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Abstract: This work developed a conductive ink composed of carbonaceous material for printing
electrochemical sensors. The optimized ink comprises graphite, carbon black, and nail polish,
respectively (35.3:11.7:53%), as well as acetone as a solvent. The proportion was optimized with
consideration of the binder’s solubilization, the ink’s suitability for the screen-printing process, and
lower electrical resistance. The materials used, and the resulting ink, were analyzed by way of Fourier
transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Raman spectroscopy,
electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The charge transfer
resistance (Rct) obtained was 0.348 kΩ. The conductive ink was used to print an electrode on a PET
substrate, and a flexible and disposable electrode was obtained. The electroactive area obtained was
13.7 cm2, which was calculated by the Randles-Sevcik equation. The applicability of the device was
demonstrated with a redox probe, providing a sensitivity of 0.02 µ A L mmol−1. The conductive ink
has adequate homogeneity for producing electrodes using the screen-printing technique, with a low
estimated production cost of $ 0.09 mL−1.
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1. Introduction

The development of conductive inks has been gaining prominence due to the growing
scientific interest in flexible printed electronics [1–5]. Printing techniques are employed to
transfer ink onto a substrate. Printing technology helps in generating customized patterns
of electrical properties on different substrates such as polymers, ceramic materials, textiles,
and paper [6].

In this sense, the possibility of using conductive inks in the development of elec-
trochemical sensors printed on flexible substrates is especially attractive, as it allows for
the creation of uniform sensors [7–10]. Printed electrodes are an alternative to the use of
conventional electrodes in electroanalysis, presenting the advantage of offering simpler
systems, with a more compact electrode arrangement, suitable for the development of
portable sensors. However, the advanced state of electrochemical sensor development
requires that sensing platforms not only exhibit notable analytical figures of merit but also
have characteristics appropriate for a commercially printed sensor, such as robustness [1,11].
The device cannot be influenced by small variations in its analytical parameters and must
provide a stable signal throughout its use. Therefore, the production of conductive inks is
directly related to the efficiency of the electrochemical sensor.

Conductive inks are suspensions of conductive material/composite in an appropriate
solvent or solvent mixtures containing binding agents, surfactants, or polymers that act
as stabilizers. In addition to high electrical conductivity, conductive inks must have good
stability and adhesion to various types of substrates in order to maintain their electrical
conductivity and chemical inertness after printing and post-printing processing and must
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dry densely on the substrate, resulting in a film adherent and uniform conductor [12].
Commercial conductive inks meet most of these requirements. However, the biggest
limitation of their use in the production of electrochemical sensors is their high cost.
This limitation encouraged researchers to search for new inks with different conductive
materials [13].

Regarding conductive materials, the most commonly used are carbon materials, such
as graphite, carbon black, graphene, and carbon nanotube [14–16]. Metal-based conductive
inks generally have better electrical conductivity. However, they are more expensive and
less biocompatible compared to carbon-based conductive inks. Furthermore, metal-based
conductive inks are less stable, as metallic nanoparticles are more susceptible to oxidation
and aggregation [12].

Graphite is formed by layers of sp2 hybridized carbons in the form of trigonally linked
planar hexagonal rings. These layers, also known as graphene sheets, are joined by σ-type
covalent bonding. The conductivity of graphite is similar to metallic conductors because its
structure contains sp2 hybridized carbon with delocalized π- electrons. Each carbon atom
is covalently bonded to three of its neighboring atoms. The fourth electron in each atom is
free to move, making graphite a good conductor of electricity and extremely useful in the
manufacture of conductive inks [17].

Carbon black (CB) is a generic term used to identify a wide variety of carbonaceous
materials in the form of spherical particles with sizes in the range of 10–100 nm, produced
through the controlled thermal decomposition of aromatic hydrocarbons [11]. CB is a
category of carbon nanomaterial that has a high surface area and improves electrode charge
transport. CB-modified electrodes exhibit unique electrochemical and electronic properties
and are widely used in electrochemical sensing applications due to their good conductivity,
low toxicity, biocompatibility, and being a low-cost nanomaterial [18].

In this context, Freitas and collaborators report the development of a flexible electro-
chemical sensor printed on an Ecoflex™ (Macungie, PA, USA) substrate with a conductive
ink composed of craft glue, graphite, acetone, ethyl acetate, and glycerin. After optimizing
the conditions, using square wave voltammetry, the sensor showed a linear response range
for paracetamol from 7.0 to 100 µmol L−1 and for dopamine from 3.0 to 100 µmol L−1, with
detection limits of 1.4 µmol L−1 and 78 nmol L−1, respectively. The sensor was applied
successfully for the detection of paracetamol and dopamine in artificial sweat with excellent
recovery (from 90 to 110%) [19].

In the work carried out by dos Santos and collaborators, printed electrodes were devel-
oped, via screen printing, with carbon black and cellulose acetate to determine ascorbic acid
by chronoamperometry and cadmium and lead ions using anodic redissolution voltamme-
try. Detection limits of 3.1 × 10−5 mol L−1, 5.8 × 10−7 mol L−1, and 6.8 × 10−7 mol L−1

were found for the determination of ascorbic acid, cadmium ions (II), and lead (II), respec-
tively [11].

Carvalho et al. developed a conductive ink composed of glass varnish and carbon
nanotubes for the construction of an electrochemical sensor printed on polyethylene tereph-
thalate (PET) sheets. The sensor was applied to determine 3-nitro-L-tyrosine (3-NLT),
an amino acid present in biological fluids that can be used as an indicator of oxidative
stress, by square wave voltammetry (SWV). Under optimized conditions, the sensor pre-
sented a linear response range of 0.70 to 100.0 µmol L−1 and a limit of detection (LOD) of
0.53 µmol L−1. The sensor was applied to the analysis of 3-NLT in synthetic urine, with
excellent recovery values (from 95.2 to 106.0%) [20].

Although the literature describes various sensors printed with different conductive
inks, there is a challenge in producing commercial devices for real applications. Much
of this challenge is associated with the unsatisfactory performance of the sensors and
limitations regarding large-scale production at reduced cost [21–24].

Therefore, the objective of the present work was to develop an easy-to-prepare con-
ductive ink composed of graphite and carbon black as conductive materials and nail polish
as a binder, dispersed in acetone as a solvent. The ink was produced with easily accessible
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materials, with consideration that the production of the electrochemical sensors would be
produced by screen printing. In our research of the literature, the proposal of a conductive
ink with this composition was not found.

2. Materials and Methods
2.1. Reagents

Acetone, pure powdered graphite (98% purity), bibasic sodium phosphate heptahy-
drate (Na2HPO4.7H2O), and monobasic sodium phosphate monohydrate (NaH2PO4.H2O)
were all purchased from Synth® (Diadema, SP, Brazil). Nail polish was purchased from
Cora (São Paulo, SP, Brazil), and potassium ferrocyanide (K4[Fe(CN)6]) was purchased
from Dinâmica Química (Diadema, SP, Brazil). Carbon black powder was purchased from
Cabot (Mauá, SP, Brazil). All chemical reagents used were of analytical grade. The solutions
were all prepared in purified water by Millipore®(Burlington, MA, USA) Milli-Q system.

2.2. Preparation of the Conductive Ink and Printing of Electrodes

The conductive ink was prepared by mixing 1.500 g of graphite (GR), 0.500 g of carbon
black (CB), and 2.250 g of nail polish (NP) and was mixed manually using a glass stick.
Then, 5 mL of acetone was added and mixed until the ink was completely homogenized.
The ink obtained was called GR:CB and was used immediately in order to avoid drying
out. Figure 1 shows the steps for manufacturing the conductive ink. The proportions of
graphite, carbon black, and nail polish were previously optimized.

Analytica 2023, 4, FOR PEER REVIEW 3 
 

 

accessible materials, with consideration that the production of the electrochemical sensors 

would be produced by screen printing. In our research of the literature, the proposal of a 

conductive ink with this composition was not found. 

2. Materials and Methods 

2.1. Reagents 

Acetone, pure powdered graphite (98% purity), bibasic sodium phosphate 

heptahydrate (Na2HPO4.7H2O), and monobasic sodium phosphate monohydrate 

(NaH2PO4.H2O) were all purchased from Synth®  (Diadema, SP, Brazil). Nail polish was 

purchased from Cora (São Paulo, SP, Brazil), and potassium ferrocyanide (K4[Fe(CN)6]) 

was purchased from Dinâmica Química (Diadema, SP, Brazil). Carbon black powder was 

purchased from Cabot (Mauá, SP, Brazil). All chemical reagents used were of analytical 

grade. The solutions were all prepared in purified water by Millipore®  (Burlington, MA, 

USA) Milli-Q system. 

2.2. Preparation of the Conductive Ink and Printing of Electrodes 

The conductive ink was prepared by mixing 1.500 g of graphite (GR), 0.500 g of 

carbon black (CB), and 2.250 g of nail polish (NP) and was mixed manually using a glass 

stick. Then, 5 mL of acetone was added and mixed until the ink was completely 

homogenized. The ink obtained was called GR:CB and was used immediately in order to 

avoid drying out. Figure 1 shows the steps for manufacturing the conductive ink. The 

proportions of graphite, carbon black, and nail polish were previously optimized. 

 

Figure 1. Illustrative diagram showing the steps involved in the preparation of the conductive ink 

using graphite, carbon black, nail polish, and acetone. 

The electrodes were printed on commercial polyethylene terephthalate (PET) sheets, 

previously cleaned and sanded. The adhesive vinyl mold was cut by a cutter plotter. The 

mold was designed with the aid of CorelDraw X6 software. After cutting, the inner part 

of the mold was removed and then glued onto the surface of the PET sheet. A quantity of 

ink was deposited on the mold and then spread over the design with the aid of a spatula. 

Subsequently, the mold was removed before the ink was completely dry. The geometric 

area was delimited by applying a layer of nail polish between the contact that will be 

inserted in the sample and the electrical contacts connected to the power source, to 

prevent the sample solution from traveling to the electrical contacts. Electrochemical and 

morphological characterizations were performed after total drying of the device. 

2.3. Characterization Techniques 

Samples of GR, CB, NP, and conductive ink were characterized using different 

techniques. The FTIR spectra were recorded in the Perkin-Elmer (São Paulo, SP, Brazil) 

model Spectrum GX FTIR-8300 series on KBr pallets. For scanning electron microscopy 

(SEM), the samples were fixed in a stub using a double-sided conductive carbon tape from 

Figure 1. Illustrative diagram showing the steps involved in the preparation of the conductive ink
using graphite, carbon black, nail polish, and acetone.

The electrodes were printed on commercial polyethylene terephthalate (PET) sheets,
previously cleaned and sanded. The adhesive vinyl mold was cut by a cutter plotter. The
mold was designed with the aid of CorelDraw X6 software. After cutting, the inner part
of the mold was removed and then glued onto the surface of the PET sheet. A quantity
of ink was deposited on the mold and then spread over the design with the aid of a
spatula. Subsequently, the mold was removed before the ink was completely dry. The
geometric area was delimited by applying a layer of nail polish between the contact that
will be inserted in the sample and the electrical contacts connected to the power source, to
prevent the sample solution from traveling to the electrical contacts. Electrochemical and
morphological characterizations were performed after total drying of the device.

2.3. Characterization Techniques

Samples of GR, CB, NP, and conductive ink were characterized using different tech-
niques. The FTIR spectra were recorded in the Perkin-Elmer (São Paulo, SP, Brazil) model
Spectrum GX FTIR-8300 series on KBr pallets. For scanning electron microscopy (SEM), the
samples were fixed in a stub using a double-sided conductive carbon tape from TEDPELLA.
Then, the set was coated with gold in a plasma metallizer: Sputter Q150R ES metallizer
from Quorum Technologies (Puslinch, ON, Canada). After metallization, the images were
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obtained using a TESCAN (São Bernardo do Campo, SP, Brazil) VEGA3 LMH scanning
electron microscope, using an acceleration voltage of 30 kV.

Raman spectra were obtained on a Senterra Raman spectrometer Bruker (Atibaia, SP,
Brazil) equipped with a CCD detector. The sample was excited with a laser at a wavelength
of 633 nm and power of 2 mW, and the focusing of the laser beam and collection of back-
scattered light were obtained using an optical microscope (OLYMPUS BX51) coupled to the
spectrometer.

The techniques used for the electrochemical studies were cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS). All measurements were performed using a
Metron Autolab (Herisau, Switzerland) model PGSTAT204 potentiostat with NOVA 2.1.6
software. For the measurements, an electrochemical cell was employed, using an electrode
printed with the obtained ink, which contained the auxiliary, work, and quasi-reference
electrodes. The electrochemical behavior was performed using 0.1 M phosphate buffer
(pH 7.0) and 2.0 mM of K4[Fe(CN)6], and 0.1 M KCl and 5.0 mM of K4[Fe(CN)6]3−/4−

equimolar were used for the impedance.

3. Results
3.1. Conductivity Evaluation

Simple experiments were carried out to demonstrate the conductivity of the developed
ink. An electrode printed with ink deposited on a PET support was used. The first
experiment used the device as a conductive path to light a light-emitting diode (LED), as
shown in Figure 2A. The ink produced was conductive when lighting the LED connected
to a battery. When an electric current passes through a conductive material, it creates a
magnetic field around it. Thus, in the second experiment, it was possible to observe that
the needle of a compass deflected from its equilibrium position due to the conductive ink,
through which an electric current passed next to it (Figure 2B). The experiments made it
possible to investigate the electrical nature of the conductive ink, through observations of
electron transfer. The experiments carried out, although simple, showed perspectives on
the use of the ink developed for electrode printing. Voltammetric studies were subsequently
carried out using electrodes produced with conductive ink.
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Figure 2. (A) Conductivity experiment using an LED. (B) Creation of a magnetic field with electricity.

3.2. Flexibility of the Ink on the Substrate

The resistance of the ink to mechanical forces after application to the support for the
development of the printed sensor is of utmost importance (Figure 3). Thus, the devices
were subjected to folding, and it was observed that the printed ink adhered well to the
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surface, without the presence of cracks. These results indicate that ink can be applied for
electrode printing, resulting in a flexible and homogeneous electrode.
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Figure 3. Demonstration of ink flexibility on the printed electrode.

3.3. Development and Electrochemical Characterization of Conductive Ink

The conductive ink consists of a composite of graphite powder, carbon black, and
nail polish. The solvent used was acetone, which gives the nail polish excellent solubility,
giving the ink good homogeneity and suitability to the desired printing process.

The ink obtained was used to print an electrode containing three electrodes: auxiliary,
work, and reference. From this, the electrochemical performance was evaluated using cyclic
voltammetry (CV) in the absence and presence of the probe [Fe(CN)6]−4. It can be observed
in the voltammograms (Figure 4) that in the absence of the probe, there are no evident
peaks and a low background current, indicating that the ink does not present electroactive
characteristics in the range of applied potential. Therefore, in the presence of the probe, it
is possible to observe well-defined redox peaks characteristic of [Fe(CN)6]−4, showing the
suitability of the conductive ink.
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Figure 4. Electrochemical behavior of GR:CB ink in the presence and absence of 2.0 mM of
K4[Fe(CN)6] in PBS (0.1 M; pH 7.0).

The behavior of a conductive ink composed of only graphite, nail polish, and acetone
was also evaluated, as described in the literature [17]. A comparative study was carried out
to verify the influence of carbon black for application in the development of conductive inks
(Figure 5). The prepared ink with CB showed a better voltammetric profile in the faradaic
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processes related to the oxidation and reduction of the ferrocyanide/ferricyanide pair and
a smaller difference between the anodic and cathodic peak potentials (reversibility) [7,11].

Analytica 2023, 4, FOR PEER REVIEW 6 
 

 

 

Figure 4. Electrochemical behavior of GR:CB ink in the presence and absence of 2.0 mM of 

K4[Fe(CN)6] in PBS (0.1 M; pH 7.0). 

The behavior of a conductive ink composed of only graphite, nail polish, and acetone 

was also evaluated, as described in the literature [17]. A comparative study was carried 

out to verify the influence of carbon black for application in the development of 

conductive inks (Figure 5). The prepared ink with CB showed a better voltammetric 

profile in the faradaic processes related to the oxidation and reduction of the 

ferrocyanide/ferricyanide pair and a smaller difference between the anodic and cathodic 

peak potentials (reversibility) [7,11]. 

 

Figure 5. Electrochemical behavior of GR and GR:CB ink in the presence of 2.0 mM of K4[Fe(CN)6] 

in PBS (0.1 M; pH 7.0). 

Carbon black is a conductive material that provides the ink with better electrical 

conductivity, thus improving the transfer of electrons at the electrode-solution interface 

[25]. Thus, the results presented indicate that GR:CB ink has great potential for the 

manufacture of electrochemical sensors. 

Figure 5. Electrochemical behavior of GR and GR:CB ink in the presence of 2.0 mM of K4[Fe(CN)6] in
PBS (0.1 M; pH 7.0).

Carbon black is a conductive material that provides the ink with better electrical
conductivity, thus improving the transfer of electrons at the electrode-solution interface [25].
Thus, the results presented indicate that GR:CB ink has great potential for the manufacture
of electrochemical sensors.

The resistance to electronic transfer of the inks was also evaluated by electrochemical
impedance spectroscopy (EIS). Studies using EIS were conducted in 0.1 M KCl containing
5.0 mM of [Fe(CN)6]−4. The Nyquist diagram and the equivalent Randles circuit are shown
in Figure 6. The ideal diagram described by Nyquist presents a semicircle in the high-
frequency region and a linear relationship in the mid-frequency and low-frequency range,
with the diameter of the semicircle related to the resistance to load transfer (Rct) [26,27].
The Rct for the graphite ink (0.527 kΩ) was higher than for ink containing carbon black
(0.348 kΩ). Thus, the Rct values presented for the inks corroborate the results obtained
from the cyclic voltammetry.
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3.4. FT-IR Characterization

Figure 7 shows FT-IR spectra recorded for nail polish, graphite, carbon black, and
ink. The spectrum of the nail polish (Figure 7A) shows an intense band at 1730 cm−1

of the stretching of the C=O bond, characteristic of ester carbonyls, and at 1638 cm−1 of
stretch, corresponding to the C=C bonds from aromatic rings. The band at 1448 cm−1 is
characteristic of primary amine N-H folding. The band at 1322 cm−1 is due to the C-O
stretches from saturated alcohols, and the band at 1277 cm−1 is probably due to the C-N
stretch of amine groups. Two peaks were also observed between 1136 cm−1 and 1055 cm−1,
characteristic of stretching of carbonyl groups. The band at 817 cm−1 that characterizes the
=C-H bonds probably originates from the benzene rings. These bands are characteristic of
the components in nail polish, such as nitrocellulose, resins, and toluene present in their
composition [17,28].
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Figure 7. FT-IR spectrum of the (A) NP, (B) GR, (C) CB, and (D) GR:CB ink.

The FT-IR spectrum of graphite, the band at 3776 cm−1, attributed to the stretch OH
groups, probably due to the presence of water in the material. The band, characteristic
of carbonaceous materials, was observed at 2982 cm−1, and can be assigned to the C-H
stretches. The band at 1556 cm−1 is characteristic of the -C=C- stretches [29].

The FT-IR spectrum of carbon black is shown in Figure 7B. The band at 3445 cm−1

corresponds to the –OH stretching vibration from the absorption of water or hydroxyl
groups present in the material. The band at 2344 cm−1 is probably due to atmospheric
CO2. The band at 1612 cm−1 is attributed to the C=C stretching vibration present in the
material. The band at 1428 cm−1 is attributed to carbonyl groups [17,29]. The FT-IR results
show that CB has a structure with oxygenated functional groups. Functional groups allow
modification of the electrode surface in order to improve sensitivity. The spectrum obtained
for the ink presents coherence, showing the same bands as the materials analyzed.

3.5. MEV Characterization

SEM characterized the morphologies of the materials. The graphite image (Figure 8A)
indicates a characteristic lamellar structure, without homogeneous formation [30]. The
SEM image of CB presents spherical particles (Figure 8B). It shows the aggregation of
these particles, probably due to interactions such as hydrogen interaction, attributed to
the hydroxyl, carbonyl, and carboxyl functional groups on the surface (evidenced in FT-
IR characterization) [29]. The image of the ink obtained shows the materials used are
distributed and adjacent to each other, showing the formation of a granular morphology
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of the conductive ink, which tends to provide the largest electroactive area and stimulate
faster electron transfer (Figure 8C).
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3.6. Raman Characterization

The materials and conductive ink were also analyzed by Raman spectroscopy. From
the Raman spectra (Figure 9), it is possible to observe the fingerprints of carbon allotropes
due to the presence of the bands D (disorder), G (graphitic), and G’ (second-order modes of
the D band), with a high degree of organization [31]. The G band, located at approximately
1330 cm−1, present in all spectra, indicates the presence of sp2 carbon in the plane. The
D band around 1570 cm−1 is characteristic of sp3 hybridized carbons and defects in the
structure of the material. The G band present at approximately 2690 cm−1 is characterized
as a D band overtone and does not necessarily indicate the presence of defects. The Raman
spectrum for the CB sample presents a band around 1320 cm−1, attributed to the D band,
which is characteristic of a structure with defects, which may be justified by the presence
of oxygenated groups in this material. The G band around 1583 cm−1 may be related to
the C=C vibrations that are present in carbonaceous materials [32]. For the GR sample, the
D band located at 1328 cm−1 is less intense when compared to the G band at 1578 cm−1,
characterizing a material with a high degree of crystallinity. The difference in the intensity
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of the band and the mid-height of the D and G bands may be related to the structural
disorganization of the material. For the GR:CB ink sample, it is possible to observe a
behavior similar to that of the GR sample, which indicates a material with a more organized
structure. To characterize the degree of defects in the graphitic structure, its value is
quantified through the ratio of the intensities of the D and G bands (ID/IG): the lower the
value of the ratio (ID/IG), the lower the number of defects in the carbon structure. The
results obtained for the ID/IG ratio were 1.28 CB, 0.37 GR, and 0.62 GR:CB ink. The values
presented indicate that the CB presents a higher degree of disorder in the structure. The
ink presented an intermediate ratio of the precursor materials (GR and CB), which can be
justified by the presence of CB, altering the graphitic structure, and presenting a higher
degree of defect when compared to the value of the ratio for the graphite sample. Therefore,
the results indicated that the final composition of the ink has the presence of precursor
materials used in the synthesis [33,34].
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3.7. Conductive Ink Optimization

The main factor that can affect the electrochemical performance of conductive ink is
the proportion of materials used, such as conductive materials and binders. In this way,
some inks were prepared by varying the proportions of GR, CB, and NP to obtain the best
composition for the final ink. Optimization was performed using cyclic voltammetry (CV).
The voltammograms are shown in Figure 10 and were obtained in the presence of 2 mM
[Fe(CN)6]−4 and 0.1 M phosphate buffer (pH 7.0). Initially, the electrochemical behavior of
the ink was evaluated by varying the proportion of conductive material, fixing the amount
of nail polish at 50% of the total composition.

According to the electrochemical profile shown in Figure 10, in the sample containing
37.5 GR and 12.5% CB, the ink showed good electrochemical performance, with an increase
in current, in addition to excellent adhesion to the PET support. For the ink with the
proportions of 35% GR and 15% CB, a lower electrochemical performance was observed,
and the ink did not fix well on the surface of the support when printed. This fact may be
related to the increase in the amount of CB compared to the previous proportions since the
increase of this material can hinder the adhesion of the ink because it is more voluminous
than graphite. Inks in the 40:10% and 42.5:7.5% GR:CB ratios have a lower performance,
with lower reversibility and less defined anodic peaks. The lower conductive performance
of these may be associated with the small amount of CB present in its composition, since it
is used in the production of inks to improve the conductive characteristics and increase
the surface area, thus improving the electronic transfer process. Thus, we opted for the
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ink composed of 37.5% GR and 12.5% CB, and then the parameters for optimizing the
proportion of NP were evaluated.
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Figure 10. Electrochemical behavior using different proportions of graphite and carbon black in
0.1 M of PBS (pH = 7) with 2.0 mM of K4[Fe(CN)6].

The amount of carbonaceous material (GR:CB) used was equivalent to the amount
optimized in the previous study, varying only the amount of nail polish (Figure 11). The
ink resulting from the 60:40 ratio (carbonaceous material and nail polish), when printed,
did not present good adhesion to the PET sheet, in addition to presenting high viscosity,
hindering the printing process via the screen-printing technique. The 50:50 ratio showed
good electrochemical performance, but the CB detached from the PET surface, making
the applied printing process unfeasible. Furthermore, the capacitive current was higher
when compared to other compositions, which may be correlated to the detachment of CB
in the solution. For the 47:53 ratio, better homogeneity with lower viscosity was observed,
as well as better suitability for the screen-printing process. In addition, it presented the
best voltammetric profile, with more defined peaks and greater reversibility. Finally,
the ink was analyzed in the 45:55 ratio where it showed a good homogeneity, but the
electrochemical profile showed a decrease in current due to the excess of nail polish, which
has insulating characteristics, hindering the process of transferring charges. Therefore, the
optimal proportion chosen for the printing of the electrodes was the ink composed of 47%
carbonaceous material and 53% nail polish.
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3.8. Electroanalytical Performance of the Sensor Printed with the Developed Ink

The electroactive surface area for the electrode printed with graphite-based ink and
carbon black was obtained from cyclic voltammetry analyses for 2.0 mM of K4[Fe(CN)6]
in 0.1 M of phosphate buffer at different scan rates. The results are shown in Figure 12.
These results show that with the increase in the scan rate, there is an increase in the
current intensity. The electroactive area was calculated according to the Randles-Sevcik
equation [35]. By rearranging the equation and isolating the area, it is possible to obtain
information about the electroactive area of the electrode. The first term of the equation
refers to the slope of the lines obtained, and the other variables are as follows: n is the
number of electrons (n = 1); A is the electroactive surface area of the electrode (cm2); C is
the concentration of K4[Fe(CN)6] (C = 2 × 10−6 mol cm3); and D is the diffusion coefficient
(cm2 s−1) (D = 7.6 × 10−6 cm2 s−1, for [Fe(CN)6]4- at 25 ◦C). Solving the equation shows
that the electroactive area for the electrode is 13.7 cm2.
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of electrode printed with proposed ink with the anodic/cathodic peak currents against the square
root of scan rate. Reaction medium 2.0 mM of K4[Fe(CN)6] in phosphate buffer (0.1 M; pH 7.0).

The printed electrode obtained with the developed ink was used to investigate
the analytical applicability at different concentrations of potassium ferrocyanide. The
measurements were performed using the differential pulse voltammetry (DPV) tech-
nique in 0.1 M phosphate buffer and pH 7.0. Figure 13 shows the differential pulse
voltammogram and the calibration curve. The peaks in the voltammogram show the
increase in the intensity of the current with the gradual increase in the concentration of
the probe. The analytical curve (peak current vs. concentration) was also obtained, and
the results showed an excellent sensor response as a function of ferrocyanide concentra-
tion. The analytical curve was linear from 0.25 to 1.75 mM, according to the equation:
Ip (µA) = 0.02 × (µ A L mmol−1) + 9.74 10-7. This study illustrates that the graphite and
carbon black-based sensor has the potential to be applied as an electrochemical sensor.

Another important factor to be highlighted is the stability of the sensor’s analysis cycles
during measurements. For this, 25 consecutive cyclic voltammograms were performed
for the printed electrode at a scanning speed of 50 mV s−1 in 0.1 M phosphate buffer and
2.0 mM potassium ferrocyanide. The anodic peak response value for the first cycle was
69.8 µA, and in the last cycle, the value was 63.5 µA, representing a loss of signal intensity
of approximately 9% after 25 cycles. Therefore, these results demonstrated good stability of
the sensor, which can be used for several consecutive cycles without losing efficiency.

Reproducibility was assessed with 10 electrodes constructed in the same way, and one
measurement was performed with each electrode (n = 10). The results obtained showed an
RSD of 1.34%. These results were considered adequate (RSD < 10%), especially considering
that the production process of the sensors is manual.
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Another relevant factor in the production process of conductive inks for electrode
printing is cost. There are many commercial carbon inks for this purpose with different
values and compositions. The ink proposed in this study had a cost of US $0.09 mL−1,
which is well below that of the commercial ink available. In addition to the low cost, the
materials used (nail polish, graphite, and carbon black) are easily accessible, which is a
positive point for the development of conductive inks.

Comparing the obtained results of resistance to electron transfer, from the sensor
printed with the developed ink, with published works (Table 1), the proposed ink showed
lower resistance to electron transfer. This result can be associated with the composition of
the ink with carbonaceous nanomaterial, providing a larger electroactive area.

Table 1. Comparison of electron transfer resistance of electrochemical sensors printed with conductive
inks.

Ink Composition Electroactive Area (cm2) Resistance (kΩ) Reference

Graphite and nail polish 0.45 13.6 [2]

Graphite, glass varnish, and
acetone 0.186 39 [13]

Graphite, nail polish, and acetone - 2.17 [17]

Graphite, carbon black, nail polish,
and acetone 13.7 0.348 This

work

4. Conclusions

The conductive ink developed from graphite, carbon black, and nail polish is char-
acterized by easy preparation. The nail polish used as a binder proved to be suitable,
promoting homogenization and consistency of the ink. Carbon black improved the ink’s
voltammetric response, which was confirmed in the electrochemical characterization steps.
The conductivity study confirmed the electron-conducting characteristic of the proposed
ink. The FT-IR analysis revealed the presence of oxygenated functional groups, which
may allow modification of the electrode surface for greater sensitivity. The applicability of
the device, printed with the ink, was evaluated using DPV, showing adequate sensitivity
using a redox probe. Therefore, the proposed ink can be used as a conductive material in
several areas, including developing electrochemical sensors via screen printing, with the
advantage of being obtained with low-cost materials.
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30. Lagzdina, E.; Lingis, D.; Plukis, A.; Plukienė, R.; Germanas, D.; Garbaras, A.; Garankin, J.; Gudelis, A.; Ignatjev, I.; Niaura, G.;
et al. Structural and radiological characterization of irradiated RBMK-1500 reactor graphite. Nucl. Eng. Technol. 2022, 54, 234–243.
[CrossRef]

31. Almeida, E.C.; Santos, R.N.; Edwards, E.R. Synthesis and characterization of graphene oxide for use in electrochemical capacitor.
Rev. Ibero-Am. Humanidades Ciências Educ. 2021, 7, 30–42.

32. Khan, M.; Al-Marri, A.H.; Khan, M.; Mohri, N.; Adil, S.F.; Al-Warthan, A.; Siddiqui, R.M.H.; Alkhathlan, H.Z.; Berger, R.; Tremelb,
W.; et al. Pulicaria glutinosa plant extract: A green and eco-friendly reducing agent for the preparation of highly reduced
graphene oxide. RSC Adv. 2014, 4, 24119–24125. [CrossRef]

33. Medeiros, N.C.F.; Medeiros, L.I.; Souza, A.A.T.; Silva, G.F.B.L.; Boss, A.F.N.; Amaral-Labat, G.A.; Baldan, M.R. Electromagnetic
characterization of the silicon carbide and carbon black composite in a polymeric matrix. Matéria 2021, 26, 2.

34. Avila, E.S.; Melo, C.C.N.; Sampaio, T.P.; Machado, F. Synthesis and characterization of graphene oxide and reduced graphene
oxide. Rev. Bras. Eng. Sustentabilidade 2017, 3, 19–24.

35. Anusha, T.; Bhavani, K.S.; Shanmukha, J.V.K.; Brahman, P.K. Designing and fabrication of electrochemical nanosensor employing
fullerene-C60 and bimetallic nanoparticles composite film for the detection of vitamin D3 in blood samples. Diam. Relat. Mater.
2020, 104, 107761. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.synthmet.2023.117495
https://doi.org/10.1016/j.aca.2023.340829
https://www.ncbi.nlm.nih.gov/pubmed/36737132
https://doi.org/10.1016/j.mtcomm.2023.106920
https://doi.org/10.1016/j.carbon.2020.02.058
https://doi.org/10.21577/1984-6835.20220114
https://doi.org/10.21577/1984-6835.20200123
https://doi.org/10.5935/0103-5053.20160052
https://doi.org/10.1016/j.matpr.2018.04.135
https://doi.org/10.1016/j.net.2021.07.039
https://doi.org/10.1039/C4RA01296H
https://doi.org/10.1016/j.diamond.2020.107761

	Introduction 
	Materials and Methods 
	Reagents 
	Preparation of the Conductive Ink and Printing of Electrodes 
	Characterization Techniques 

	Results 
	Conductivity Evaluation 
	Flexibility of the Ink on the Substrate 
	Development and Electrochemical Characterization of Conductive Ink 
	FT-IR Characterization 
	MEV Characterization 
	Raman Characterization 
	Conductive Ink Optimization 
	Electroanalytical Performance of the Sensor Printed with the Developed Ink 

	Conclusions 
	References

