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Abstract: Common dysglycemia measurements including fasting plasma glucose (FPG), oral glucose
tolerance test (OGTT)-derived 2 h plasma glucose, and hemoglobin A1c (HbA1c) have limitations
for children. Dynamic OGTT glucose and insulin responses may better reflect underlying physi-
ology. This analysis assessed glucose and insulin curve shapes utilizing classifications—biphasic,
monophasic, or monotonically increasing—and functional principal components (FPCs) to predict
future dysglycemia. The prospective cohort included 671 participants with no previous diabetes
diagnosis (BMI percentile ≥ 85th, 8–18 years old); 193 returned for follow-up (median 14.5 months).
Blood was collected every 30 min during the 2 h OGTT. Functional data analysis was performed
on curves summarizing glucose and insulin responses. FPCs described variation in curve height
(FPC1), time of peak (FPC2), and oscillation (FPC3). At baseline, both glucose and insulin FPC1 were
significantly correlated with BMI percentile (Spearman correlation r = 0.22 and 0.48), triglycerides
(r = 0.30 and 0.39), and HbA1c (r = 0.25 and 0.17). In longitudinal logistic regression analyses, glu-
cose and insulin FPCs predicted future dysglycemia (AUC = 0.80) better than shape classifications
(AUC = 0.69), HbA1c (AUC = 0.72), or FPG (AUC = 0.50). Further research should evaluate the utility
of FPCs to predict metabolic diseases.

Keywords: oral glucose tolerance test; insulin; glucose; curve shape; functional data analysis;
pediatrics; hemoglobin A1C; longitudinal prediction; prediabetes

1. Introduction

The incidence of youth-onset type 2 diabetes (T2D) continues to increase by 4.8%
each year, related to a high and increasing prevalence of pediatric obesity [1–3]. In the
United States, diabetes care is among the highest health care expenditures, increasing
by 26% from 2012 to 2017, further emphasizing the need for early detection of risk and
prevention in youth [4]. The American Diabetes Association (ADA) recommends T2D
screening using fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), or a 2 h plasma
glucose (2hrPG) during an oral glucose tolerance test (OGTT) [5,6]. During an OGTT,
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individuals consume a 75 g bolus of glucose after an overnight fast. The 2 h plasma glucose
(2hrPG) level is indicative of normal glycemia, prediabetes, or T2D, with higher levels
suggesting diminished beta cell response and/or decreased insulin sensitivity. However,
cut-offs for FPG, HbA1c, and 2hrPG are crude estimates of dysglycemia [7], with uncertain
implications for pediatric patients [8]. Recent studies have explored derived variables
from insulin and glucose responses in an OGTT, including the sum of insulin across an
OGTT [9] and one hour plasma glucose [9,10], which may better predict impaired glucose
metabolism than HbA1c. Classifying the temporal response of glucose and insulin to an
OGTT may provide a deeper understanding of metabolic risk than a single glucose or
HbA1c measurement.

The pattern of glucose response to an OGTT reflects the ability of ß-cells to secrete in-
sulin and the sensitivity of cells to lower glucose levels [11]. A study by Tschritter et al. [12]
defined the shape of glucose in response to an OGTT as monophasic (one-peak of glucose),
biphasic (second phasic insulin secretion), and incessant increase (continual rise of glucose,
henceforth “monotonically increasing”) by collecting blood samples at baseline (0 min)
and 30, 60, 90, and 120 min post-glucose bolus. In youth with obesity, a monotonically in-
creasing glucose response is associated with the fastest deterioration of ß-cell function [13].
Furthermore, a monophasic glucose response is related to diminished ß-cell function, lower
insulin sensitivity, and increased risk of metabolic syndrome in adults [14]. In a sample
of adolescents with obesity, a biphasic glucose response was associated with the highest
insulin sensitivity and lowest area under an OGTT insulin curve [15]. Another study
found that adolescents with obesity who had a monophasic glucose response had lower
insulin sensitivity and impaired β-cell function compared to those with a biphasic response,
despite similar FPG and 2hrPG in the two groups [16]. Shape classifications are reasonably
stable; a study of adults without a history of diabetes found that 59% maintained the
same shape over three years, with either newly developing or maintaining a previous
monophasic shape being associated with impaired glucose metabolism [17]. However,
manually classifying the shape of glucose response to an OGTT is a relatively crude method
of summarizing glucose response profiles, failing to account for multiple other ways in
which profiles differ, such as the timing of the response peak and overall height [18,19].

Computational methods have been developed to systematically classify a curve shape,
creating scores to optimally explain how participants vary in a study population. For
instance, Frøslie et al. [20] used functional data analysis (FDA) to generate three functional
principal components (FPCs) to classify the glycemic response to an OGTT among pregnant
women in the first trimester (n = 974). They observed that the FPCs explained over 99% of
variation in fitted OGTT curves, with the second FPC more accurately predicting gestational
diabetes in the third trimester compared to traditional dysglycemia measures [20]. FDA
methods have further been used to classify longitudinal trends of glucose, insulin, and
blood pressure throughout pregnancy, identifying phenotypes through FDA that were
associated with pregnancy-related outcomes [21]. Furthermore, FDA methods have been
explored by Gecili et al. [22] for quantifying data from continuous glucose monitoring
(CGM) in children with type 1 diabetes. They derived FPCs using data from CGMs to
generate accurate real-time predictions of glycemic excursions. There have been no studies
to our knowledge that have used computational FDA methods to classify the OGTT glucose
and insulin response curve shape in youth without diabetes. Furthermore, there have been
no studies that have compared computational methods with manual shape classifications
and ADA classifications of dysglycemia to predict future dysglycemia in this population.
The objectives of these analyses in youth with overweight and obesity were to evaluate
cross-sectional associations of manual estimates of glucose response shape (monophasic,
biphasic, and monotonically increasing) and a quantitative FDA method with markers
of metabolic health, and to evaluate the longitudinal associations between these OGTT
response characteristics and future dysglycemia.



Diabetology 2024, 5 98

2. Materials and Methods
2.1. Research Design

Participants in this analysis were a subset of 8–18-year-olds from a prospective co-
hort study designed to assess the longitudinal performance of tests for dysglycemia in
children [23–26]. Participants were recruited through flyers, web postings, mailings, and
research assistants at primary care and pediatric specialty clinics in southeast Michigan
(2007–2019). Among previously documented exclusion criteria [24], participants were
excluded if they had known diabetes or used medications known to affect the metabolism
of glucose (oral steroids, metformin, insulin). For this analysis, all participants had over-
weight or obesity at baseline, defined by ≥85th percentile BMI from CDC 2000 growth
charts [27]. Written informed consent was obtained from the parent/guardian for all partic-
ipants. Written assent was obtained from participants ≥ 10 years old and verbal assent was
obtained from participants < 10 years old. This study was approved by the University of
Michigan Institutional Review Board (HUM#00006955).

Participants attended study visits at the Michigan Clinical Research Unit, where a
medical history, vital signs, anthropometrics, and laboratory evaluation were performed.
Our cohort represents a “convenience sample” with variations in the number of visits com-
pleted due to several grant mechanisms supporting different study aims. All participants
attended an initial study visit, “Visit 1”, as previously documented and henceforth coined
“baseline” [24]. All participants arrived at Visit 1 after an overnight fast (12 h). At Visit
1, participants underwent a 2 h OGTT with plasma glucose and insulin measurements;
lab testing for HbA1c and lipids; blood pressure (measured twice with a pediatric cuff);
measurement of height (twice), weight (twice, wearing a hospital gown), and body mass
index (BMI) percentile per CDC growth curves [28]; waist circumference; and provided
demographic information. Of 679 total participants with Visit 1 data, we excluded partic-
ipants with incomplete OGTT glucose and insulin measurements (n = 7) and a missing
HbA1c lab (n = 1), for a total cross-sectional analysis sample of N = 671.

Among this sample, a subset of the participants (n = 333) were recruited for longitudi-
nal visits, supported by R01HD074559. This subset of participants completed two baseline
OGTTs—Visit 1 (after an overnight fast) and Visit 2 (random fasted or fed state)—and
two follow-up fasted OGTTs—Visit 3 and Visit 4—that were <4 weeks apart to assess
for reproducibility in OGTT response. More details regarding the cohort structure are
represented by Vajravelu et al. [24]. For this analysis, the longitudinal sample consisted of
participants who returned for a follow-up OGTT after an overnight fast (n = 218), “Visit 3”,
as previously described and henceforth coined “follow-up” [24]. Those with <6 months
between Visit 1 and Visit 3 were excluded (n = 25), for a total longitudinal analysis sample
of N = 193.

2.2. The Oral Glucose Tolerance Test
2.2.1. OGTT Administration and Laboratory Parameters

An oral glucose load of 1.75 g per kg of body weight was administered up to a
maximum of 75 g (Glucola, Fisherbrand, Waltham, MA, USA). Serial blood draws were
performed at 30 min intervals for two hours and glucose homeostasis assays were con-
ducted by the Michigan Diabetes Research Center (Ann Arbor, MI, USA). A Randox rX
Daytona Chemistry Analyzer (Randox Laboratories Limited, Crumlin, UK) measured
lipids (total cholesterol with the cholesterol enzymatic end point method, triglycerides with
the GPO-PAP method, and HDL and LDL with the two step-direct method) and glucose
with the glucose hexokinase method. A double-antibody radioimmunoassay was used to
measure insulin. Both glucose and insulin were measured from plasma. Derived summary
variables included FPG (0 min glucose), 2hrPG (120 min glucose), and dysglycemia, defined
as having FPG > 100 mg/dL or 2hrPG > 140 mg/dL. HbA1c was quantified with a Tosoh
G7 HPLC Analyzer (Tosoh Biosciences Inc., San Francisco, CA, USA).
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2.2.2. Manual OGTT Shape Classifications

Baseline OGTT profiles were manually classified as “biphasic,” “monophasic,” or
“monotonically increasing” (previously also described as “incessant increase”) using criteria
previously described in published literature [13,15,29]. A “biphasic” profile was defined
by a rise in glucose over time with a subsequent decrease of at least 4.5 mg/dL from
the initial peak, and a subsequent second increase of at least 4.5 mg/dL (Figure 1). A
“monophasic” profile was defined by a rise in blood glucose that reached a peak with a
subsequent decrease of at least 4.5 mg/dL from the maximum and no further increase
exceeding 4.5 mg/dL. A “monotonically increasing” profile was defined as increasing
blood glucose over time without a drop of more than 4.5 mg/dL from the maximum. An
OGTT profile shape was considered “inconclusive” if there was no rise in glucose from
baseline by 60 min. Manual shape classifications were only applied to glucose responses,
not to insulin.
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Figure 1. Observed oral glucose tolerance test biphasic, monophasic, and monotonically increasing
glucose shape classifications. The plot displays profiles of glucose measurement for individuals (thin
lines) and group means (bold lines) with each classification group: (A) biphasic, (B) monophasic, and
(C) monotonically increasing.

2.2.3. OGTT Shape Classifications Using Functional Data Analysis (FDA)

The overall FDA procedure was previously described by Frøslie et al. [20]. Each
participant’s five measurements of glucose and insulin were described by smooth curves
in time. Then, FDA was applied to summarize each participant’s curve using a prefixed
number of three principal component scores. The idea of FDA was to find the combination
of basis functions that explain the most variance of the smooth curve and summarize them
into the principal components. The implementation is briefly explained below.

The smooth curves were fitted with the fda package in R [30], using 7 basis functions
and 5 measurements (knots). Thus, the glucose and insulin measurements could be viewed
as a function of time, and formulized below:

glucosei(tj) =
7
∑

k=1
ϕk

glucose(tj
)
cik

glucose + ei
glucose(tj

)
, i = 1, . . . , n; j = 1, . . . , 5

insulini(tj) =
7
∑

k=1
ϕk

insulin(tj
)
cik

insulin + ei
insulin(tj

)
, i = 1, . . . , n; j = 1, . . . , 5

(1)

where t1, . . . , t5 were the five measurement time points, ϕk
glucose(·), ϕk

insulin(·) were the
k-th basis function for glucose and insulin, cik

glucose, cik
insulin were the coefficients to be
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estimated for k-th basis function of i-th participant, and ei
glucose(·), ei

insulin(·) were the
measurement error terms. The above formula could be simplified by using matrix notation:

Glucose = ΦglucoseCglucose + Eglucose; Insulin = ΦinsulinCinsulin + Einsulin (2)

where Glucose, Insulin were 5 × n matrices of glucose and insulin measurements, Φglucose,
Φinsulin were 5 × 7 matrices of basis functions taking value at the measurement time points,
Cglucose, Cinsulin were 7 × n matrices of coefficients to be estimated, and Eglucose, Einsulin

were the measurement error matrices. Following the estimation methods described by
Frøslie et al. [20], Cglucose, Cinsulin could be estimated with a penalized least squares method:

Cglucose = argmin
C

(Glucose − ΦglucoseC)T(Glucose − ΦglucoseC) + λ1CT R1C

Cinsulin = argmin
C

(Insulin − ΦinsulinC)T(Insulin − ΦinsulinC) + λ2CT R2C
(3)

where the penalty term included R1, R2 that summarized the curvature of the curves, λ1, λ2
were nuisance parameters that control the penalty, and the nuisance parameters were
determined by cross-validation [20].

After obtaining the smoothed curve, we used functional principal component anal-
ysis to summarize each participant’s curve into three scores. We fitted a series of FPC
denoted as ξk

glucose(·), ξk
insulin(·) of the k-th component, such that they sequentially maxi-

mized the variance of the FPC scores zik
glucose =

∫
ξk

glucose(t)glucosei(t)dt and zik
insulin =∫

ξk
insulin(t)insulini(t)dt with constraints that

∫
ξk

glucose(t)
2
dt = 1,

∫
ξk

insulin(t)
2
dt = 1

and the glucose and insulin FPCs were orthogonal to each other separately. Following the
choice made in Frøslie et al. [20], we chose to use the first three principal components for
both glucose and insulin, and we found that the first three FPCs successfully explained over
99% of the variance for both glucose and insulin curves. We also standardized all three FPCs
(mean = 0, standard deviation (SD) = 1) to enhance interpretability in statistical models.

2.3. Statistical Analysis
2.3.1. Cross-Sectional Analysis

The summary statistics of participant demographics with respect to age, sex, race,
and ethnicity were presented for the cross-sectional and longitudinal subsets, separately.
Differences in demographics and measures of glucose regulation at baseline among those
with and without follow-up were assessed with a Wilcoxon rank sum test (continuous
variables) [31] or Fisher’s Exact Test (categorical variables) [32].

Classified by the three shaped glucose profiles “biphasic,” “monophasic,” or “mono-
tonically increasing”, participants’ OGTT glucose profiles were plotted for the three sub-
groups. Classified by quartiles of the top three FPC scores, participants’ OGTT glucose
and insulin mean fitted curves were plotted and compared for the four sub-groups. The
proportion of variance explained by the top three FPCs in glucose and insulin curves
were calculated and reported. Using Spearman correlation coefficients, we also quantified
the association of our classification measurements (manual shape classification and glu-
cose/insulin FPC scores) with glucose and insulin measurements (at time point 0, 30, 60, 90
and 120 min), HbA1c, lipid labs, systolic and diastolic blood pressure, BMI percentile, and
waist circumference. A Bonferroni correction was applied to adjust for multiple hypotheses
in assessing numerous correlations (p < 0.0003, 171 comparisons). Differences in age, sex,
race, ethnicity, and metabolic health parameters by manual OGTT shape classifications were
assessed with Kruskal–Wallis’ Test [31] or Fisher’s Exact Test [32]. Linear regression evalu-
ated associations between demographic variables with glucose and insulin FPC scores. To
assess if associations between metabolic health parameters and FPCs were independent of
demographic factors, we fit linear regression models for each FPC (dependent variable) by
metabolic health parameters (independent variable), adjusting for demographic covariates.
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2.3.2. Longitudinal Analysis

Differences in FPG, 2hrPG, HbA1c, and BMI percentile between baseline and follow-
up visits were assessed with paired Wilcoxon signed rank tests [31]. The difference in
the rate of dysglycemia was assessed with McNemar’s test [32]. To assess the prediction
ability of OGTT summary measures to predict future dysglycemia, a series of logistic
regression models was used with dysglycemia at follow-up as the outcome variable and
OGTT summary measures at baseline as predictors within the longitudinal subset. Seven
different predictors or combinations of predictors were compared: FPG, 2hrPG, HbA1c,
shape classifications, glucose FPCs, insulin FPCs, and glucose + insulin FPCs. Predictions
for each participant’s probability of dysglycemia at follow-up from each model were used
to generate receiver–operator curves (ROC), and the area under the ROC (AUC) was used
to compare the performance of the predictors using the pROC R package [33]. All data
analysis was conducted using the R Language for Statistical Computing [34].

3. Results
3.1. Sample Characteristics

Among the total cross-sectional analysis sample (N = 671), median age was 13.5 years
(8.13 to 18.0 years), and 362 participants (53.9%) were female (Table 1). The sample was
42.5% non-white. Median BMI was at the 97th percentile, classified as having obesity.

Table 1. Participant Characteristics at Baseline.

Overall (N = 671) 1

Study Visits Completed
Baseline and Follow-Up 193 (28.8%)
Baseline Only 478 (71.2%)

Age (Years) 13.5 [11.5, 15.4]

Sex
Female 362 (53.9%)
Male 309 (46.1%)

Race
White 386 (57.5%)
Black or African American 212 (31.6%)
Other/Multiracial 52 (7.8%)
Unknown/Not Reported 21 (3.1%)

Ethnicity
Non-Hispanic/Latino 632 (94.2%)
Hispanic/Latino 39 (5.8%)

BMI Percentile 97.0 [94.1, 98.8]

OGTT Curve Shape Classification
Monophasic 367 (54.7%)
Biphasic 282 (42.0%)
Monotonically Increasing 17 (2.5%)
Inconclusive 5 (0.7%)

Abbreviations: BMI, body mass index; OGTT, oral glucose tolerance test; Q1, 1st quartile; Q3, 3rd quartile.
1 Median [Q1, Q3] or n (%).

3.2. Cross-Sectional Analysis
3.2.1. Glucose Profile Manual Shape Classifications

The manual OGTT shape classifications yielded 42.0% of participants having the lowest
risk associated [15,16] classification of “biphasic”, with a majority having “monophasic”
shape (54.7%), and few with “monotonically increasing” (2.5%). For five participants (0.7%),
the shape of the curve was inconclusive due to a lack of rise in glucose within the first hour
in the test. The average profile for each shape subgroup is representative of the morphology
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expected for each (Figure 1); however, individual participant glucose responses varied
widely in height and peak time within each classification.

3.2.2. Glucose and Insulin FDA Shape Characteristics

The first three glucose FPCs explained 89.6%, 7.9%, and 2.1% of the variance in the
glucose curves, respectively (Figure S1A–C). FPC1 score successfully characterized the
height of the glucose curve, meaning participants with higher FPC1 score are more likely
to have a higher glucose level throughout the OGTT (Figure 2A), FPC2 and FPC3 scores
characterized the shape of the glucose curve, with FPC2 relating to the timing and height
of the peak value (Figure 2B) and FPC3 relating to oscillation (Figure 2C). These shape
characteristics are further demonstrated by plotting the glucose curves for participants
with the highest and lowest decile of each FPC score (Figure S2A–C).
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Figure 2. Means of fitted curves of the oral glucose tolerance test curves for glucose and insulin
by FPC scores quartile classification. The plot shows average fitted curves of glucose (A–C) and
insulin (D–F) responses, classified by the quartile of each FPC score ((A,D): FPC1 score; (B,E): FPC2
score, and (C,F): FPC3 score). Abbreviations: FPC, functional principal component.

The first three insulin FPCs captured similar variation, with 92.2%, 7.0%, and 0.7% of
variation in the insulin curves explained by the first three FPCs, respectively (Figure S1D–F).
Similar to the findings with glucose, FPC1 score characterized the overall height of the
insulin curve (Figure 2D), FPC2 score characterized the timing of peak (Figure 2E), and
FPC3 score related to the oscillation (Figure 2F). The difference of insulin curves between
participants with extreme high/low deciles of FPC scores are presented in Figure S2D,E.

3.2.3. Cross-Sectional Associations with Metabolic Health Parameters

Glucose manual profile shapes (coded as dichotomous variables) and FPC scores
summarizing glucose and insulin curve shapes (coded as continuous variables) were
compared with metabolic health parameters, cross-sectionally (Figure 3). The monophasic
shape was significantly associated with higher 60- (r = 0.42), and 90- (r = 0.24) minute
glucose, monotonically increasing shape with higher 120 min glucose (r = 0.17), and biphasic
with lower 60- (r = −0.44) and 90- (r = −0.27) minute glucose. The monophasic glucose
shape was associated with higher 60- (r = 0.29) and 90- (r = 0.22) minute insulin, and biphasic
with significantly lower 60- (r = −0.29) and 90- (r = −0.24) minute insulin. The directions
of associations of glucose shape classifications with glucose and insulin values support the
validity of these classifications to describe the general shape of responses. Although the
shape classifications capture the general shape of intra-person response in plasma glucose,
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these moderate correlations highlight substantial response variability utilizing the manual
shape classifications. Other metabolic health parameters were associated with manual
shape classification (Figure 3, Table S1): waist circumference (WC) was positively associated
with monophasic shape (r = 0.18, median monophasic WC = 93 cm) and negatively with
biphasic shape (r = −0.16, median biphasic WC = 88 cm). The shape classifications differed
significantly by age and ethnicity, but not by sex or race (Table S1).
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Figure 3. At baseline, the relationship between oral glucose tolerance test shape variables and
metabolic health parameters. All FPC scores were standardized as continuous variables. Shape
classifications were coded as separate dichotomous variables, with five participants excluded with un-
classified shapes. Spearman correlations were utilized to assess associations. Units: systolic/diastolic
BP (mmHg), waist circumference (cm), triglycerides/HDL/LDL/total cholesterol (mg/dL), HbA1c
(%), insulin (µU/mL), glucose (mg/dL). Abbreviations: BP, blood pressure; BMI, body mass index;
LDL, low-density lipoprotein; HDL, high-density lipoprotein; HbA1c, hemoglobin A1c; FPC, func-
tional principal component. Variable-specific missingness existed for BP (n = 21), waist circumference
(n = 24), and lipid labs (n = 10).

Glucose FPC1 score was positively correlated with glucose at each time point through-
out the OGTT (r = 0.48, 0.79, 0.93, 0.89, and 0.77; Figure 3), consistent with its general
explanation of overall curve height. Glucose FPC2 score was negatively correlated with 0-
(r = −0.33), and 30- (r = −0.52) minute glucose and positively correlated with 90- (r = 0.23)
and 120- (r = 0.34) minute glucose, consistent with a general explanation of time to peak
captured by FPC2 score. Glucose FPC3 score was positively correlated with 0- (r = 0.53),
30- (r = 0.25), and 120- (r = 0.36) minute glucose and negatively correlated with 60 min
glucose (r = −0.23), consistent with its general explanation of oscillation in each curve. All
three insulin FPC scores followed similar patterns of association with insulin at each time
as the glucose FPC scores did with glucose at each time, supporting the characteristics
qualitatively captured by each FPC. Furthermore, multiple significant associations were
found between glucose FPCs and plasma insulin, and between insulin FPCs and plasma
glucose, suggesting each type of FPC (glucose or insulin) is strongly related to levels of the
other marker.
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Glucose FPC1 score was significantly correlated with HbA1c (r = 0.25), total cholesterol
(r = 0.15), triglycerides (r = 0.30), and BMI percentile (r = 0.22). Glucose FPC2 score was
not significantly correlated with any metabolic health parameters. Glucose FPC3 score was
significantly correlated with HDL cholesterol (r = 0.21). Insulin FPC1 score was significantly
correlated with HbA1c (r = 0.17), LDL cholesterol (r = 0.18), triglycerides (r = 0.39), BMI
percentile (r = 0.48), and waist circumference (r = 0.40). Insulin FPC2 and FPC3 scores
were not significantly correlated with any metabolic health parameters after multiple
hypothesis correction.

We evaluated associations of age, sex, race, and ethnicity (independent variable) with
glucose and insulin FPC scores (dependent variables) in separate linear regression models.
Several significant associations were found between these demographic factors and the FPC
scores, as reported in Tables S2 (glucose FPC scores) and S3 (insulin FPC scores). Therefore,
to evaluate associations between the metabolic health parameters (independent variables)
and glucose and insulin FPC scores (dependent variables) independent of demographic
factors, we fit linear regression models adjusting for age, sex, race, and ethnicity. As
reported in Tables S4 (models for glucose FPC scores) and S5 (models for insulin FPC
scores), numerous significant associations were found. Notably, these adjusted regression
findings concurred with all significant correlations of metabolic health parameters and
glucose and insulin FPC scores reported in Figure 3, suggesting these associations are
independent of demographic factors.

3.3. Longitudinal Analysis

A total of 193 participants completed the follow-up assessment at least six months after
baseline. Age at baseline, sex, and ethnicity did not differ significantly among participants
who also had complete longitudinal data compared with those in the cross-sectional
analysis alone, though there were significant differences in race and some baseline metabolic
health parameters (Table S6). In the longitudinal subset, median follow-up time was
14.5 months (Table 2). Paired FPG (p < 0.001) and HbA1c (HbA1c) changed significantly
between baseline and follow-up, though 2hrPG and BMI percentile did not. Though
the overall rate of dysglycemia was 7.3% (n = 14) at both baseline and follow-up, just
four participants with dysglycemia at baseline still had dysglycemia at follow-up (28.6%),
meaning the same number of participants (n = 10) newly developed dysglycemia as those
who no longer had it.

Table 2. Comparison of characteristics of participants between baseline and follow-up from the
longitudinal subset (N = 193).

Characteristic At Baseline 1 At Follow-Up 1 p-Value 2

Age (years) 13.3 [11.5, 15.3] 14.7 [12.9, 16.5]

∆ Age (months) 14.5 [12.6, 17.2]

Dysglycemia 1.000
No (%) 179 (92.7%) 179 (92.7%)
Yes (%) 14 (7.3%) 14 (7.3%)

FPG (mg/dL) 83 [79, 90] 87 [83, 91] <0.001

2hrPG (mg/dL) 99 [86, 114] 102 [86, 114] 0.438

HbA1c (%) 3 5.2 [5.0, 5.4] 5.2 [5.0, 5.4] <0.001

BMI Percentile 96.2 [92.1, 98.6] 96.3 [91.5, 98.8] 0.567
Abbreviations: FPG, fasting plasma glucose; 2hrPG, 2 h plasma glucose; HbA1c, hemoglobin A1c; BMI, body
mass index; Q1, 1st quartile; Q3, 3rd quartile. 1 Median [Q1, Q3] or n (%). 2 Paired Wilcoxon signed rank tests
(continuous variables) or McNemar’s test (dysglycemia). 3 One participant had missing HbA1c at follow-up.
Median change in HbA1c was 0.1 [−0.1, 0.2].

Of all measures assessed to predict future dysglycemia, FPG performed the poorest
(AUC = 0.50) (Figure 4A). Though the manual shape classifications (AUC = 0.69) (Figure 4B)
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exceeded the performance of FPG, greater prediction accuracy was achieved by 2hrPG
(AUC = 0.78) and HbA1c (AUC = 0.72) (Figure 4A). The combination of glucose and insulin
FPCs yielded the greatest prediction accuracy (AUC = 0.80) (Figure 4B), with notable
improvements in test sensitivity at higher values of specificity for all FPC approaches when
compared to the other approaches.
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Predictors include single laboratory values (A) and methods using OGTT response shape informa-
tion (B). Abbreviations: FPG, fasting plasma glucose; 2hrPG, 2 h plasma glucose; HbA1c, hemoglobin
A1c; OGTT, oral glucose tolerance test; FPC, functional principal component; AUC, area under
the curve.

4. Discussion

To our knowledge, this is the first study that has used FDA for summarizing OGTT
glucose and insulin responses to evaluate the association of FPC scores with metabolic
health markers and future dysglycemia in a diverse adolescent population. We sought
to utilize FDA to characterize the glucose and insulin response to an OGTT because
single measures and manual shape classifications may be missing information on the
dynamic response to a glucose bolus. Glucose and insulin FPC scores had substantially
stronger associations with metabolic health parameters than manual shape classifications,
being significantly correlated with waist circumference, BMI percentile, LDL/HDL/total
cholesterol, triglycerides, and HbA1c. Though differences in FPC scores by age, sex, and
race were noted, these associations were still observed in models adjusting for demographic
covariates. In longitudinal logistic regression analyses, glucose and insulin FPC scores
predicted future dysglycemia better than manual shape classifications, HbA1c, or FPG.

Multiple characteristics of glucose and insulin curves were captured by the FPCs.
Glucose and insulin FPC1 explained variation in overall curve height, FPC2 explained
the positioning of the peak, and FPC3 explained oscillations in the curves. These at-
tributes are similar to previous findings from use of this method in OGTTs from the first
trimester of pregnancy, supporting this method as consistent across OGTTs for multiple
applications [20]. Given this extent of variance explained, the FPC scores numerically
captured some variation qualitatively related to the glucose shape classifications. Addi-
tional exploratory analysis revealed monophasic shape was positively correlated with FPC1
(r = 0.28) and negatively with FPC2 (r = −0.18) and FPC3 (r = −0.51) scores, indicating
a high curve that peaks mid/late with little curvature. The biphasic shape was notably
negatively correlated with FPC1 (r = −0.30), and positively with FPC3 (r = 0.50) scores,
indicating a curve with a low overall level and high amount of oscillation. Monotonically
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increasing shape was notably positively associated with FPC2 score (r = 0.27), indicating a
late peak.

Previously, manual glucose curve shape classifications have been associated with
differences in β-cell function and insulin sensitivity in both children and adults [13,14,16].
Furthermore, measures of insulin in an OGTT may enhance the assessment of impaired
glucose metabolism [9]. By using glucose and insulin FPCs, multiple modes of variation
in both glucose and insulin are captured across time and may more comprehensively
assess disordered glucose regulation and metabolism. To our knowledge, no other method
captures this variation in both glucose and insulin. The performance of the FPC scores for
predicting future dysglycemia supports their utility. Consistent with concerns about gener-
alizing methods of classifying dysglycemia using single laboratory values to children [7,8],
only 28.6% of children with dysglycemia at baseline (defined by a composite of elevated
FPG or 2hrPG) still had it at follow-up. When predicting this longitudinal dysglycemia, the
glucose and insulin FPC scores outperformed both single laboratory values (FPG, 2hrPG,
HbA1c) and the manual shape classifications. Though for the application of gestational
diabetes, this is consistent with a previous findings that glucose FPC2 score in the first
trimester of pregnancy is a significant predictor of gestational diabetes in the third, while
other glucose summary measures were not [20].

The sample was large, racially and ethnically diverse, and had a reasonably long
median follow-up time over which to observe longitudinal changes in dysglycemia. These
findings are therefore reasonably generalizable to children ages 8–18 with overweight or
obesity and without a previous diagnosis of diabetes. Several limitations are important to
note. First, the study cohort did not consistently collect physician-assessed tanner staging to
determine pubertal status and puberty is associated with a physiologically normal decrease
in insulin sensitivity [35]. However, obesity and metabolic disease are known to affect
this physiologic change during puberty [35,36], so it is unclear how to best account for
puberty in relation to fitting and using FPC scores. This analysis adjusted for age and
sex in cross-sectional models to account for puberty-related differences. Additionally, few
participants had dysglycemia at follow-up, preventing the split of the cohort into training
and validation samples for longitudinal prediction. This low overall rate of dysglycemia
at follow-up seems to be related to observed differential follow-up completion by health
status, where “healthier” children were more likely to complete follow-up. The longitudinal
predictive value of the FPC scores should be further confirmed in other cohorts.

Though the OGTT method used in this study required serial blood draws and would
likely be burdensome to use as a clinical predictive screening test for otherwise healthy
children, future work should validate and adapt the use of OGTT FPCs for a clinical
setting. Further research is needed to translate individual glucose and insulin FPC scores to
clinically useful classifications of risk, a potentially valuable tool to include in an electronic
medical record. Additionally, previous studies have used similar functional data analysis
methods with continuous glucose monitoring (CGM) data in type I diabetes [22]. A CGM-
based screening tool could be developed to detect early abnormal glucose regulation for
children without known diabetes; such a method would be minimally burdensome to the
patient and could incorporate many more data points to better fit precise glucose curves.

5. Conclusions

This analysis suggested that beyond simple plasma glucose values, glucose and
insulin curve shape information derived from OGTTs more directly profiles underlying
physiology in a way that is meaningfully associated with metabolic health parameters and
longitudinally with future dysglycemia in children with overweight or obesity. Glucose
and insulin FPC scores from an OGTT present a powerful way to summarize this shape
information. FPCs may be clinically useful to predict future dysglycemia among children
at elevated risk due to their body weight, allowing for enhanced early intervention.
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