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Abstract: New hybrid fullerene C60 derivatives with five norbornadiene fragments, at a distance
from the fullerene core of several methylene groups, were synthesized for the first time. Subsequent
photoirradiation of these derivatives leads to only partial (up to 20%) opening of double bonds
in norbornadiene fragments to form quadricyclane substituents. It is assumed that the resulting
fullerene C60 derivatives can serve as a basis to create high-energy materials.
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1. Introduction

Fullerenes and their derivatives attract great attention due to their unique properties
that allow them to be used as effective antioxidants [1], solar energy converters [2], semi-
conductor materials [3], additives for motor oils [4], and modern medicinal products [5].
Such a wide applied significance of fullerene C60 derivatives is due to various methods
of their functionalization, among which the most popular are currently the Prato [6] and
Bingel–Hirsch reactions [7]. These approaches make it possible to selectively prepare not
only mono-, bis-, and tris- but also hexa-adducts of fullerene C60 [8–11] with specified
symmetry types, in which addends are located almost throughout the entire fullerene
sphere. Besides these studies, there are works devoted to the synthesis of various highly
symmetric fullerene C60 polyadducts, when a chlorofullerene C60Cl6 was used as a starting
compound. Indeed, this method makes it possible to obtain various alkoxyfullerenes [12],
aminofullerenes [13], sulfides [14], and arylated [15] C60 derivatives, which have particular
interest and application in medicine [16,17].

We reported recently [18–21] the synthesis of energy-rich methanofullerenes through
the reaction of fullerene C60 with mono- and bis-quadricyclane esters of malonic acid under
Prato reaction conditions [22]. It was shown that some distance between a quadricyclane
fragment and a fullerene core is necessary to maintain the metastable structure of a hybrid
fullerene–quadricyclane molecule. At the same time, it seemed interesting and relevant
to study the photochemical isomerization of norbornadiene fragments into quadricyclane
ones in the C60 cycloadducts synthesized.

Considering these facts, we performed a covalent binding of fullerene C60 with nor-
bornadienes and quadricyclanes in this work, where chlorofullerene C60Cl6 was used as a
starting compound. It was assumed that the selective synthesis of C60 adducts containing
five addends, according to the method described in the literature [12], will increase the
solubility of new hybrid molecules due to a higher number of quadricyclanes attached cova-
lently to a C60 carbon core. The photochemical isomerization of norbornadiene-containing
penta-derivatives of fullerene C60 into quadricyclane derivatives was also studied.
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2. Results and Discussion

The interaction between hexachlorofullerene and norbornadiene alcohols 1a–1e [23,24]
at room temperature for 30 min led to the formation of hexa-substituted adducts 2a–2e,
in which the fullerene core was bound to a polycycle fragment through an ether bond.
Fullerene polyadducts 2a–2e were isolated from the reaction mass using preparative HPLC
with a chromatographic purity of ~99.9%.

The structure of compounds 2a–2e was elucidated with one-dimensional (1H and 13C)
and two-dimensional (1H–1H COSY, 1H–13C HSQC, 1H–13C HMBC) NMR techniques and
MALDI–TOF mass spectrometry. High-frequency signals (δ 158.72, 144.39, 142.30, and
133.30 ppm), characteristic of sp2 hybridized carbon atoms of a norbornadiene fragment,
and low-frequency ones (δ 73.53, 55.66 and 50.20 ppm), typical of sp3 carbon atoms of
this fragment, for example, are observed in the 13C NMR spectrum of compound 2e, in
which the norbornadiene fragment is removed from a fullerene core to the greatest extent
compared to those in the derivatives 2a–2d. The 13C NMR signals of seven methylene
groups appear in the low-frequency region at δ 31.73, 30.57, 29.77, 29.63, 27.44, 26.67,
and 26.59 ppm, and the signal of a methylene group bound to an oxygen atom is at δ
68.34 ppm. The sp3 hybridized carbon atom of a fullerene sphere bound to a chlorine one
resonates at δ 71.47 ppm in the 13C NMR spectrum, and fullerene carbon atoms in the
sp3 hybridization bound to oxygen atoms give signals at δ 79.39 and 81.66 ppm, which
is in agreement with previous published data [12,25]. Fullerene carbon atoms in the sp2

hybridization give 47 signals at δ 138–154 ppm, of which seven signals have a double
relative intensity, and the rest have a single one. This indicates that the molecule of this
derivative is assigned to a C1 symmetry point group, probably due to the asymmetric
arrangement of a norbornadiene fragment at the C-1 fullerene carbon atom relative to the
conventional symmetry plane passing through the C-1 and C-9 carbon atoms of a fullerene
sphere (see Scheme 1 for numbering of carbon atoms) [26]. A molecular ion peak in the
MALDI–TOF mass spectrum recorded in the negative ion mode at m/z 1851.8505 indicates
that five oxooctylnorbornadiene fragments and one chlorine atom are attached to a fullerene
sphere, which confirms the proposed structure of derivative 2e. Similarly, the molecules of
the compounds 2a–2d are assigned to the C1 symmetry group, regardless of the length of
an alkyl fragment that connects an oxygen atom and a norbornadiene fragment.
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Scheme 1. Preparation of hexa-adducts of fullerene C60.

We reported previously [18] that it is impossible to perform the photoisomerization of
norbornadiene fragments into quadricyclane ones in hybrid molecules, but it is known [11]
that such compounds are capable of converting into quadricyclane derivatives under cer-
tain conditions. We converted the hybrid molecules 2a–2e with norbornadiene fragments
into those with quadricyclane ones 3a–3e via photochemical isomerization according to the
method described earlier [11] (Scheme 2). As a result, it was found that the norbornadiene
fragments are only partially isomerized into quadricyclane ones with a yield of no more
than 20%. It was impossible to isolate and to determine the composition of new hybrid
molecules because of the formation of a complex mixture of stereoisomers consisting of
norbornadiene and quadricyclane fragments bound to one fullerene molecule. We as-
sumed that quadricyclane fullerene C60 derivatives can be synthesized through the reaction
between chlorofullerene C60Cl6 and the corresponding quadricyclanes in this regard.
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The reaction between quadricyclane alcohols and hexachlorofullerene also led to the
formation of a difficult-to-identify reaction mass of the compounds 3a–3e under previously
developed conditions [12], which is probably because of the partial opening of strained
C–C bonds in quadricyclane fragments.

3. Materials and Methods

All reactions were performed in an argon atmosphere and in an anhydrous solvent.
The solvents and reagents were dried or purified according to procedures described in
the literature. Commercially available fullerene C60 (purity of 99.5%, Sigma-Aldrich, 9402
Alberene Drive, Houston, TX 77074, USA) was used.

The reaction products were analyzed on a Shimadzu SPD-20A HPLC chromatograph
(1900 SE 4th Avenue, Canby, OR 97013, USA) equipped with a UV detector at 313 or 340 nm.
The mixtures were separated on a Cosmosil Buckyprep Waters preparative column
(250 × 10 mm) at a temperature of ~20 ◦C. Toluene was used as an eluent, and the flow
rate was 3.0 mL min−1. The 1H, 13C, and two-dimensional NMR spectra were acquired on
a Bruker Avance III HD 500 NMR spectrometer with frequencies of 500 and 125 MHz, re-
spectively. A mixture of CDCl3 and CS2 (1:5) was used as a solvent. The 1H and 13C NMR
chemical shifts (δ) are given in ppm relative to internal standard SiMe4. Mass spectra were
recorded on a MALDI–TOF/TOF mass spectrometer (Bruker Daltonik GmbH, Germany),
operating in linear (TOF) and reflective (TOF/TOF) modes of positive and negative ions. S8
and DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) were used
as a matrix. The solutions of the samples in toluene were used to apply them to a metal target
for mass spectrometric measurements. The photoisomerization of norbornadiene derivatives
into quadricyclane derivatives was performed on a HAMAMATSU LC 8 irradiator at 310 nm.

Compound 2a

Brown powder. 1H NMR, δ: 1.60 (m, 1H), 2.06 (m, 1H), 2.19 (m, 1H), 2.21 (m, 1H), 3.59 (m,
2H), 6.12 (m, 1H), 6.77 (m, 1H), 6.78 (m, 1H). 13C NMR, δ: 25.84, 27.31, 29.41, 29.49, 29.56,
29.83, 31.62, 32.92, 50.11, 50.28, 51.57, 51.99, 53.59, 63.14, 66.63, 66.81, 67.04, 67.26, 67.69,
68.05, 69.10, 69.65, 70.06, 70.29, 73.50, 73.73, 76.83, 77.08, 77.34, 133.21, 137.21, 137.33, 137.45,
137.62, 137.81, 138.18, 142.36, 142.51, 142.61, 143.31, 143.40, 143.55, 143.83, 144.39, 147.28,
147.70, 148.08, 148.28, 148.46, 148.93, 149.14, 149.48, 149.57, 154.68, 154.85, 154.99, 155.14,
158.92. MALDI–TOF, [M]– calcd. for C100H45ClO5 1361.3024, found 1361.3020.

Compound 2b

Brown powder. 1H NMR, δ: 1.62 (m, 2H), 1.71 (m, 1H), 1.99 (m, 2H), 2.07 (m, 1H), 3.02 (m,
2H), 3.52 (m, 2H), 6.13 (m, 1H), 6.76 (m, 2H). 13C NMR, δ: 22.96, 26.49, 28.15, 29.47, 29.93,
30.43, 30.62, 31.56, 32.10, 42.00, 50.34, 50.58, 50.87, 53.71, 60.47, 65.95, 67.73, 67.99, 68.16,
68.33, 68.58, 68.80, 73.61, 133.81, 134.00, 134.17, 134.44, 136.12, 136.32, 136.39, 136.48, 142.20,
142.26, 142.32, 143.84, 143.92, 143.99, 146.94, 147.00, 147.10, 147.16, 147.32, 147.50, 147.76,
147.86, 147.93, 148.07, 148.14, 148.42, 148.55, 148.92, 149.06, 149.21, 157.74. MALDI–TOF,
[M]– calcd. for C110H65ClO5 1501.4657, found 1501.4662.

Compound 2c

Brown powder. 1H NMR, δ: 1.29 (m, 2H), 1.56 (m, 2H), 1.78 (m, 1H), 1.99 (m, 2H), 2.03
(m, 1H), 3.29 (m, 1H), 3.32 (m, 1H), 3.51 (m, 2H), 6.18 (m, 1H), 6.76 (m, 2H). 13C NMR, δ:
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24.12, 29.96, 30.10, 31.48, 50.29, 53.65, 67.83, 68.06, 68.45, 73.59, 133.78, 133.90, 134.00, 142.26,
143.86, 146.96, 147.08, 147.23, 147.36, 147.55, 147.77, 147.89, 148.18, 148.31, 148.41, 148.53,
149.02, 149.16, 149.46, 149.56, 158.07, 158.35. MALDI–TOF, [M]– calcd. for C115H75ClO5
1571.5337, found 1571.5331.

Compound 2d

Brown powder. 1H NMR, δ: 1.30 (m, 2H), 1.33 (m, 2H), 1.39 (m, 2H), 1.47 (m, 2H), 1.81
(m, 1H), 1.98 (m, 2H), 2,06 (m, 1H), 3.28 (m, 2H), 3.48 (m, 2H), 6.12 (m, 1H), 6.74 (m, 2H).
13C NMR, δ: 26.48, 27.46, 28.67, 29.56, 30.03, 30.54, 31.77, 33.43, 50.31, 53.72, 67.77, 67.93,
68.12, 68.32, 73.60, 133.52, 142.25, 143.85, 144.40, 145.13, 145.30, 145.50, 145.63, 147.13, 147.30,
147.53, 147.71, 147.81, 148.08, 148.21, 148.41, 148.71, 148.88, 149.06, 149.21, 149.38, 149.51,
158.47. MALDI–TOF, [M]– calcd. for C125H95ClO5 1711.6943, found 1711.6939.

Compound 2e

Brown powder. 1H NMR, δ: 1.34 (m, 10H), 1.43 (m, 2H), 1.82 (m, 1H), 1.97 (m, 2H), 2.00 (m,
1H), 2.21 (m, 2H), 3.49 (m, 2H), 6.12 (m, 1H), 6.75 (m, 2H). 13C NMR, δ: 26.60, 26.69, 27.45,
29.64, 29.72, 29.78, 30.58, 31.74, 50.20, 53.66, 68.34, 68.71, 73.54, 133.30, 142.30, 143.83, 144.05,
144.26, 144.39, 144.69, 144.81, 145.14, 145.29, 145.47, 145.63, 145.93, 146.93, 147.14, 147.35,
147.56, 147.68, 147.96, 148.11, 148.33, 149.14, 149.32, 149.44, 158.71. MALDI–TOF, [M]– calcd.
for C135H115ClO5 1851.8515, found 1851.8505.

4. Conclusions

In summary, we synthesized hybrid molecules containing five norbornadiene or
quadricyclane fragments bound covalently to a fullerene core through one, three, four, six,
and eight oxymethylene units for the first time. The stereoselectivity of this reaction was
studied thoroughly with spectral methods. It was shown for the first time that quadri-
cyclane alcohols, reacting with C60Cl6, are converted under selected conditions into the
corresponding norbornadiene derivatives.
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