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Abstract: Obesity, a multifactorial disorder, has been associated with alterations in metal metabolis-
mand epigenetic modifications. This pilot case–control study aimed to investigate serum cobalt
concentrations and associated DNA methylation patterns in women with obesity. Serum cobalt
levels were measured using inductively coupled plasma mass spectrometry (ICP-MS), revealing
significantly higher cobalt concentrations in participants with normal weight than in participants
with obesity. Additionally, DNA methylation analysis identified differentially methylated positions
(DMPs) associated with cobalt exposure, and DMPs between groups highlighted hypomethylation in
the top DMPs in individuals with obesity. Functional enrichment analysis of these DMPs unveiled
potential pathways implicated in apoptosis, cancer, and metabolic signaling, warranting further
investigation into the mechanistic links. This study provides preliminary insights into the interplay
between cobalt exposure, DNA methylation, and potential implications for obesity management.

Keywords: cobalt; DNA methylation; obesity; inductively coupled plasma mass spectrometry;
epigenetics

1. Introduction

Obesity is a significant risk factor for chronic diseases, including cardiovascular and
heart diseases. Rates of obesity are growing in adults and children. The percentage of
adults with obesity more than doubled from 7% to 16% globally [1]. The prevalence of
obesity in the US was 41.9% in 2017 until 2020, according to the CDC [2]. Obesity is a
global health concern characterized by excessive fat accumulation resulting from complex
interactions between genetic, environmental, and lifestyle factors [3].

While the etiology of obesity is multifaceted, recent studies have implicated environ-
mental factors in its pathogenesis, including a deficiency of essential minerals. Minerals
can alter glucose’s metabolic inflammation and endocrine control and may be associated
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with obesity [4]. A cross-sectional study found a correlation between the level of dietary
minerals and the odds of obesity in childhood, including Fe, Zn, Cu, and Na intake [5].

Metals are dispersed in the environment (via soil, water, air, and dust), consequently
being dispersed in the human food chain and in the water [6]. Cobalt, a transition metal, is
ubiquitous in the environment and is found in various industrial processes, dietary sources,
and medical implants [7]. Cobalamin, known as Vitamin B12, is a natural, non-toxic,
environmentally friendly cobalt complex. It is a member of the broader cobamide family
that all contain the same corrin ring with a cobalt ion ligand. The relationship between the
cobalt ion and the corrin ring is important with respect to its biological function, including
DNA synthesis and cellular regulation [8]. Emerging evidence suggests the potential role
of cobalt exposure in metabolic dysfunction and obesity development. Levels of pollutants
and cobalt were associated with lower BMI. Copper and manganese were found to have
strongly positive associations with obesity status, and cobalt was found to have negative
associations with obesity status [9,10]. An epidemiological study observed that cobalt was
inversely associated with body mass index (BMI) and waist circumference [11,12].

Heavy metals can induce epigenetic alterations and disrupt the epigenome. Recently,
38 studies focused on epigenetics and metal-induced neurotoxicity, highlighting potential
epigenetic mechanisms in etiology [13]. However, the relationship between cobalt and
obesity is rarely explored in an epigenetic context. Furthermore, epigenetic mechanisms,
particularly DNA methylation, have been implicated in obesity susceptibility and metabolic
dysregulation. This case–control study aimed to analyze the cobalt serum concentration in
women with obesity and check the DNA methylation signatures associated with this metal,
as well as the most differentially methylated positions in patients with obesity that were
correlated with this metal.

2. Materials and Methods
2.1. Population and Sampling

This is a pilot case–control study. A total of 33 Brazilian women participated in this
study, 17 with normal weight and 16 with obesity. Adult women with no other diagnosed
diseases, non-smokers, and those who did not consume alcoholic beverages participated
in this study. The evaluations occurred at the Hospital das Clínicas de Ribeirão Preto of
the University of São Paulo (HCRP-USP). It is worth noting that the sample selection was
made by convenience.

2.2. Ethical Aspects

The HCRP-USP ethics committee approved this study, with CAAE license number
14275319.7.0000.5440. All participants were informed about the study’s objective and
signed the research participation form. We adopted the principles of the Declaration of
Helsinki for this study. This clinical study is registered under the universal trial number
U1111-1267-7108.

2.3. Epigenetic Analysis

Total leukocyte DNA was converted to bisulfite using the EZ DNA Methylation Kit
(Zymo Research Corporation, Irvine, CA, USA). After conversion, 500 ng were hybridized
with the Infinium Human Methylation 450k BeadChip (IHM450K Illumina, Inc., San Diego,
CA, USA). After following the protocol recommendations, we obtained the images using
the iScan system. We extracted intensities using Genome Studio (Illumina, Inc., San Diego,
CA, USA). This BeadChip contains genic and intergenic regions [14], and all targets can be
verified in the manufacturer’s documentation.

2.4. Bioinformatic Analysis

We performed the analysis using R version 3.6.2 and the ChAMP package available
in Bioconductor [15]. The raw intensity data from the IHM450K idats files were loaded
into the R package, ChAMP, and normalized by cell type using the function myRefBase
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<- champ.refbase [16]. We then used the DMP <- champ.DMP function to calculate linear
regressions to verify the identification of differentially methylated positions (DMPs) [17]
associated with exposure to cobalt. The DMPs between groups were recovered by the
limma function initially available in the Champ Package. Functional enrichment analysis
of DMPs was conducted using the String database to elucidate the biological pathways
impacted by cobalt-induced DNA methylation changes.

2.5. Cobalt Assessment

The determination of the total concentration of cobalt (Co59) in serum was performed
by an inductively coupled plasma mass spectrometer (ICP-MS), fitted with a dynamic
reaction cell (DRC) (Perkin Elmer Sciex Norwalk, CT, USA), following the protocol previ-
ously described [18]). The spectrometer was an ICP-MS ELAN 6100 Sciex® (PerkinElmer
Instruments, Ribeirão Preto, SP, Brazil). Samples were diluted in a ratio of 1:50 with a
solution containing Triton X-100 0.01% (v/v), HNO3 0.05% (v/v), and 10 mg/L rhodium
(Rh) as an internal standard. The concentration of the analytical calibration standards
ranged from 0 to 50 µg/L.

2.6. Statistical Analysis

We performed statistical analysis using SPSS software (v 25.0, Chicago, IL, USA).
The Shapiro–Wilk test was adopted as a normality test. We adopted the Student’s T or
Mann–Whitney test due to the normality presented in the data. These tests were adopted to
verify the differences between the means between the groups, and we considered p < 0.05
as significant.

3. Results

Table 1 shows that serum cobalt levels were significantly higher in participants with
normal weight compared to participants with obesity (p < 0.05).

Table 1. Clinical parameters.

Essential Obesity
(n = 16)

Normal Weight
(n = 17) Reference

Age 38.6 ± 11.6 39.1 ± 13.4 -

BMI 45.1 ± 5.4 a 22.6 ± 1.9 Obesity: BMI ≥ 30 kg/m2

Normal weight: 18.5 > BMI < 25 kg/m2

Co (µg/L) 0.46 ± 0.08 a 0.64 ± 0.14 0.30–1.20 b

Co: Cobalt. a: significant difference (p < 0.05). BMI: body mass index. Age was not different between groups.
b [19]

DNA methylation analysis revealed differential methylation patterns between patients
with obesity and those with normal weight (n = 3329, Figure 1). There were 839 sites associ-
ated with cobalt, and 143 sites overlapped with DMPs Ob. and DMPs Cobalt (Figure 1).
Table 2 shows information about the cobalt-related sites, and Table 3 highlights the DNA
methylation of the top DMPs. They were predominantly hypomethylated in promoter
regions. Functional enrichment analysis identified several KEGG pathways enriched for
the genes presented in Table 3. We hypothesize that these genes enriched from cobalt-
associated DMP annotation involve different pathways, including apoptosis, cancer, and
metabolic signaling pathways.
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cg02951206 3 MED12L TSS1500 −0.02 <0.001 Hypomethylated 0.031 

cg09658576 7 TBXAS1 TSS200 −0.02 <0.001 Hypomethylated 0.016 

cg22280792 17 ENGASE TSS1500 −0.02 <0.001 Hypomethylated 0.049 

cg02860394 2 RNF103 TSS200 −0.02 <0.001 Hypomethylated 0.038 

cg19921261 10 C10orf125 TSS200 −0.02 <0.001 Hypomethylated 0.025 

cg05010219 10 PWWP2B TSS1500 −0.02 <0.001 Hypomethylated 0.046 

cg13175981 1 MCL1 TSS1500 −0.02 <0.001 Hypomethylated 0.012 
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cg23057220 19 MUM1 TSS200 0.07 <0.001 Hypermethylated 0.048 

cg24127861 14 REC8 TSS1500 0.06 <0.001 Hypermethylated 0.044 

cg10477989 11 C11orf24 TSS200 0.05 <0.001 Hypermethylated 0.012 

Figure 1. DMPs related to obesity and cobalt. NOTE: DMPs Ob contain 3329 DMPs, differentially
methylated in individuals with obesity, and DMPs Cobalt are the DMPs related to cobalt. Those
values were retrieved by Limma function and linear regression, respectively.

Table 2. Cobalt-related Differentially Methylated Positions (DMPs).

Metal DMPs
(Effect) GR (%)

DHS
Enhancer

BOTH
FDR1 Genes

(n) Analysis Termescription Term ID FDR 2

Cobalt 839 728 (86.8%)
143
92
21

4.2 ×
10−3 712 Keywords

Methylation
Chromatin regulator

Transcription
regulation

KW-0488
KW-0156
KW-0805

0.0024
0.0272
0.0392

Note: Co: cobalt. DMP: differentially methylated position, obtained by linear regression analysis, p < 0.050, FDR <
0.050 (Benjamini–Hochberg analysis). GR (%): genic region percentage. DHS: DNase hypersensitive sites. FDR1:
false discovery rate (FDR) in top differentially methylated positions (DMPs). Genes (n) = number of mapped
genes. Term ID: enrichment identification term. FDR2: enrichment-generated false discovery rate (FDR) from
each database. KW: keyword. KEGG: Kyoto Encyclopedia of Genes and Genomes.

Table 3. Top common CpGs independently associated with cobalt, differentially methylated in
patients with obesity. Located in the promoter region.

Metal CpG ID CHR Gene Feature ∆β p-Value Methylation
Status

p-Adjusted
Value

Cobalt

cg16020249 1 AHDC1 TSS1500 −0.02 <0.001 Hypomethylated 0.048
cg16108132 10 ANXA7 TSS1500 −0.02 <0.001 Hypomethylated 0.048
cg02951206 3 MED12L TSS1500 −0.02 <0.001 Hypomethylated 0.031
cg09658576 7 TBXAS1 TSS200 −0.02 <0.001 Hypomethylated 0.016
cg22280792 17 ENGASE TSS1500 −0.02 <0.001 Hypomethylated 0.049
cg02860394 2 RNF103 TSS200 −0.02 <0.001 Hypomethylated 0.038
cg19921261 10 C10orf125 TSS200 −0.02 <0.001 Hypomethylated 0.025
cg05010219 10 PWWP2B TSS1500 −0.02 <0.001 Hypomethylated 0.046
cg13175981 1 MCL1 TSS1500 −0.02 <0.001 Hypomethylated 0.012
cg00986800 3 FNDC3B TSS200 −0.02 <0.001 Hypomethylated 0.008
cg23057220 19 MUM1 TSS200 0.07 <0.001 Hypermethylated 0.048
cg24127861 14 REC8 TSS1500 0.06 <0.001 Hypermethylated 0.044
cg10477989 11 C11orf24 TSS200 0.05 <0.001 Hypermethylated 0.012

Note: CpG ID: Identification number for each CpG site, CHR: Chromossome, ∆β: difference between the beta
values of normal weight group vs. group with obesity. TSS1500: Transcription Starting Site 1500 (refers to
promoter region), TSS200: Transcription Starting Site 200 (refers to promoter region).

4. Discussion

The study participants showed a significant difference in BMI—the group of patients
with obesity was classified as grade III obesity, while the normal weight group was placed
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into the eutrophic classification based on BMI. Arain and Neitzel, 2019, reported a serum
cobalt range of 0.3–1.2 µg/L, and both groups had cobalt levels within the expected
range [19]. However, there was a difference between serum cobalt levels in the groups of
patients with obesity and those with normal weight, with higher levels in patients with
normal weight. Some studies reported a negative correlation between cobalt and obesity.
Therefore, patients with a high BMI had lower levels of cobalt, suggesting that cobalt levels
can be a risk factor for the development of obesity [9,11,20]. Inorganic cobalt appears to
be preventive in obesity-related diseases by increasing leptin, adiponectin, and HDL [21].
In addition to the negative correlation with obesity, another study showed a negative
correlation between urinary cobalt and insulin resistance [22].

This pilot study provides preliminary evidence of an association between serum cobalt
concentrations, DNA methylation patterns, and obesity. The observed hypomethylation of
specific genomic regions suggests a potential mechanism through which cobalt exposure
may influence metabolic processes underlying obesity. Moreover, the enrichment of cobalt-
associated DMPs in pathways related to apoptosis and cancer highlights the complexity
of cobalt’s effects on cellular homeostasis and suggests potential implications for obesity-
related comorbidities. Further research incorporating larger sample sizes and longitudinal
designs is warranted to validate these findings and elucidate the mechanistic links between
cobalt exposure, epigenetic alterations, and obesity development.

Excess body fat is associated with epigenetic signatures in patients with obesity and its
metabolic consequences [23,24]. Our study found 3329 obesity-related DMPs. Furthermore,
the findings involved signatures, with the epigenome related to cobalt (839 DMPs), with
143 DMPs being common between obesity and cobalt. One study in the literature reported
a relationship between cobalt and DNA methylation in pregnant women [25], and another
study reported a protective effect of high levels of cobalt in plasma via AgeAccel, Hor-
vath [26]. However, no studies have evaluated the influence of cobalt on DNA methylation
in patients with obesity.

The presence of cobalt in this study was associated with CpG sites, suggesting a poten-
tial role in modulating DNA methylation. It was highlighted that cobalt, particularly in the
form of methylcobalamin, a vitamin B12 derivative, acts as a cofactor for enzymes involved
in DNA methylation [27]. The lower concentration of cobalt observed in individuals with
obesity was hypothesized to contribute to abnormal DNA methylation patterns. It was
suggested that different forms of cobalt exposure, including dietary intake and environ-
mental contamination, could influence DNA methylation and subsequently impact various
biological pathways [28].

Functional enrichment analysis revealed that cobalt-associated CpG sites were related
to methylation, chromatin, and transcription regulation processes. It was suggested that
cobalt might influence methylation patterns, potentially affecting chromatin structure and
gene expression regulation [29].

This study discussed potential health implications of cobalt-induced DNA methyla-
tion alterations, including effects on apoptosis, necrosis pathways, cancer, and metabolic
pathways. The findings suggested that cobalt exposure, particularly in certain forms, might
exert endocrine-disrupting effects and influence cellular processes related to disease devel-
opment [30,31]. Overall, the discussion highlighted the importance of considering cobalt
exposure to DNA methylation patterns and its potential implications for human health,
particularly obesity and metabolic disorders.

The impact of cobalt chloride (CoCl2) on obesity has been demonstrated in the study
by Kawakami et al. (2012) [32], which showed that cobalt significantly affects white adipose
tissue in mice fed a high-fat diet, reducing adipocyte size and weight. Cobalt administration
was also associated with increases in serum leptin, adiponectin, and HDL cholesterol levels,
as well as the normalization of glucose levels. These effects suggest the beneficial role
of cobalt in improving metabolic health markers and activating AMPK in key tissues,
potentially offering a preventative approach to obesity-related diseases. This finding is in
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stark contrast to the adverse effects noted with mercury, highlighting cobalt’s therapeutic
potential in obesity management [32].

Further evidence of cobalt’s role in obesity management comes from Tetsuka et al.
(2022) [33], who found a significant inverse correlation between urinary cobalt levels and
BMI within the Tokyo Teen Cohort, suggesting that cobalt may reduce obesity risk in early
adolescents, particularly males. This underscores the need for additional research to verify
these outcomes and explore the mechanisms involved [33].

It is hypothesized that the lower levels of cobalt in individuals with obesity may
be related to the quality of their diet. Cobalt, primarily known for its crucial role in the
formation of vitamin B12, is vital for nerve function, DNA production, and red blood cell
formation. Vitamin B12, which contains cobalt, is found in significant amounts in animal
products such as meat, fish, dairy, and eggs. Although only small amounts are required,
cobalt’s presence in the diet via vitamin B12 is essential for healthy metabolic processes,
including the synthesis of fatty acids and energy production. Ensuring an adequate intake
of foods rich in vitamin B12 is important for maintaining sufficient cobalt levels to support
these critical bodily functions [7].

The sample size in this pilot study and the lack of data regarding the nutritional intake
of cobalt are a limitation and may restrict further adjustments, but to eliminate this bias,
we only included women to avoid possible sexual effects in relation to cobalt exposure.
The strengths of this study are the extensive analysis of DNA methylation and its link to
cobalt in obese and normal-weight women, presenting new epigenetic insights into cobalt
exposure. The findings of this study are relevant for the Brazilian population and the world,
as developing countries end up being more susceptible to the presence of toxic metals in
drinking water.

5. Conclusions

This pilot case–control study provides preliminary evidence suggesting an association
between serum cobalt concentrations, DNA methylation patterns, and obesity in women.
The findings underscore the need for further investigation into the potential role of environ-
mental exposures, such as cobalt, in modulating epigenetic mechanisms underlying obesity
pathogenesis. Understanding the interplay between cobalt exposure, DNA methylation,
and obesity may have important implications for preventive and therapeutic strategies
targeting obesity and its associated complications.
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