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Abstract: The research and development of high-entropy alloys (HEAs) and complex-concentrated
alloys (CCAs) are growing rapidly, focusing on the enhanced properties of these alloys. However, so
far, their manufacturing has not exceeded the laboratory scale. To meet this challenge, a combination
of the processing characteristics and methods along with their sustainable production must be ensured.
Moving towards a circular economy, this includes the utilization of low-cost, widely available scrap
for the manufacturing of CCAs. Changing the raw materials, can ensure a cost-efficient production
and paves the way to surpass major limitations in the industrial manufacturing of CCAs. Examples
of a novel lightweight CCA design approach will be presented in this work.

Keywords: high-entropy alloys; complex concentrated alloys; scrap; raw materials; sustainability;
lightweight alloys

1. Introduction

Metallic materials are metals at the focal point of the European Union’s circular
economy initiatives [1–3]. It is of utmost importance to provide solutions and close the loop
of wasted materials. Numerous endeavors to outline existing issues and prevent Europe’s
metals from being deposited to landfills, incinerated or exported without guarantee of
proper treatment have been deployed [4–6]. Nevertheless, it is too early to foresee if the
ambition of the European Commission’s Action Plan will be translated into reality. The
following years will be pivotal to implement strong environmental regulations on the
metallurgy sector and cross over into more eco-friendly, resource-efficient material design
approaches [4].

Traditional alloy design is based on the selection of one main element, with the
addition of alloying elements, in order to achieve the properties required for a specific
application. Consequently, knowledge of the alloys near the corners of a multicomponent
phase diagram is well developed. However, there is a knowledge gap regarding the
behavior of alloys near the center of the phase diagram [7]. The traditional alloy design
has imposed many restrictions in exploring the full range of feasible alloys, since there are
many more potential compositions positioned at the center of a multicomponent phase
diagram comparing with the corners. Thus, utilizing only a major alloying element and
other minor elements additions for properties enchantment is a restrictive practice.

From that knowledge gap, the concept of high-entropy alloys (HEAs) has emerged.
This idea is based on the theory that an increasing number of alloying elements would
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increase the configurational entropy, and as a result, solid-solution structures would be
promoted [8]. The invention of HEAs has been characterized as “a renaissance in physical
metallurgy” [9].

It is worth underlining that to date, there has not been a complete definition for
HEAs. This fact allows the research community to explore the field with a relative degree
of flexibility [10]. However, the first widely accepted definition for HEAs is that they
have to be multi-component alloys with each element’s concentration varying between
5–35 at. %, developed on the high-entropy effect in order to generate single solid-solution
structures [11]. Since then, the HEA field has rapidly evolved and is not only limited by
single-phase SS microstructures. The HEA field has developed and now that it contains
multiphase alloys, the interchangeable terms of compositionally complex alloys [12] and
most recently of complex concentrated alloys (CCAs) [13,14] were also introduced in order
to describe them. To this extent, compositionally complex alloys are the alloys with a
complex composition, while containing a large number of alloying elements, but not
definitely in a big proportion for each element, which can be described as CCAs [12].
Contrarily, complex concentrated alloys are the alloys with a higher concentration of
component elements [15]. Furthermore, it has been found that the unique performance and
characteristics of these alloys can be found in a 2–3 principal alloying element system. Thus,
the broader term of multi-principal alloys/multi-principal element alloys (MPAs/MPEAs)
to describe this category of alloys has been introduced. Alloys fall into the MPEAs category
when they consist of a large number of alloying elements in high concentrations, whereas
at least two of them act as the principle-base elements [16]. These new definitions do
not create any implications neither to the effect nor to the importance of configurational
entropy [14,16]. In this paper, the authors use the most recently developed definition
of CCAs.

These type of alloys (HEAs, CCAs and MPEAs) are manufactured by vacuum arc
melting (VAM) and vacuum induction melting (VIM) techniques in an Ar or N2 protective
atmosphere and casting in a water-cooled copper mold [17]. These techniques are chosen
due to the high melting point of various raw materials. The materials were remelted
several times, in order to achieve high homogeneity in the alloys structure. The governing
principles of manufacturing HEAs are reported in the work of Kumar et al. and Jablon-
ski et al. [18,19]. In spite of the high-cost casting process, HEAs and CCAs are susceptible
to some castability and liquidity issues and the desired compositional homogeneity is not
always achieved. This is due to the high concentrations of multiple alloying elements.
Additionally, the melting point for some of those elements (i.e., Cr, Fe, Ti, Nb, etc.) can be
higher than the boiling point of other alloying elements (such as Mg, Li or Zn), which can
promote evaporation losses and subsequent undesired casting defects, such as porosity.
Thus, in order to upscale into the industrial scale, the understanding and the tuning of the
parameters in the manufacturing of HEAs, MEAs and CCAs has become the new challenge
due to the high complexity of the process [20,21].

Using high-purity raw materials, the bulk level of an industrial plant is accompanied
with very high acquisition expenses. This poses an obstacle acknowledged by most of
the industry [21,22]. There is an emerging trend, following the circular economy, for
creating additional value from waste/scrap material in cases where the cost of separating
co-mingled alloy flows is prohibitively high [23]. The scenario of implementing lower-
purity raw materials, containing some ppm of various elements, has to be examined for
cost reduction. Since the bottom line for most commercial alloys manufacturing is the cost
of the product, the focus point of the current study is to examine the economic viability of
the discussed concept.

2. Complex Concentrated Alloys: Types and Trends

This new field of multicomponent alloys has emerged and shows a great future
potential of material properties, both physical and mechanical. Complex concentrated
alloys are deployed as a mixture of at least four alloying elements in high proportions.
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High mixing entropy derives from the high concentration of elements, which usually favors
formation of simple solid-solution structures [24].

It is clear that there is a vast field of possible combinations of elements that can be
utilized for synthesizing CCAs. Thus, some selection criteria have been stipulated for
elements, which can be used for producing CCAs with certain properties [25]. There was
the early hypothesis that phase evolution and stability and the exceptional properties in
HEAs and CCAs are attributed to the four core effects [26]. In order to design new alloys, it
is necessary to keep under consideration the four core effects describing these alloys, since
using different alloying elements expands the field of diversity, and we can obtain various
properties [13,27].

These four effects are the following.

1. High-entropy effect

Based on the use of high number of elements, configurational entropy (∆Smix) in-
creases, which tends to reduce ∆Gmix and formation of simple solid-solution structures
becomes more likely [28].

2. Lattice distortion

This category of alloys is characterized by high lattice strains and induced stresses,
which are attributed mainly due to the different atomic radius of each element [29].

3. Sluggish diffusion

There is the generic propose that sluggish diffusion in HEAs/CCAs tends to decrease
the diffusion rate of atoms and that induces slower rates of phase transformation in the
multi-element matrix. Subsequent formation of new phases from old phases requires the
cooperative diffusion of different kinds of atoms in order to be accomplished [30].

4. Cocktail effect

Cocktail effect is a term usually used to refer to the fact that there can be unexpected
properties acquired after mixing various alloying elements in a system, which would not
be possible to obtain from any single element [31].

However, those four effects as depicted in Figure 1 are not fully researched or backed
up by sufficient evidence [30,32].
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Figure 2. Illustration of the studied CCAs categories sorted by elemental groupings as Senkov et al.
defined in their work [13].

The very first category consists of alloys built on the transition metals (i.e., Al, Co,
Cr, Fe, Mn, Ni, Ti, V). This category is thoroughly researched. In recent years, many
publications describing alloys containing Co, Cr, Fe, Ni, Fe have been derived [13].

The second category is also very known and consists of refractory CCAs. Refractory
CCAs were designed based on the concept of developing new high temperature struc-
tural metallic materials. Conceivably, this represents the foremost endeavor to conceive
a completely new CCA group to meet a specific set of requirements. Such alloys contain
at least four out of the nine refractory elements (i.e., Cr, Hf, Mo, Nb, Ta, Ti, V, W, Zr) and
some non-refectory elements such as Al and Si for enhanced properties and decreased
density [13,33].

The third category includes light metals, such as Al, Be, Li, Mg, Si, Sc and Zn. In the
case of the main driving force is the urgent need for designing low-density, lightweight
alloys, while maintaining the least level of mechanical properties [18,34]. A wide range
of melting and boiling points for each element in this group makes development difficult,
in such a way that mechanical alloying or careful selection of master alloys is taken into
consideration in primary processing [13,35].

The fourth category is based on 4f transition metals, such as Dy, Gd, Lu, Tb, Tm and Y.
These elements combined have interesting effects and the focus is shifted toward creating a
single-phase structure of hexagonal close-packed (HCP) solid solutions [14].

The fifth category is of high interest, since the already-known conventional brass and
bronze alloys are altered in order to enhance their strength and improve their machinabil-
ity [36].

For the sixth CCAs categories, precious metals are utilized. The scope of creating this
category of CCAs is to substitute high-cost Pd and Pt with Au, Ru, Co, Cr, Cu and Ni and
reduce the high total alloy cost [14].

Lastly, there is a special category of CCAs containing B, C and N. Alloys in this family
contain elements from the 3D transition metal group or the refractory metal CCA category.
Additions of B, C and N have a dramatic effect on the presented phases and evolved
microstructures, and subsequently on properties. A majority of alloys in this category
include N, whereas alloys with C or B are limited. Most of the alloys are produced as thin
films, and alloys often contain several atom percentages of O [13].

The diagram in Figure 3 represents a direct comparison of the CCAs categories and
conventional alloy, i.e., Al, Fe, Ni, Mg, Ti-based alloys [15]. Various CCAs classes can
emerge among a wide range of conventional alloys. It worthy to mention that interesting
new design capabilities can present from light metal CCAs, which are found in the gap
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between Mg- and Al-based alloys. Enhanced properties, such as yield strength, can be
correlated to the microstructure of these alloys, thus CCAs can be seriously considered as
new type of materials, which can compete and potentially replace known conventional
alloys [15].
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There is tremendous research effort to be put in the field of CCAs. First of all, this
field proposes a vast range of different chemical compositions and various microstructures.
Considering the 72 elements that are not labelled as toxic or radioactive, neither the noble
gases, the total achievable number of five-element systems expands to 13,991,544 and the
number of systems with more than three and less than six elements rise up to 171,318,882.
Moreover, there is a big gap in libraries containing new materials data. New ways to
approach the vastness of CCAs are required for materials libraries, which can compromise
with the large number of alloying elements. As Senkov stated, the major driving question
for metallurgists is “what conventional structural materials exist for which no parallel CCA
activity exists?”. An attempt to answer this question must be the leading direction for
future research [13].

3. Approach and Discussion

So far, it is evident that the manufacturing process of these alloys is characterized by
high expenses. Moreover, typical production of aluminum alloys consists of high-purity
raw materials and implementation of scrap as well. Examples of that case are the alloys of
5xxx series. Their production requires two categories of raw materials at different ratios.
The melt pool usually consists of 70% high-purity raw materials (such as A-class scrap,
master alloys, elemental materials, etc.) and approximately 30% of it is common scrap.
On the contrary, CCAs have the potential to be a realistic alternative in the cost-reduction
and recyclability aspect, since our concept is to exclusively utilize common scrap for their
production. A compositionally complex alloy offers flexibility and presents the potential to
be produced exclusively from varying and intermingled flows of end-of-life alloys [23].
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Regarding our study, we choose chemical compositions as shown in Table 1. The
lightweight HEA and CCA used were designed and studied by Y. Qiu et al, X.
Huang et al. [37,38] and D. Mitrica et al. [39].

Table 1. Chemical composition of A-CCA and B-CCA.

Alloy/Elements A-CCA 1 B-CCA 1

Al (25) 15.18 (20) 12.95
Mg - (20) 11.67
Zn - (20) 31.39
Si - (20)13.48
Cu - (20) 30.51
Cr (25) 29.25 -
Ti (25) 26.92 -
V (25) 28.65 -

1 Number in parenthesis is at. %, whereas without parenthesis is wt.%.

The chosen CCAs are focused on containing an increased amount of lower density
elements, in order for the final material to be considered as lightweight, since this is the
latest trend from European Union regarding materials design [40–45]. Thus, Al, Mg and Si
are added in higher quantities. Table 2 shows the direct comparison of raw materials cost
between those two alloys and the fact that CCAs with common scrap offer a promising
alternative in order to reduce materials production costs. Note that the H symbol is used
for the manufactured CCA with high-class scrap, whereas the L symbol is used in the case
of lower quality scrap.

Table 2. Comparison of cost for CCAs produced by high- and low-quality scrap.

Alloy/Elements (wt.%) and
Cost (USD/Ton) AH-CCA AL-CCA BH-CCA BL-CCA

Al 398.32 258.91 339.8 220.88
Mg - - 178.73 116.17
Zn - - 953.94 620.06
Si - - 312.93 203.4
Cu - - 2973.96 1933.08
Cr 2636.68 1713.96 - -
Ti 2366.3 1538.07 - -
V 4295.05 2791.78 - -

Total 9696.35 6302.72 4759.36 3093.59

The equation used for calculating the cost of each alloying element is:

Cost of alloying element = [used wt. %] * [1 ton price in USD] (1)

where USD/ton is approximately the price of London Metal Exchange (LME) and other
known price market analysts for A-quality scrap, whereas for lower-purity scrap the price
is calculated as 65% of LME’s and pure metals price [46–52]. Total cost of the alloys for
1 ton of produced material is concluded by summing up each alloying elements price.

Finally, it is evident that lower quality scrap can offer a viable alternative in terms of
cost reduction, since AH-CCA’s cost is USD 9696.35 for 1 ton of produced materials, whereas
the proposed lower-purity scrap AL-CCA would cost approximately USD 6302.72 per ton.
Additionally, price per ton for BH-CCA and BL-CCA would be USD 4759.36 and USD
3093.59, respectively. In this approach, a cost reduction of USD 3393.63 and USD 1665.77 was
achieved. It is important to underline that such lower quality scrap would come with a
higher level of impurities. Although, it is unknown if those small amounts of impurities,
typically limited to some ppm, will affect the final properties of the as-cast material, since
the range of different combinations of concentrations is too vast. Thus, future endeavors
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utilizing CALPHAD methodologies to screen out compositions designed with low-purity
scrap are needed and small-scale trial melts are required for examining the divergence of
materials properties. Finally, it is important to design proper heat treatments, since the
majority of CCAs are only studied in the as-cast condition.

4. Conclusion-Outlook

This preliminary work can be briefed into the following conclusions and future out-
looks:

(1) Complex concentrated alloys (CCAs) present a relatively new category of metallic
alloys, which are based on the concept of multi-component systems and elements
being present on high proportions, similar to the previous high entropy alloys (HEAs)
and multi-principal element alloys (MPEAs) concepts/definitions. In our case, where
CCA was used, a lower number of elements, at lower concentrations and intermetallic
compounds, is acceptable.

(2) CCAs are competent of having equal or enhanced characteristics and properties for a
comparable or lower raw materials selection cost.

(3) Lower purity scrap utilization for the production of CCAs is a promising new strategy,
which enables higher levels of sustainability and cost-efficiency.

(4) Elimination of high-cost raw materials (i.e., master alloys) makes CCAs an even more
appealing alternative.

(5) Future research efforts should be shifted towards alloys that are either Al-rich or
Mg-rich. Such alloys would contain large amounts of desirable solute elements, which
might dissolve into the solid solution and additionally promote the formation of
beneficial phases (i.e., precipitates, particles, secondary phases, etc.), while capitalizing
the high-entropy concept, while offering lower density alternative alloys.

(6) Initial designing and casting trials need to be carried out in order to examine the
current concept’s feasibility from the scope of physical metallurgy.
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