaboldo, M.; Domenech, B.; Reyes, G.A.; Ferrer-Martí, L.; Moreno, R.P.; García-Villoria, A. Off-grid Community Electrification
Projects Based on Wind and Solar Energies: A Case Study in Nicaragua. Sol. Energy 2015, 117, 268–281. [CrossRef]

105. Baker, D.K. Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and
Measured Meteorological Data. J. Sol. Energy Eng. 2018, 140, 011006. [CrossRef]

106. Babatunde, O.M.; Munda, J.L.; Hamam, Y. Hybridized off-grid fuel cell/wind/solar PV /battery for energy generation in a small
household: A multi-criteria perspective. Int. J. Hydrogen Energy 2022, 47, 6437–6452. [CrossRef]

107. Hossen, D.; Shezan, S.A. Optimization and Assessment of a Hybrid Solar-Wind-Biomass Renewable Energy System for Kiribati
Island. Int. J. Eng. Trends Technol. 2019, 9, 58–64. [CrossRef]

108. Mazzeo, D.; Baglivo, C.; Matera, N.; De Luca, P.; Congedo, P.M.; Oliveti, G. Energy and economic dataset of the worldwide
optimal photovoltaic-wind hybrid renewable energy systems. Data Brief 2020, 33, 106476. [CrossRef]

109. Chauhan, A.; Saini, R. A review on Integrated Renewable Energy System based power generation for stand-alone applications:
Configurations, storage options, sizing methodologies and control. Renew. Sustain. Energy Rev. 2014, 38, 99–120. [CrossRef]

110. Rathore, A.; Patidar, N.P. Reliability assessment using probabilistic modelling of pumped storage hydro plant with PV-Wind
based standalone microgrid. Int. J. Electr. Power Energy Syst. 2019, 106, 17–32. [CrossRef]

111. Saiprasad, N.; Kalam, A.; Zayegh, A. Comparative Study of Optimization of HRES Using HOMER and iHOGA Software. J. Sci.
Ind. Res. 2018, 77, 677–683.

https://doi.org/10.1109/i2ct45611.2019.9033540
https://doi.org/10.1002/er.5628
https://doi.org/10.1080/00051144.2019.1637173
https://doi.org/10.3390/en15030825
https://doi.org/10.1016/j.enconman.2018.08.102
https://doi.org/10.1016/j.enconman.2018.07.083
https://doi.org/10.1007/s11831-019-09353-9
https://doi.org/10.2516/stet/2023008
https://doi.org/10.1177/0144598716630176
https://doi.org/10.1016/j.enconman.2020.113823
https://doi.org/10.1016/j.apenergy.2021.117071
https://doi.org/10.3390/su15043666
https://doi.org/10.1016/j.rser.2014.01.035
https://doi.org/10.1016/j.energy.2022.123427
https://doi.org/10.1016/j.ref.2018.03.004
https://doi.org/10.3390/en15155379
https://doi.org/10.3390/en16041926
https://doi.org/10.1016/j.rser.2013.11.011
https://doi.org/10.1016/j.rser.2013.10.003
https://doi.org/10.1016/j.solener.2015.05.005
https://doi.org/10.1115/1.4038466
https://doi.org/10.1016/j.ijhydene.2021.12.018
https://doi.org/10.9790/9622
https://doi.org/10.1016/j.dib.2020.106476
https://doi.org/10.1016/j.rser.2014.05.079
https://doi.org/10.1016/j.ijepes.2018.09.030


Eng 2024, 5 717

112. Dubey, M.; Kumar, V.; Kaur, M.; Dao, T.P. A Systematic Review on Harmony Search Algorithm: Theory, Literature, and
Applications. Math. Probl. Eng. 2021, 2021, 5594267. [CrossRef]

113. Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch. Comput. Methods Eng. 2022,
29, 2531–2561. [CrossRef]

114. Wang, Y.; Wang, T.; Dong, S.; Yao, C. An Improved Grey-Wolf Optimization Algorithm Based on Circle Map. J. Physics Conf. Ser.
2020, 1682, 012020. [CrossRef]

115. Gupta, A.; Srivastava, S. Comparative Analysis of Ant Colony and Particle Swarm Optimization Algorithms for Distance
Optimization. Procedia Comput. Sci. 2020, 173, 245–253. [CrossRef]

116. Shen, D.; Ming, W.; Ren, X.; Xie, Z.; Zhang, Y.; Liu, X. A Cuckoo Search Algorithm Using Improved Beta Distributing and its
Application in the Process of edm. Crystals 2021, 11, 916. [CrossRef]

117. Kavadias, K.A.; Triantafyllou, P. Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the
Most-Used Software Tools. Energies 2021, 14, 8268. [CrossRef]

118. Ramli, M.S.; Wahid, S.S.A.; Hassan, K.K. A comparison of renewable energy technologies using two simulation softwares:
HOMER and RETScreen. AIP Conf. Proc. 2017, 1875, 030013. [CrossRef]

119. Long, Q.; Zhu, R.; Das, K.; Sørensen, P.E. Interfacing energy management with supervisory control for hybrid power plants. In
Proceedings of the 20th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on
Transmission Networks for Offshore Wind Power Plants (WIW 2021), Hybrid Conference, Berlin, Germany, 29–30 September
2021. [CrossRef]

120. Olatomiwa, L.; Mekhilef, S.; Ismail, M.I.; Moghavvemi, M. Energy management strategies in hybrid renewable energy systems: A
review. Renew. Sustain. Energy Rev. 2016, 62, 821–835. [CrossRef]

121. Wu, K.; Hua, Z. A multi-agent-based energy-coordination control system for grid-connected large-scale wind–photovoltaic
energy storage power-generation units. Sol. Energy 2014, 107, 245–259. [CrossRef]

122. Karami, N.; Moubayed, N.; Outbib, R. Energy management for a PEMFC–PV hybrid system. Energy Convers. Manag. 2014, 82,
154–168. [CrossRef]

123. Torreglosa, J.P.; García, P.L.; Fernández, L.M.S.; Jurado, F. Energy dispatching based on predictive controller of an off-grid wind
turbine/photovoltaic/hydrogen/battery hybrid system. Renew. Energy 2015, 74, 326–336. [CrossRef]

124. Behzadi, M.S.; Niasati, M. Comparative performance analysis of a hybrid PV/FC/battery stand-alone system using different
power management strategies and sizing approaches. Int. J. Hydrogen Energy 2015, 40, 538–548. [CrossRef]

125. García, P.L.; Garcia, C.A.; Fernández, L.M.S.; Llorens, F.; Jurado, F. ANFIS-Based control of a Grid-Connected hybrid system
integrating renewable energies, hydrogen and batteries. IEEE Trans. Ind. Inform. 2014, 10, 1107–1117. [CrossRef]

126. Agrawal, D.; Sharma, R.; Ramteke, M.; Kodamana, H. Hierarchical two-tier optimization framework for the optimal operation of
a network of hybrid renewable energy systems. Chem. Eng. Res. Des. 2021, 175, 37–50. [CrossRef]

127. Hashemi, M.; Zarif, M.H. A novel two-stage distributed structure for reactive power control. Eng. Sci. Technol. Int. J. 2020, 23,
168–188. [CrossRef]

128. Shibl, M.; Ismail, L.; Massoud, A.M. An Intelligent Two-Stage energy dispatch Management System for hybrid power plants:
Impact of machine learning deployment. IEEE Access 2023, 11, 13091–13102. [CrossRef]

129. He, Y.; Guo, S.; Dong, P.; Zhang, Y.; Huang, J.; Zhou, J. A state-of-the-art review and bibliometric analysis on the sizing
optimization of off-grid hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2023, 183, 113476. [CrossRef]

130. Zhu, J.; Yuan, Y.; Wang, W. Multi-stage active management of renewable-rich power distribution network to promote the
renewable energy consumption and mitigate the system uncertainty. Int. J. Electr. Power Energy Syst. 2019, 111, 436–446.
[CrossRef]

131. Forough, A.B.; Roshandel, R. Lifetime optimization framework for a hybrid renewable energy system based on receding horizon
optimization. Energy 2018, 150, 617–630. [CrossRef]

132. Bonkile, M.P.; Ramadesigan, V. Power management control strategy using physics-based battery models in standalone PV-battery
hybrid systems. J. Energy Storage 2019, 23, 258–268. [CrossRef]

133. Kosmadakis, I.; Elmasides, C. Towards performance enhancement of hybrid power supply systems based on renewable energy
sources. Energy Procedia 2019, 157, 977–991. [CrossRef]

134. Rullo, P.; Braccia, L.; Luppi, P.; Zumoffen, D.; Feroldi, D. Integration of sizing and energy management based on economic
predictive control for standalone hybrid renewable energy systems. Renew. Energy 2019, 140, 436–451. [CrossRef]

135. Eriksson, E.; Gray, E.M. Optimization of renewable hybrid energy systems—A multi-objective approach. Renew. Energy 2019, 133,
971–999. [CrossRef]

136. Yan, J.; Menghwar, M.; Asghar, E.; Panjwani, M.K.; Liu, Y. Real-time energy management for a smart-community microgrid with
battery swapping and renewables. Appl. Energy 2019, 238, 180–194. [CrossRef]

137. Vaccari, M.; Mancuso, G.; Riccardi, J.; Cantù, M.; Pannocchia, G. A Sequential Linear Programming algorithm for economic
optimization of Hybrid Renewable Energy Systems. J. Process Control 2019, 74, 189–201. [CrossRef]

138. Padrón, I.; Avila, D.; Marichal, G.; Rodríguez, J.Á.S. Assessment of Hybrid Renewable Energy Systems to supplied energy to
Autonomous Desalination Systems in two islands of the Canary Archipelago. Renew. Sustain. Energy Rev. 2019, 101, 221–230.
[CrossRef]

https://doi.org/10.1155/2021/5594267
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.1088/1742-6596/1682/1/012020
https://doi.org/10.1016/j.procs.2020.06.029
https://doi.org/10.3390/cryst11080916
https://doi.org/10.3390/en14248268
https://doi.org/10.1063/1.4998384
https://doi.org/10.1049/icp.2021.2634
https://doi.org/10.1016/j.rser.2016.05.040
https://doi.org/10.1016/j.solener.2014.05.012
https://doi.org/10.1016/j.enconman.2014.02.070
https://doi.org/10.1016/j.renene.2014.08.010
https://doi.org/10.1016/j.ijhydene.2014.10.097
https://doi.org/10.1109/TII.2013.2290069
https://doi.org/10.1016/j.cherd.2021.08.017
https://doi.org/10.1016/j.jestch.2019.03.003
https://doi.org/10.1109/ACCESS.2023.3243097
https://doi.org/10.1016/j.rser.2023.113476
https://doi.org/10.1016/j.ijepes.2019.04.028
https://doi.org/10.1016/j.energy.2018.02.158
https://doi.org/10.1016/j.est.2019.03.016
https://doi.org/10.1016/j.egypro.2018.11.265
https://doi.org/10.1016/j.renene.2019.03.074
https://doi.org/10.1016/j.renene.2018.10.053
https://doi.org/10.1016/j.apenergy.2018.12.078
https://doi.org/10.1016/j.jprocont.2017.08.015
https://doi.org/10.1016/j.rser.2018.11.009


Eng 2024, 5 718

139. Brka, A.; Kothapalli, G.; Al-Abdeli, Y.M. Predictive power management strategies for stand-alone hydrogen systems: Lab-scale
validation. Int. J. Hydrogen Energy 2015, 40, 9907–9916. [CrossRef]

140. Cano, M.H.; Kelouwani, S.; Agbossou, K.; Dubé, Y. Power management system for off-grid hydrogen production based on
uncertainty. Int. J. Hydrogen Energy 2015, 40, 7260–7272. [CrossRef]

141. Ju, C.; Wang, P.; Goel, L.; Xu, Y. A Two-Layer energy management system for microgrids with hybrid energy storage considering
degradation costs. IEEE Trans. Smart Grid 2018, 9, 6047–6057. [CrossRef]

142. Hamdi, M.; Salmawy, H.A.E.; Ragab, R. Optimum configuration of a dispatchable hybrid renewable energy plant using artificial
neural networks: Case study of Ras Ghareb, Egypt. AIMS Energy 2023, 11, 171–196. [CrossRef]

143. Cozzolino, R.; Tribioli, L.; Bella, G. Power management of a hybrid renewable system for artificial islands: A case study. Energy
2016, 106, 774–789. [CrossRef]

144. Zhang, W.; Maleki, A.; Nazari, M.A. Optimal operation of a hydrogen station using multi-source renewable energy (solar/wind)
by a new approach. J. Energy Storage 2022, 53, 104983. [CrossRef]

145. Li, Q.; Loy-Benitez, J.; Nam, K.; Hwangbo, S.; Rashidi, J.; Yoo, C. Sustainable and reliable design of reverse osmosis desalination
with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks. Energy 2019, 178,
277–292. [CrossRef]

146. Nogueira, C.E.C.; Vidotto, M.L.; Niedzialkoski, R.K.; De Souza, S.N.M.; Chaves, L.I.; Edwiges, T.; Santos, D.B.D.; Werncke, I.
Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the
south of Brazil. Renew. Sustain. Energy Rev. 2014, 29, 151–157. [CrossRef]

147. Lamedica, R.; Santini, E.; Ruvio, A.; Palagi, L.; Rossetta, I. A MILP methodology to optimize sizing of PV-Wind renewable energy
systems. Energy 2018, 165, 385–398. [CrossRef]

148. Rouholamini, M.; Mohammadian, M. Heuristic-based power management of a grid-connected hybrid energy system combined
with hydrogen storage. Renew. Energy 2016, 96, 354–365. [CrossRef]

149. García-Triviño, P.; Fernández-Ramírez, L.M.; Mena, A.J.G.; Llorens-Iborra, F.; García-Vázquez, C.A.; Jurado, F. Optimized
operation combining costs, efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and
hydrogen in grid-connected applications. Int. J. Hydrogen Energy 2016, 41, 23132–23144. [CrossRef]

150. Valverde, L.; Lucena, F.J.P.; Guerra, J.; Rosa, F. Definition, analysis and experimental investigation of operation modes in
hydrogen-renewable-based power plants incorporating hybrid energy storage. Energy Convers. Manag. 2016, 113, 290–311.
[CrossRef]

151. Ciupageanu, D.; Barelli, L.; Lazaroiu, G. Real-time stochastic power management strategies in hybrid renewable energy systems:
A review of key applications and perspectives. Electr. Power Syst. Res. 2020, 187, 106497. [CrossRef]

152. Das, B.; Tushar, M.S.H.K.; Hassan, R. Techno-economic optimisation of stand-alone hybrid renewable energy systems for
concurrently meeting electric and heating demand. Sustain. Cities Soc. 2021, 68, 102763. [CrossRef]

153. Priyanka, T.J.; Atre, S.; Billal, M.M.; Arani, M. Techno-economic analysis of a renewable-based hybrid energy system for utility
and transportation facilities in a remote community of Northern Alberta. Clean. Energy Syst. 2023, 6, 100073. [CrossRef]

154. Nirbheram, J.S.; Mahesh, A.; Bhimaraju, A. Techno-economic analysis of grid-connected hybrid renewable energy system
adapting hybrid demand response program and novel energy management strategy. Renew. Energy 2023, 212, 1–16. [CrossRef]

155. Abdelhak, B.J.; Essounbouli, N.; Hamzaoui, A.; Hnaien, F.; Yalaoui, F. Optimum sizing of hybrid PV/wind/battery using
Fuzzy-Adaptive Genetic Algorithm in real and average battery service life. In Proceedings of the 2014 International Symposium
on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 18–20 June 2014. [CrossRef]

156. Fetanat, A.; Khorasaninejad, E. Size optimization for hybrid photovoltaic-wind energy system using ant colony optimization for
continuous domains-based integer programming. Appl. Soft. Comput. 2015, 31, 196–209. [CrossRef]

157. Ahmadi, S.; Abdi, S. Application of the hybrid big bang-big crunch algorithm for optimal sizing of a stand-alone hybrid
pv/wind/battery system. Sol. Energy 2016, 134, 366–374. [CrossRef]

158. Sanajaoba, S.; Fernandez, E. Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable
energy System. Renew. Energy 2016, 96, 1–10. [CrossRef]

159. Peng, W.; Maleki, A.; Rosen, M.A.; Azarikhah, P. Optimization of a hybrid system for solar-wind-based water desalination by
reverse osmosis comparison of approaches. Desalination 2018, 442, 16–31. [CrossRef]

160. Khan, A.; Javaid, N. Jaya learning-based optimization for optimal sizing of stand-alone photovoltaic, wind turbine, and battery
systems. Engineering 2020, 6, 812–826. [CrossRef]

161. Javed, M.; Jurasz, J.; Ahmed, S.; Mikulik, J. Performance comparison of heuristic algorithms for optimization of hybrid off-grid
renewable energy systems. Energy 2020, 210, 118599. [CrossRef]

162. Guneser, M.T.; Elbaz, A.; Seker, C. Hybrid optimization methods application on sizing and solving the economic dispatch
problems of hybrid renewable power systems. In Applications of Nature-Inspired Computing in Renewable Energy Systems; IGI Global:
Hershey, PA, USA, 2022; pp. 136–165.

163. Jahannoosh, M.; Nowdeh, S.A.; Naderipour, A.; Kamyab, H.; Faraji Davoudkhani, I.; Jaromír Klemeš, J. New hybrid meta-heuristic
algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption
probability. J. Clean. Prod. 2021, 278, 123406. [CrossRef]

164. Tahani, M.; Babayan, N.; Pouyaei, A. Optimization of pv/wind/battery stand-alone system, using hybrid fpa/sa algorithm and
cfd simulation, case study: Tehran. Energy Convers Manag. 2015, 106, 644–659. [CrossRef]

https://doi.org/10.1016/j.ijhydene.2015.06.081
https://doi.org/10.1016/j.ijhydene.2015.03.157
https://doi.org/10.1109/TSG.2017.2703126
https://doi.org/10.3934/energy.2023010
https://doi.org/10.1016/j.energy.2015.12.118
https://doi.org/10.1016/j.est.2022.104983
https://doi.org/10.1016/j.energy.2019.04.114
https://doi.org/10.1016/j.rser.2013.08.071
https://doi.org/10.1016/j.energy.2018.09.087
https://doi.org/10.1016/j.renene.2016.04.085
https://doi.org/10.1016/j.ijhydene.2016.09.140
https://doi.org/10.1016/j.enconman.2016.01.036
https://doi.org/10.1016/j.epsr.2020.106497
https://doi.org/10.1016/j.scs.2021.102763
https://doi.org/10.1016/j.cles.2023.100073
https://doi.org/10.1016/j.renene.2023.05.017
https://doi.org/10.1109/speedam.2014.6872092
https://doi.org/10.1016/j.asoc.2015.02.047
https://doi.org/10.1016/j.solener.2016.05.019
https://doi.org/10.1016/j.renene.2016.04.069
https://doi.org/10.1016/j.desal.2018.03.021
https://doi.org/10.1016/j.eng.2020.06.004
https://doi.org/10.1016/j.energy.2020.118599
https://doi.org/10.1016/j.jclepro.2020.123406
https://doi.org/10.1016/j.enconman.2015.10.011


Eng 2024, 5 719

165. Ma, G.; Guchao, X.; Chen, Y.; Rong, J. Multi-objective optimal configuration method for a standalone wind-solar-battery hybrid
power system. IET Renew Power Gener 2016, 11, 194–202. [CrossRef]

166. Senthil, K.J.; Charles, R.S.; Srinivasan, D.; Venkatesh, P. Hybrid renewable energy-based distribution system for seasonal load
variations. Int. J. Energy Res. 2018, 42, 1066–1087. [CrossRef]
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