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Abstract: Based on (5Z,9Z)-tetradeca-5,9-diene-1,14-dioic acid, previously undescribed polyether
aromatic macrodiolides were synthesized in good yields (53–67%). The cytotoxicity of the resulting
macrocyclic compounds in vitro against tumor Jurkat cells, K562 cells, conditionally normal Hek293
cell lines and normal fibroblasts was the assessment carried out. The ability of the most active
macrodiolide to induce apoptosis toward Jurkat cells and influence the cell cycle was studied.

Keywords: 1,5-dienoic compounds; homo-cyclomagnesiation; Grignard reagents; macrodiolides;
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1. Introduction

Unsaturated fatty acids, due to their wide variety and outstanding biological activity,
are considered by researchers as the basis for the creation of modern drugs. Recent studies
conducted in various scientific centers have shown that fatty acids with bis-methylene-
separated cis–cis double bonds in the structure exhibit antibacterial, antitumor, fungicidal
and antimalarial activities [1–3].

Previously, using the original cyclomagnesiation reaction, we developed effective
methods for obtaining natural 5Z,9Z-dienoic fatty acids and their semi-synthetic analogs
that exhibit antitumor properties. In the development of these studies, new biologically
active hybrid molecules and macrocyclic compounds with a 1Z,5Z-diene fragment in the
structure were synthesized [4–7].

This work presents the synthesis of previously undescribed multifunctional macrodi-
olides and provides preliminary results of an in vitro analysis of the antitumor activity of
the resulting macrocyclic compounds.

2. Results and Discussion

To accomplish the tasks set for the synthesis of new polyfunctional macrodiolides, we
have preliminarily carried out the synthesis of (5Z,9Z)-tetradeca-5,9-diene-1,14-dioic acid 4.
Further, using the conditions at a molar ratio of reagents [diacid (4):diol (5):DMAP:EDCI =
1:1:0.5:2] with a strong dilution in dichloromethane ([5 mM]), new polyether unsaturated
macrocyclic compounds 6a–f were synthesized (Scheme 1).

With the aim of studying the polyether macrocycles for their antitumor activity and
assessing their potential clinical applicability, we tested the products for their in vitro
cytotoxicity and ability to influence the cell cycle and induce apoptosis (Table 1).
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Scheme 1. Synthesis of aromatic polyether macrodiolides. 

With the aim of studying the polyether macrocycles for their antitumor activity and 
assessing their potential clinical applicability, we tested the products for their in vitro cy-
totoxicity and ability to influence the cell cycle and induce apoptosis (Table 1). 

Table 1. Cytotoxic activities in vitro of synthesized cyclophanes 6a–f measured on cell cultures 
(Jurkat, K562, Hek293 and normal fibroblasts) (µM). 

Comp. 
Jurkat 

(CC50, µM) * 
K562 

(CC50, µM) * 
Hek293 

(CC50, µM) * 
Fibrobl. 

(CC50, µM) * 
Selectivity 

Index СС50max/CC50min 

6a 0.21 ± 0.02 0.16 ± 0.03 1.91 ± 0.21 2.98 ± 0.31 0.21–2.98 14.19 
6b 0.17 ± 0.02 0.22 ± 0.02 1.86 ± 0.19 2.69 ± 0.26 0.17–2.69 15.82 
6c 0.67 ± 0.07 0.41 ± 0.04 2.84 ± 0.28 3.72 ± 0.36 0.41–3.72 9.07 
6d 2.12 ± 0.22 2.49 ± 0.24 9.07 ± 0.91 10.11 ± 1.01 2.02–10.11 5.00 
6e 2.49 ± 0.24 3.02 ± 0.31 9.51 ± 0.93 11.59 ± 1.19 2.44–11.59 4.75 
6f 2.81 ± 0.29 3.18 ± 0.30 9.28 ± 0.93 11.24 ± 1.26 2.74–11.24 4.10 

Staurosporin 1.72 ± 0.15 4.35 ± 0.85 8.16 ± 0.88 18.08 ± 2.12 1.72–18.08 10.51 
* Data are presented as the mean_SEM calculated from results of at least three independent experi-
ments. 

It was shown that macrodiolides 6a,b exhibit the most pronounced cytotoxicity, 
while the introduction of one, two or three ethylene glycol fragments into the macrodi-
olide molecules instead of the central benzene fragment in the aromatic diol leads to a 
significant decrease in the cytotoxicity of the macrodiolides (6d–f) (Table 1). 

To conduct further studies on the Jurkat cell lines of apoptosis-inducing activity and 
the ability to influence the cell cycle, the most active macrocyclic compounds 6a–c were 
selected. As a result, it was established that the synthesized compounds are inducers of 
apoptosis and help slow down the process of cell division due to a block at the G1/S check-
point. 

3. Materials and Methods 
Chemistry 

1H, 13C NMR spectra were recorded in CDCl3 using a Bruker Avance 400 spectrome-
ter. The mass spectra were obtained using an ultraflex III TOF/TOF (Bruker Daltonik 
GmbH, Bremen, Germany). The macrocyclic compounds were synthesized similarly ac-
cording to the procedure described in the literature [7]. Studies of antitumor activity (in-
duction of apoptosis tests, cell cycle analysis) were carried out following the known pro-
cedures [6]. 
(11Z,15Z)-8,9,10,13,14,17,18,19,28,33-decahydro-5H,22H-tribenzo[c,g,k][1,5,10,14]tetrao-
xacyclooctacosine-7,20-dione (7a). White waxy solid; yield 54%. Rf = 0.55, hexane/EtOAc 

Scheme 1. Synthesis of aromatic polyether macrodiolides.

Table 1. Cytotoxic activities in vitro of synthesized cyclophanes 6a–f measured on cell cultures
(Jurkat, K562, Hek293 and normal fibroblasts) (µM).

Comp. Jurkat
(CC50, µM) *

K562
(CC50, µM) *

Hek293
(CC50, µM) *

Fibrobl.
(CC50, µM) *

Selectivity
Index

CC50max/
CC50min

6a 0.21 ± 0.02 0.16 ± 0.03 1.91 ± 0.21 2.98 ± 0.31 0.21–2.98 14.19

6b 0.17 ± 0.02 0.22 ± 0.02 1.86 ± 0.19 2.69 ± 0.26 0.17–2.69 15.82

6c 0.67 ± 0.07 0.41 ± 0.04 2.84 ± 0.28 3.72 ± 0.36 0.41–3.72 9.07

6d 2.12 ± 0.22 2.49 ± 0.24 9.07 ± 0.91 10.11 ± 1.01 2.02–10.11 5.00

6e 2.49 ± 0.24 3.02 ± 0.31 9.51 ± 0.93 11.59 ± 1.19 2.44–11.59 4.75

6f 2.81 ± 0.29 3.18 ± 0.30 9.28 ± 0.93 11.24 ± 1.26 2.74–11.24 4.10

Staurosporin 1.72 ± 0.15 4.35 ± 0.85 8.16 ± 0.88 18.08 ± 2.12 1.72–18.08 10.51

* Data are presented as the mean_SEM calculated from results of at least three independent experiments.

It was shown that macrodiolides 6a,b exhibit the most pronounced cytotoxicity, while
the introduction of one, two or three ethylene glycol fragments into the macrodiolide
molecules instead of the central benzene fragment in the aromatic diol leads to a significant
decrease in the cytotoxicity of the macrodiolides (6d–f) (Table 1).

To conduct further studies on the Jurkat cell lines of apoptosis-inducing activity and
the ability to influence the cell cycle, the most active macrocyclic compounds 6a–c were
selected. As a result, it was established that the synthesized compounds are inducers
of apoptosis and help slow down the process of cell division due to a block at the G1/S
checkpoint.

3. Materials and Methods
Chemistry

1H, 13C NMR spectra were recorded in CDCl3 using a Bruker Avance 400 spectrometer.
The mass spectra were obtained using an ultraflex III TOF/TOF (Bruker Daltonik GmbH,
Bremen, Germany). The macrocyclic compounds were synthesized similarly according to
the procedure described in the literature [7]. Studies of antitumor activity (induction of
apoptosis tests, cell cycle analysis) were carried out following the known procedures [6].

(11Z,15Z)-8,9,10,13,14,17,18,19,28,33-decahydro-5H,22H-tribenzo[c,g,k][1,5,10,14]tetraoxacy
clooctacosine-7,20-dione (7a). White waxy solid; yield 54%. Rf = 0.55, hexane/EtOAc 5:1.
1H NMR (500 MHz, CDCl3) δ = 7.59–7.50 (m, 2H), 7.43–7.25 (m, 6H), 7.02–6.91 (m, 4H),
5.38–5.15 (m, 12H), 2.37–1.90 (m, 8H), 1.72–1.65 (m, 4H), 1.65–1.55 (m, 4H). 13C NMR
(126 MHz, CDCl3): δ = 173.7, 156.9, 134.9, 131.0, 130.2, 129.9, 128.9, 128.4, 128.3, 124.6,
120.9, 111.9, 68.1, 61.9, 33.4, 27.3, 26.3, 24.6. ESI-MS: calcd. for C36H40O6 + Na+ [M + Na]+

591.2717; found 591.2731.
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(14Z,18Z)-2,6,9,24-tetraoxa-1,7(1,2),4(1,3)-tribenzenacyclopentacosaphane-14,18-diene-10,
23-dione (7b). White waxy solid; yield 58%. Rf = 0.54, hexane/EtOAc 5:1. 1H NMR
(400 MHz, CDCl3): δ = 7.53–7.24 (m, 8H), 7.03–6.88 (m, 4H), 5.48–4.94 (m, 12H), 2.33 (t,
J = 7.4 Hz, 4H), 2.15–1.86 (m, 8H), 1.74–1.59 (m, 4H). 13C NMR (101 MHz, CDCl3): δ = 173.5,
156.6, 137.4, 130.2, 129.9, 129.6, 128.9, 128.8, 126.5, 125.6, 124.8, 120.8, 111.9, 69.8, 61.7, 33.7,
27.2, 26.6, 24.9. ESI-MS: calcd. for C36H40O6 + NH4

+ [M + NH4]+ 586.3163; found 586.3187.

(14Z,18Z)-2,6,9,24-tetraoxa-1,7(1,2),4(1,4)-tribenzenacyclopentacosaphane-14,18-diene-10,
23-dione (7c). White waxy solid; yield 67%. Rf = 0.54, hexane/EtOAc 5:1. 1H NMR
(400 MHz, CDCl3): δ = 7.48 (s, 4H), 7.42–7.21 (m, 4H), 7.00 (t, J = 7.4 Hz, 4H), 5.43–5.08 (m,
12H), 2.42–2.27 (m, 4H), 2.15–1.92 (m, 8H), 1.76–1.63 (m, 4H). 13C NMR (101 MHz, CDCl3):
δ = 173.6, 157.1, 136.6, 130.9, 130.2, 129.9, 129.0, 127.3, 127.3, 124.7, 120.8, 111.9, 69.7, 62.2,
33.6, 27.3, 26.4, 24.8.ESI-MS: calcd. for C36H40O6 + Na+ [M + Na]+ 591.2717; found 591.2694

(11Z,15Z)-8,9,10,13,14,17,18,19,28,29-decahydro-5H,22H-dibenzo[e,y][1,4,8,23]tetraoxacyclo
hexacosine-7,20-dione (7d). White waxy solid; yield 53%. Rf = 0.57, hexane/EtOAc 3:1. 1H
NMR (500 MHz, CDCl3): δ = 7.34 (dd, J = 13.6, 7.4 Hz, 4H), 7.03–6.93 (m, 4H), 5.49–5.27
(m, 4H), 5.20 (d, J = 9.5 Hz, 4H), 4.38 (s, 4H), 2.36–2.26 (m, 4H), 2.13–1.94 (m, 8H), 1.72–1.62
(m, 4H). 13C NMR (126 MHz, CDCl3): δ = 173.6, 156.7, 130.2, 130.1, 129.6, 129.1, 125.0,
121.0, 111.8, 66.9, 61.5, 33.4, 27.5, 26.4, 24.8. ESI-MS: calcd. for C30H36O6 + Na+ [M + Na]+

515.2404; found 515.2391.

(11Z,15Z)-8,9,10,13,14,17,18,19,28,29,31,32-dodecahydro-5H,22H-dibenzo[b1,h][1,4,7,11,26]
pentaoxacyclononacosine-7,20-dione (7e). White waxy solid; yield 60%. Rf = 0.49, hex-
ane/EtOAc 3:1. 1H NMR (500 MHz, CDCl3): δ = 7.42–7.20 (m, 4H), 7.03–6.85 (m, 4H),
5.47–5.27 (m, 4H), 5.19 (s, 4H), 4.22–4.10 (m, 4H), 3.96 (t, J = 4.6 Hz, 4H), 2.33 (t, J = 7.2 Hz,
4H), 2.18–1.87 (m, 8H), 1.77–1.59 (m, 4H). 13C NMR (126 MHz, CDCl3): δ = 173.5, 157.1,
130.5, 130.3, 129.8, 129.0, 124.8, 120.8, 111.9, 70.1, 68.3, 61.8, 33.6, 27.4, 26.4, 24.8. ESI-MS:
calcd. for C32H41O6 + H+ [M + H]+ 537.2847; found 537.2858

(11Z,15Z)-8,9,10,13,14,17,18,19,28,29,31,32,34,35-tetradecahydro-5H,22H-dibenzo[e1,k][1,4,7,
10,14,29]hexaoxacyclodotriacontine-7,20-dione (7f). White waxy solid; yield 67%. Rf = 0.38,
hexane/EtOAc 3:1. 1H NMR (400 MHz, CDCl3): δ = 7.31 (dd, J = 16.2, 6.8 Hz, 4H),
7.01–6.87 (m, 4H), 5.45–5.29 (m, 4H), 5.19 (d, J = 6.1 Hz, 4H), 4.17 (t, J = 4.6 Hz, 4H), 3.89
(t, J = 4.7 Hz, 4H), 3.77 (s, 4H), 2.40–2.28 (m, 4H), 2.15–1.96 (m, 8H), 1.77–1.63 (m, 4H). 13C
NMR (101 MHz, CDCl3)): δ = 173.5, 157.0, 130.4, 130.2, 129.7, 129.0, 124.6, 120.7, 111.7, 71.1,
69.8, 68.1, 61.8, 33.6, 27.3, 26.5, 24.9. ESI-MS: calcd. for C34H44O8 + Na+ [M + Na]+ 603.2928;
found 603.2943.

4. Conclusions

As a result of the research, the synthesis of polyether aromatic macrodiolides was car-
ried out in good yields for the first time. Biological studies have shown that the synthesized
macrocycles have cytotoxicity against tumor cell lines, are capable of slowing down the cell
cycle and can act as inducers of apoptosis.
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