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Abstract: This study analyzed the potential of proximal optical sensing as an effective approach for
early disease detection. A compact, modular sensing system, combining direct UV–Vis spectroscopy
with optical fibers, supported by a principal component analysis (PCA), was applied to evaluate the
modifications promoted by the bacteria Xanthomonas euvesicatoria in tomato leaves (cv. cherry). Plant
infection was achieved by spraying a bacterial suspension (108 CFU mL−1) until run-off occurred,
and a similar approach was followed for the control group, where only water was applied. A total
of 270 spectral measurements were performed on leaves, on five different time instances, including
pre- and post-inoculation measurements. PCA was then applied to the acquired data from both
healthy and inoculated leaves, which allowed their distinction and differentiation, three days after
inoculation, when unhealthy plants were still asymptomatic.

Keywords: plant disease detection; plant pathology; proximal sensing; spectroscopy; precision
agriculture; principal component analysis

1. Introduction

Biotic agents, specifically pests and pathogens, cause significant losses in crop yields,
with levels that can range between 20% and 40% [1]. Chemical phytosanitary products
are usually applied to prevent and combat these organisms. However, their usage can
negatively impact the environment, mainly when applied to treat plant diseases that appear
suddenly and spread to large scales [2].

Nowadays, phytopathology methods are considered major challenges because, to be
implemented, they often rely on the presence of indicator visible signs of the infection
(disease symptoms), which frequently only manifest themselves at the middle to late
stages of the process, compromising the effectiveness of phytosanitary measures [3]. An
example is the scouting technique, which involves inspecting a crop field to detect and
identify infected plant through disease symptoms [4]. Despite being extremely useful,
this approach requires specialized trained observers (who must be capable of identifying
disease symptoms and distinguishing them from those caused by other abiotic stresses
(e.g., nutritional and physiological disorders)), and can be labor-intensive, time-consuming,
and expensive [5–11]. Moreover, this approach can be an inefficient in the early stages of
the infection and on large areas. Other strategies consist of laboratory-based techniques,
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namely serological and molecular tests, largely used due to their sensitivity, accuracy, and
effectiveness. They include enzyme-linked immunosorbent assay (ELISA) and polymerase
chain reaction (PCR) methods, being the first serological approach based on protein in
the detection of causative diseases and the second molecular technique based on the
DNA sequence of the pathogen. Their development boosted plant disease diagnosis,
since they allow the simultaneous processing of several samples and perform a precise
pathogen identification. Furthermore, PCR enables the detection of pathogens that have not
been cultured. Nevertheless, these procedures present some limitations, especially in the
early phase of the infection process, due to the uneven spread of pathogens inside plants,
compromising their effectiveness in analyzing asymptomatic samples [9,12–14]. Other
drawbacks can also be enumerated. They require several hours to be completed, require
the realization of detailed sampling procedures, and destructive sample preparation, not
allowing a follow-up of the disease progression [12,13].

Therefore, the necessity of developing fast, accurate, and selective in vivo techniques
for plant disease detection arises. These innovative approaches must provide comple-
mentary information to the current methods applied in the phytopathology field and
combine with them. Several non-invasive methods have been developed in the last decade,
which proved to be sensitive, consistent, standardize, rapid, cost-effective, and have high-
throughput [15]. Hyperspectral spectroscopy (HS) is one of them and seems to be effective
in estimating a wide variety of plant chemical, biophysical, and metabolic traits in living tis-
sue [16–22], namely foliar structure, plant chemical composition, water concentration, and
metabolic status [23]. Through spectral measurements in the visible (Vis, 400–700 nm), near-
infrared (NIR, 700–1100 nm), and shortwave infrared wavelengths (SWIR, 1100–2500 nm),
this approach assesses changes in optical properties of leaves, which derive from inter-
actions between light, chemical bonds, and cellular structure [24]. Briefly, modifications
in plants’ reflectance in the Vis range are mostly related to pigment concentration and
physiological processes, such as photosynthesis. In turn, changes in the NIR are correlated
with leaf structure and internal scattering processes. The SWIR region is affected by leaf
structural and chemical composition (including lignins and proteins), as well as water
content [25–29].

Since phytopathogens induce physiological, biochemical, and structural changes
in host plants, HS seems to be promising in plant disease detection, identification, and
quantification [30–38]. Hyperspectral sensors can be used alone or mounted in different
platforms, allowing the performance of mapping, monitoring, scouting, and application
tasks [2]. Their flexibility allows them to assess leaf, single-plant, canopy (proximal sens-
ing), and even plot and regional scales (remote sensing) [2]. Some examples, sorted by
measurement scale, include handheld sensors, rail systems, vehicle, and tractor-mounted
systems, drones UAVs, as well as aircrafts and satellites [39].

Despite the possibilities provided by these optical devices for simple, rapid, non-
destructive disease detection and identification, its application is still very limited, due
to the scarcity of extensive agronomic and phytopathological studies aiming to explore
their full potential. Their technology readiness levels (TRL) are close to TRL3 (analytical
and experimental critical function, and/or characteristic proof-of-concept) [40]. Hence,
this study aimed to evaluate the potential of UV–Vis spectroscopy to detect diseased
tomato leaves and discriminate between healthy and infected leaves, through a multi-
temporal approach. Furthermore, the capability of this technology in detecting changes
in the reflectance spectrum of infected leaves was analyzed, before the first symptoms
became visible.

2. Materials and Methods
2.1. Experimental Design

Tomato (Solanum lycopersicum L.) plants, of the cultivar cherry, were grown in 200 mL
pots containing a commercial potting substrate, in a walk-in plant growth chamber under
controlled conditions (temperature of 25–27 ◦C, humidity of approximately 60%, and
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photoperiod of 12/12 h). Plants were divided into two groups, one of them being inoculated
with Xanthomonas euvesicatoria LMG 905 (Xeu) bacteria and the other being treated with
sterile distilled water only (control group, Con). Plants were inoculated in the laboratory, at
the growth stage of 5–6 fully expanded leaves, by spraying until they became fully wet, and
run-off occurred. The bacterial suspensions used for these inoculation assays consisted of
1 × 108 cells/mL. They were prepared from a 48 hour-old culture, grown on YDC medium
(yeast extract, 10.0 g; dextrose, 20.0 g; CaCO3, 20.0 g; agar, 15.0 g; distilled water up to
1.0 L). The inoculated plants were then covered with transparent polythene bags for 48 h to
increase the relative humidity that fosters bacterial entry into plant tissues through natural
openings, such as stomata [41]. Plants were monitored daily for symptom development for
5 days.

At the same time, to verify if the bacteria cultures used in these inoculation tests were
viable, 20 µL of Xeu solution were cultured in different Petri dishes containing YDC media.
After 48 h, it was possible to observe the bacteria growth in both nutrient media, proving
that bacteria were viable at inoculation.

2.2. Spectral Measurements

Hyperspectral data were collected in vivo from the adaxial side of healthy and infected
tomato plant leaves, using a compact benchtop system consisting of a D2 (deuterium) light
source (Ocean Optics, model DH-2000-BAL, Ostfildern, Germany), spectrometer (Ocean
Optics, model HR4000, Ostfildern, Germany), transmission optical fiber bundle (UV), and
stainless-steel slitted reflection probe for sample measurement. The spectrometer operated
in the 195–1100 nm wavelength range, with a high spectral response and optical resolution
of 0.025 nm (full width at half maximum—FWHM). The measurements were carried out
using an experimental setup in the laboratory. A LED light source was placed beneath the
leaf and provided homogeneous illumination to its entire surface. The light signal from
the sample analyzed was guided to the entrance lens of the spectrometer by the fiber-optic
cable placed perpendicularly 1 cm above the measured surface. Specialized software was
used for data acquisition and processing. Data acquisition was performed with 10 scans
for an integration period of 60 ms, in three leaves per plant, on nine locations on each leaf.

2.3. Data Pre-Processing

Spectral pre-processing was performed, in order to remove possible artifacts, e.g.,
baseline shifts, Mie and Rayleigh scattering, and stray light. Also, a pretreatment with a
fast fourier transform (FFT) was carried out on spectral data to smooth/denoise it. FFT
is an algorithm that computes the discrete Fourier transform (DFT) of a sequence or its
inverse (IDFT). Fourier analysis converts a signal from its original domain (often time or
space) to a representation in the frequency domain and vice versa. The DFT is obtained by
decomposing a sequence of values into components of different frequencies [42]. Spectral
data pre-processing was performed with RStudio software.

2.4. Data Processing—Analytical Techniques

Spectral data was subjected to a principal component analysis (PCA), a multivariate
data analysis technique was used to reduce the dimensionality, while preserving its struc-
ture by projecting it into a new coordinate system. This technique allows the preservation
of the total variance of the dataset and minimizes the mean square approximate errors.
PCA uses eigenvectors and eigenvalues to define the reduced subspace (representing the
original coordinate system). It originates principal components (PC), which are linear
combinations of interrelated variables. PC1 accounts for the maximum possible proportion
of the variance information of the original dataset (explained by the eigenvalue), and
subsequent principal components (PC2, PC3, . . . ) account for the maximum proportion of
the unexplained residual variance, and so forth [43,44].

Contigous hyperspectral wavebands present redundant information [45]. The applica-
tion of a PCA allows the transformation of this type of high-dimensional data into a few
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wavebands that contain most of the information in the original bands. The importance
of these hyperspectral bands in each PC is then established based on the magnitude of
eigenvectors or factor loadings for crop biophysical and biochemical traits, being that
the higher the eigenvector, the higher is the importance of the band. So, PCA allows the
selection of the best wavebands to model biophysical and biochemical quantities and the
elimination of redundant bands (by highlighting the main bands) [46].

3. Results

The spectral response properties of tomato leaves to the stress caused by Xanthomonas
euvesicatoria LMG 905 is very important for discriminating bacterial infection levels in
precise pest management using hyperspectral proximal sensing data. The averaged raw
spectral curves of healthy and diseased tomato leaves were slightly different in some spec-
tral ranges, namely through the visible region of the wavelength spectrum (~480–680 nm)
(please refer to Figure 1) Similarly, the spectral measurements assessed on infected leaf
tissue presented a decrease in signal intensity throughout the sampling period (24–144 h),
which accompanied the appearance of the first visual symptoms of the disease after 72 h.
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Figure 1. Spectral measurement curve evolution for tomato leaves inoculated with bacteria Xan-
thomonas euvesicatoria LMG 905, within the sampling period (24–144 h). Leaf spectral curves were
assessed in vivo on the adaxial side of fully expanded leaves, on the spectral region from 195 to
1100 nm.

Figure 2 presents the principal components (PC) Gabriel plot for the healthy (Con)
and diseased (Xeu) leaves spectra, three days after inoculation (before the appearance of
the first symptoms). The PCA algorithm has obtained two PCs, accounting for 99.6% of the
total variance. PC1 (94.3%) discriminates the effects on the variance of these two types of
tomato leaves, which is more evident in PC2 (5.3%).
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Figure 2. Gabriel plot of PC1, PC2, and PC3 resulting from the PCA of the dataset three days after inoculation (all leaves
were asymptomatic, showing no symptoms of the disease caused by Xanthomonas euvesicatoria LMG 905).

The wavelengths that have a higher contribution in these PC are in the interval of
~454–654 nm (visible range of the wavelength spectrum). The ones between ~492–510 nm
(essentially the blue region of the electromagnetic spectrum) explain 30% of the variance of
the PC1, whereas ~454–461 nm (blue region) explain 40% of the variance of the PC2 and
50% of the PC3. In all the first four dimensions of this analysis, the wavelengths ranging
from approximately 445–480 nm (blue) and 580–700 nm (red) were the ones that explain
most of the variance of the data.

This evidence can be related to the symptoms caused by Xeu, since these bacteria
cause small, brown, angular lesions on leaves (which can be surrounded by a yellow halo
with time), affecting the levels of photosynthetic pigments (contributing especially to the
reduction of the chlorophyll levels, whose absorption features are more evident in the blue
and red ranges of the Vis spectral region), cellular content, and structural arrangement.

4. Discussion

The spectral behavior of tomato plants depends on their biochemical and structural
profile. In brief, plants’ spectral signature in the visible spectral region (400–700 nm)
depends mainly on the content of photosynthetic pigments. These compounds are good
absorbers of red and blue wavelengths. Of the major pigments, Chlorophyll a (Chl a)
has maximum absorption in the 410–430 and 600–690 nm regions, whereas Chlorophyll b
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(Chl b) has maximum absorption in the 450–470 nm range. In healthy plants, chlorophyll
concentration is approximately ten times higher than that of other pigments, thus masking
out the specific absorption features of these compounds. The green part of the spectrum, on
the other hand, is less strongly absorbed, resulting in a reflectance peak in the green domain
(at about 550 nm) [25]. Hence, when a light source illuminates healthy plants, they will
preferentially absorb red and blue wavelengths, being the green part of the incident light
less absorbed and, consequently, more reflected, leading to their green appearance [26].
In the NIR region, the plants’ spectral response is related to their structure, structural
components, and internal scattering processes. Likewise, the SWIR region is also affected
by leaf structural and chemical composition (including the action of lignin’s and proteins)
and water content [25–29].

Since phytopathogens cause changes in plants’ biochemical and structural compo-
sition, affecting the levels of photosynthetic pigments and structural elements, tracking
changes in plants’ spectral behavior can allow an indirect analysis of their phytosanitary
status. Generally, unhealthy plants have more reflection in the red region and lower re-
flectance in the NIR region. Briefly, stress usually promotes an increase of reflectance
over the whole spectrum, since it causes a rapid decrease of chlorophylls, which increases
reflectance in the Vis range and exposes the absorption characteristics of other pigments,
such as carotenoids (responsible for the yellowing of the leaves) and xanthophylls (respon-
sible for the reddening of the leaves). With continuing stress, leaf structures decompose,
resulting in extra intra-leaf scattering and an increased NIR signal. At the same time,
concentrations of brown pigments, which absorb radiance in the Vis and at the onset of
the NIR, can increase leading to a flattening of the red edge. Absorption in the SWIR
decreases, due to reduced leaf moisture. With a decay of the leaf tissue, the absorption
features characteristics of healthy plants gradually disappear [47].

Our findings seem to be in accord with the previous information, showing evidence
that UV–Vis spectroscopy can be suitable for plant disease assessment in laboratory condi-
tions. Data collected in a randomized experimental design, combined with a PCA, allowed
the discrimination of healthy and diseased tomato leaves, even at the third day after bac-
teria inoculation, when no visual symptoms were observable. Most of the variance of
the data can be comprised with the first four PCs. In all of them, the wavelengths that
explain most of the variance of the data ranged from approximately 445–480 nm (blue)
and 580–700 nm (red), which was expected, since Xanthomonas euvesicatoria causes tissue
lesions, degrading the chlorophylls levels and affecting their absorption features in these
spectral regions.

Therefore, our results can be related to those obtained in different research, where
sensor-based approaches proved to be capable of assessing modifications in plants’ spectral
behavior, allowing the detection, identification, and quantification of different types of
plant diseases [44,48–51]. They involve the capture and analysis of the optical properties of
plants, within different regions of the electromagnetic spectrum and their relationship with
modifications in plant physiology, namely alterations in tissue color, structural composition,
and transpiration rate [19]. These non-invasive methods have been explored in the last
decade, presenting the benefits of being sensitive, consistent, standard, high-throughput,
rapid, and cost-effective [47], surpassing the limitations of the current methods used in
plant disease detection.

5. Conclusions

The present study suggests that UV–Vis spectroscopy can be a potential tool for the
early detection of plant diseases under laboratory conditions, even when unhealthy plants
are asymptomatic. Despite these findings, its application is still very limited, due to the
scarcity of comprehensive agronomic and phytopathological studies aiming to explore
their full potential, as well as the development of applied advanced statistical approaches
for data analysis. More research is necessary, especially in field conditions, where more
external factors have to surpass, including atmospheric, edaphic, and biotic conditions.
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Future research should also include more stress levels to discriminate not only healthy
leaves from the diseased ones but also different levels of disease severity.
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