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Abstract: Systemic sclerosis (SSc) is a rare autoimmune disease whose molecular mechanisms are
not yet fully understood. There is no definitive cure, and the main causes of death are pulmonary
fibrosis and pulmonary arterial hypertension. Here, we focus on the interferon regulators factor
8 (IRF8), a factor involved in the type I interferon (IFN-I) signature, which is present in about half of
SSc patients. Variants of this factor may play a role in autoimmunity, but little is known regarding
the role of IRF8 in SSc pathogenesis. We carried out a literature search to address the association
between the IRF8 factor and SSc susceptibility and clinical manifestations. The current studies appear
to confirm a possible association between the alteration of the gene for IRF8 and SSc susceptibility.
A link between IRF8 mutations and expression of a pro-fibrotic phenotype at the cellular level also
emerges. Additional investigations are needed to confirm the role of IRF8 in SSc. However, IRF8 is
worth consideration as a possible new disease marker of fibrosis in SSc patients.

Keywords: systemic sclerosis (SSc); interferon regulatory factor 8 (IRF8); diffuse cutaneous (dcSSc);
limited cutaneous (lcSSc); interferon-I (INF-I); single nucleotide polymorphism (SNPs)

1. Introduction

SSc (Systemic sclerosis) or Scleroderma, is a systemic autoimmune disease of con-
nective tissue, characterized by organ and skin fibrosis (due to dysfunction of fibroblast
activity), vascular abnormalities or damage, autoimmunity, and excessive deposition of
extra cellular matrix (ECM) [1,2]. SSc is considered as an orphan disease; there is no effec-
tive treatment to arrest the disease, and it represents the most serious connective tissue
disorder. The incidence of SSc is 30 to 300 cases per million people, or 0.2 to 2.2 cases per
million people per year; thus, it is considered a rare disease [3]. The main causes of death
are pulmonary arterial hypertension and interstitial lung disease (ILD), and the treatment
for skin and lung fibrosis involves immune suppression. Currently, the etiology remains
unknown, due to the difficulty of diagnosis, rarity of the disease, and heterogeneity of
clinical manifestations [4,5].

1.1. Genetics of SSc

SSc is a multifactorial disease with a complex etiology, in which both environmental
and genetic factors are involved, like most autoimmune diseases. Arnett and colleagues
in 2001, in an epidemiological study, identified the genetic base of SSc. They showed that
incidence of SSc development was higher in the close relatives of those affected by SSc [6].
Since inheritance seems to be the strongest risk factor for developing SSc [7,8], several
studies (gene association studies and genome wide analyses) were conducted to try to
identify the genes responsible for this inheritance [9]. Currently, several susceptibility
genes for SSc are known, such as STAT3, STAT4, IRF5, IRF8, TNFSF4, CD226, CD247, MIF,
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IL23R, IL2RA, IL-21, TLR2, CD226, BANK1, IRAK1, NFk, CCN2, TIMP1, AIF, and ACE [6–9].
All are involved in the regulation of the immune functions or have effects on fibroblasts
and endothelial cells activity. Recently, gene aberrations implicated in the development
of the disease, such as SNPs (Single Nucleotide Polymorphisms), have been identified. In
several cases, these SNPs are associated with noncoding regions (introns), responsible for
gene regulation [10].

1.2. Manifestation of SSc and Subtypes

Some SSc manifestations are renal crisis, heart inflammation, pulmonary arterial
hypertension, digital ulcers, and gastric reflux, mostly associated with high mortality [11,12].
In general, we distinguish two major temporally bound manifestations, early SSc (disease
duration <5 years) and late SSc (duration >5 years). The disease is specifically characterized
by the extent of skin involvement: limited cutaneous SSc (lcSSc) involves fibrosis of the
skin distal to the elbows and/or knees but without truncal involvement, although skin
thickening might occur on the face and neck; diffuse cutaneous SSc (dcSSc) involves skin
both distal and proximal to the knees and/or elbows and/or truncal and involves internal
organs. LcSSc patients show a low rate of disease progression, whereas dsSSc patients
display a high mortality rate [13]. Nearly all patients show the classic clinical Raynaud’s
phenomenon before disease onset [14], and half of them have digital ulcers [15]. The
actual diagnosis is made by fulfilling the EULAR classification criteria, even though not all
patients can be classified into those criteria [16,17]. Furthermore, in 1962, a separate subset
of SSc named SSc sine scleroderma (ssSSc) was described [18], characterized by peripheral
vascular system, gastrointestinal system, lung, and heart involvement and by a lack of skin
involvement [19], making diagnosis very difficult for the clinicians [20].

Searching biomarkers that allow one to infer prognosis and to distinguish different
disease subtypes may lead to better management of the disease. Currently, anti-nuclear
antibodies (ANAs) are used to identify the SSc subtypes. Typical clinical biomarkers
are anti-centromere antibodies (ACAs), (elevated in lcSSc) [21], anti-topoisomerase I anti-
bodies (ATAs) (elevated in dcSSc) [22], and anti-RNApolymerase-III antibodies (elevated
in dcSSc) [23]. Other antibody specificities exist; however, they are less specific, like
antifibrillarin antibodies (U3-RNP/Fibrillarin) [24], and anti-RNApolymerase-I and anti-
RNApolymerase-II antibodies [8]. Their specificity and sensitivity varies depending on the
autoantigen, type of immunoassay used, ethnicity, region, sex, etc.

1.3. Type I Interferon in SSc

SSc is characterized by a type I interferon (IFN-I) signature in about half of the pa-
tients, which is associated with worse prognosis, if present at early stages [25]. Studies
suggested that IFN-I blockade improved the skin thickening score in early SSc, where the
IFN-I-gene signature is associated with disease severity [26]. Furthermore, the induction or
aggravation of SSc has been described in patients undergoing IFN-I-based therapies [27].
It has been shown that typical SSc autoantibodies activate innate immune cells, can sup-
ply inflammation, and contribute to the IFN-I signature and fibrosis. In addition, sera
from SSc patients, mixed with apoptotic and necrotic material, induced IFN-α produc-
tion in plasmacytoid dendritic cells (pDCs), apparently activated by immunoglobulin (Ig)
immune complexes (ICs) formed by SSc autoantibodies [28,29]. It is now clear in the
literature that there is involvement regarding self–nucleic acid recognition in inflammatory
and autoimmune diseases though Toll-like receptors (TLRs), especially TLR7 and TLR9,
which can induce type I IFN from pDCs but also promote the activation of self-reactive
B cells [30,31]. In 2018, Ah Kioon and colleagues proposed a model where the aberrant
expression of TLR8 on pDCs from SSc patients induces the secretion of chemokine (C–X–C
motif) ligand 4 (CXCL4) (also known as platelet factor 4, PF4), which in turn can favor TLR
responses, emerging as a dominant TLR driving fibrosis and promoting autoimmunity
in SSc [32]. It is presently unclear from the scientific literature whether the signaling of
TLR8 is also influenced by IRF8. CXCL4 is then found to form complexes with self-DNA in
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the circulation and tissue of SSc patients and correlated with IFN-α in the blood or with
interferon gene Mx1 (MX dynamin like GTPase 1) in the skin [33].

CXCL4 can form complexes also with the RNA and complexes formed by CXCL4
and “self” RNA are also able to activate human pDCs to produce IFN-I [34]. Therefore,
molecules responsible for IFN-I induction or involved in IFN-I signaling are worth being
studied and may also represent useful biomarkers for SSc. Furthermore, new therapeutic
agents should be tested for the capacity to block the IFN-I pathways, CXCL4, and pDCs [34].

1.4. IRF Family in Humans and Mice

A class of transcription factors called interferon regulatory factors (IRFs) are involved
in IFN-I signaling. These are key mediators of immune responses in the host, immunomod-
ulation, and differentiation of hematopoietic cells [35]. In 1988, two groups independently
identified the first IRF, called IRF1 [36,37]. Currently, the IRFs characterized in humans
and mice are depicted in Figure 1. As highlighted in the figure, IRF8 specifically enters
into the signaling of TLR7 and TLR9. These are important TLRs implicated in various
autoimmune disorders (see below). In humans, the following functional subgroups have
been identified: IRF1 and IRF2 (promoting T-helper 1 (Th1) responses), IRF3 and IRF7
(involved in antibacterial and antiviral innate immunity), IRF4 and IRF8 (expressed only by
myeloid and lymphoid lineages of the immune system, involved in B-cell development and
T helper cell differentiation) [38], IRF5 and IRF6 (with pro-inflammatory role and regulatory
effects on apoptosis), IRF9 (as part of the Interferon-stimulated gene factor 3, and ISGF3,
a trimeric complex formed with STAT1 and STAT2) [39]. The main function of IRFs is
to positively or negatively regulate the transcription and the consequent expression of
IFN-I. Based on the composition and structure of the C-terminal region of the IRF proteins,
IRF1, IRF3, IRF5, IRF7, and IRF9 were described as activators, whilst IRF2 and IRF8 as
repressors [35]. In addition, it has been observed that the IRF family members can interact
with the STAT protein family members, NFkB and PU-1, thereby activating and regulating
a broad spectrum of genes [40]. All members of the IRF family possess a similar structure,
with a DNA binding domain (DBD) at the N-terminus and a helix–turn–helix motif. This
domain is essential for the binding to the consensus sequence, IFN-stimulated response
element (ISRE), which coordinates the expression of IFN-I [41,42]. Importantly, it has been
shown that the IRFs play a role in the pathogenesis of different autoimmune diseases: IRF1
polymorphisms have been identified in patients with juvenile idiopathic arthritis (JIA) [43],
Behcet’s disease (BD) [44], in multiple sclerosis (MS) [45], and in rheumatoid arthritis
(RA) [46]; IRF2 and IRF3 genetic variants are found to be associated with susceptibility
to Systemic lupus erythematous (SLE), an autoimmune systemic disease characterized
by an aberrant IFN-I signature [47,48]. IRF5 risk variants have been reported, again, in
patients with SLE [49]. The same type of variants are reported in RA [50]. According to
another study, IRF5 variants are also implicated in multiple sclerosis (MS), an autoimmune
disease affecting the brain, where an aberrant IFN-I signature can be apparent in a disease
subgroup [51]. Finally, IRF7 and IRF8 polymorphisms are also associated with a risk of
SLE [52,53]
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Figure 1. Different IRF molecules control nucleic acid-sensing TLR signaling. IRF8, highlighted in 

the red square, is working thought the endosomic TLR7 and TLR9. It is still unclear the role of TLR8. 

IKK,  inhibitor of nuclear  factor  kappa-B  kinase;  IRAK,  interleukin-1  receptor-associated  kinase; 

ISRE, IFN-stimulated response element; MyD88, myeloid differentiation primary response protein 

88; STAT, signal  transducer and activator of  transcription; TLR, Toll-like receptor; TRAF, Tumor 

necrosis  factor  (TNF)  receptor-associated  factor; TRAM, Toll-receptor-associated molecule; TRIF, 

TIR domain-containing adaptor–inducing IFN. Adapted from Zhang et al., 2015 [54], and Negishi 

et al., 2018 [55]. 
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Figure 1. Different IRF molecules control nucleic acid-sensing TLR signaling. IRF8, highlighted in
the red square, is working thought the endosomic TLR7 and TLR9. It is still unclear the role of TLR8.
IKK, inhibitor of nuclear factor kappa-B kinase; IRAK, interleukin-1 receptor-associated kinase; ISRE,
IFN-stimulated response element; MyD88, myeloid differentiation primary response protein 88; STAT,
signal transducer and activator of transcription; TLR, Toll-like receptor; TRAF, Tumor necrosis factor
(TNF) receptor-associated factor; TRAM, Toll-receptor-associated molecule; TRIF, TIR domain-containing
adaptor–inducing IFN. Adapted from Zhang et al., 2015 [54], and Negishi et al., 2018 [55].

1.5. IRF Genes in SSc

The IRF5 was the first gene identified to be associated with SSc [56,57]. In 2013, Sharif
and colleagues showed that an SNP in the IRF5 promoter region (rs4728142), associated
with lower IRF5 transcript expression, was predictive of longer survival and milder ILD
in SSc patients [58]. Also, other members of IRF family genes have been linked to SSc,
including IRF1 [59], IRF4 [60,61], IRF7 [60,62], and IRF8 [63,64]. SNP of the IRF1 locus
(rs2548998) acted as an eQTL (expression quantitative trait loci) for IRF1 expression [59].
Carmona et al., found an association of IRF7 with the presence of ACA in SSc patients, so
this locus may represent a risk factor for autoantibody production in SSc [62]. Microarray
studies also described up-regulation of IRF7 mRNA level in PBMCs of SSc patients with
early diseases [65], but another study in 2011 did not confirm the previous result [66].
The association of IRF8 genetic variants with SSc described in the literature supports an
involvement of dendritic cells and B cells in the development of SSc.

1.6. Role of IRF8 in Autoimmune Diseases

IRF8, interferon regulatory factor 8, originally termed interferon consensus sequence
binding protein (ICSBP), is a 50 kDa protein that negatively regulates IFN-I. The expression
of IRF8 has long been thought to be restricted to hematopoietic cells since it is abun-
dantly expressed particularly in B cells and DC subsets [67]. Recently, analysis of IRF8
expression by single cell RNA sequencing showed that IRF8 is also expressed in several
non-hematopoietic cells such as enterocytes, melanocytes, intestinal cells, and in epithe-
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lial cells in the skin, liver, lung, and heart [68]. In hematopoietic cells, IRF8 is involved
in myeloid cells differentiation and monocytes and macrophages development and the
acquisition of effector functions [69]. IRF8 also negatively regulates osteoclast differentia-
tion, and indeed IRF8 knock-out mice show a reduction in bone development [70]. IRF8
deficiency in humans results in a severe immunodeficiency, as characterized by suscep-
tibility to infections due to a loss of DC subsets, CD14+ and CD16+ monocytes, and a
decreased level of NK cells with reduced activity [71]. Indeed, IRF8 seems essential for
myeloid cell lineage commitment and differentiation in mice and humans, since its deletion
leads to huge accumulation of CD11b+Gr1+ immature myeloid cells (IMCs). Currently,
genetic variants of IRF8 have emerged, which correlate with increased susceptibility to
SLE and MS [72]. For example, a risk variant for SLE, rs2280381, is found in the area that
regulates IRF8 expression by spatially interacting with the promoter of IRF8, influencing
the methylation status and, consequently, its expression [53,73]. It has also been observed
that IRF8, in association with IFN-I, can negatively regulate or repress the expression of
BAFF, a cytokine crucial for the development and selection of B cells. Notably, BAFF
has recently been identified as a new target for the treatment of SLE [74]. IRF8 promotes
B cell differentiation and DC development [75]. Moreover, IRF8, by physically interacting
with TRAF6, modulates the TLR-guided signaling pathway and appears to contribute
significantly to the crosstalk between IFN-γ signaling pathways and TLRs, working as a
link between innate and adaptive immune responses [76]. In 2015, GWASs were described
to have 16 genetic variants significantly associated with autoimmune disorders in the IRF8
locus [77]. In addition, the CRISPR array, a high-throughput screen for the disease-related
susceptibility loci, has had a genomic region, RefSNP (rs) 2280381, described which is
located 64 kb downstream of IRF8 that act as an enhancer, which regulates IRF8 expression
in monocytes [78].

1.7. IRF8 in SSc

Few articles on IRF8 polymorphisms show that this factor is either positively or neg-
atively associated with SSc. These studies may also explain the contribution of B cells,
dendritic cells and macrophages to SSc pathogenesis and shed light on molecular mecha-
nisms involved in the fibrotic process. Given the recent interest in these genetic mechanisms
and in the family of IRF factors, we present here (next paragraphs) evidence that suggests
IRF8 as a possible determinant in SSc development and pathogenesis, with the goal to
stimulate future and more in-depth analyses of IRF8’s role in SSc.

2. Specific Role of IRF8 in SSc

A narrative search was conducted in the scientific literature (PRISMA protocol not
followed), on PubMed and Google Scholar, searching for the following keywords “IRF8
and SSc”, “IRF8 polymorphisms in the SSc”, the “effect of IRF8 regulation in SSc”, “IRF8
and biomarker and SSc”, “IRF8 regulation in macrophage in SSc”. No time limit was placed
on the research performed. We included epidemiological studies, animal models, and
in vitro cultures.

2.1. IRF8-KLF4 (Kruppel-like Factor 4) Interaction

Krüppel-like factor 4 (KLF4) is a transcription factor that regulates several cellular
processes such as proliferation, cell growth, and differentiation. It can interact with other
factors, modulating the efficiency to bind the DNA [79]. In 2013, Kurotaki and colleagues
discovered an essential role of IRF8-KLF4 transcription factor cascade in murine monocyte
differentiation. Basically, by combining chromatin immunoprecipitation sequencing with
gene expression profiling, they have shown that IRF8 works as a key regulator of the
development of several DC subsets, also indicating a crucial role in the mononuclear
phagocyte system [80].
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2.2. GWAS (Genome-Wide Association Study)

Recently, GWASs have proven to be a very promising tool in the identification of
thousands of genetic variants associated with the pathogenesis of complex diseases [81]
and in the discovery of new and more tailored drugs [82].

In 2013, a GWAS conducted by Terao and colleagues included IRF8 as a susceptibility
gene for SSc in a Japanese population, particularly in the lcSSc subgroup [83]. In addition,
SSc seems to share many susceptibility genes with RA, including IRF8, so it would be
interesting to transfer the analysis from a Japanese to European population. In the meta-
GWAS, conducted by Lòpez-Isac and colleagues, IRF8 was one of the twenty-seven signals
associated with SSc. RefSNP (rs) 11117420, a locus of 40 kilobases of the IRF8 transcription
starting site, has been shown to interact with and regulate its own promoter [61,81].

2.3. IRF8 Expression in SSc Subtypes

It has been observed that certain SSc clinical features and the presence of disease
specific auto-antibodies are variable in different countries and ethnicities [84]. This supports
the fact that genetic factors may influence the clinical features of SSc and the type of auto-
antibodies [85]. In addition, there is evidence indicating that genetic factors can be also
helpful in the early diagnosis of specific clinical subtypes of SSc. In 2011, Gorlova’s
group showed a strong association between the IRF8 gene and the lcSSc subtype and
the ACA positive subgroup [63], suggesting that a genetic heterogeneity determines the
clinical manifestation and, in particular, the autoantibody subtypes of SSc. These findings
may prompt reconsideration of the current classification of SSc patients, leading to novel
therapeutic targets for this devastating autoimmune disease.

2.4. IRF8 in SSc Fibrosis

Starting from the study by Guo et al. published in 2017, where the authors have shown
that the inhibition of IRF8 negatively affected the M1 macrophage polarization, delaying
the wound healing [86], recently another group investigated IRF8 levels in SSc monocytes
as well as IRF8 regulation in monocytes and macrophages in SSc fibrosis [87]. In particular,
the authors have demonstrated that mRNA levels of IRF8 were reduced when measured
in PBMCs of dcSSc patients, as compared to cells of lcSSc patients and healthy controls.
The IRF8 gene was also downregulated when measured in SSc circulating monocytes. In
addition, it seemed that IRF8 had a strong impact on the pathogenesis of skin sclerosis,
since the reduction in this factor, in terms of mRNA and protein, inversely correlated with
the Rodnan total skin thickness score. In 2017, Qiu and colleagues demonstrated that
IRF8 demethylation can act as suppressor of Th1 response, via IL-6 regulation. So, IRF8
downregulation in circulating monocytes may cause a shift from Th1 to Th2, which is
important for establishing SSc symptoms [88]. All these observations strongly suggest
that IRF8 plays a key role in the effector functions of monocytes during the skin fibrosis
process. Furthermore, following IRF8 gene silencing, monocytes tended to preferentially
differentiate into a profibrotic phenotype as they show a high mRNA expression for profi-
brotic cytokines and chemokines. Of note, macrophages derived from monocytes are of
two types, M1 and M2, which have key roles in SSc. The silencing of IRF8 in monocytes
induces their differentiation into the M2 type, although more in-depth analyses show a
mixed M1 and M2 phenotype, since both protein subtypes are detected (TNF-a and IL-6),
(MCP-1, EGR1, TGFβ, and αSMA). This agrees with other studies, which reported that
IRF8 knockout mice reduced M1-specific gene expression and established a preferential
environment for M2 subtype activation [89]. Other studies have found that IRF8 is required
for M1 polarization induced by the Notch-RBP-J pathway, leading to a switch to the IRF8
down-regulated M2 phenotype [90]. At the same time, monocytes also displayed high
levels of CEBPB (CCAAT/enhancer-binding protein beta), a transcription factor crucial
in the formation of an M2 macrophage phenotype. Therefore, it can be hypothesized that
siIRF8 monocytes may have pro-fibrotic characteristics with segregated nuclei containing
atypical monocytes. It is unclear which conditions might influence this phenotype in vivo
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and how these cells are relevant in the maintenance of fibrosis at wound sites, but it is
believed that IRF8 down-regulation is involved. From the reported data, an increased
number of infiltrating macrophages was observed in the skin of IRF8 KO mice compared to
controls, which had massive expression of pro-fibrotic markers such as COL1A1 (collagen
type I alpha 1 chain) and αSMA (Smooth muscle alpha-actin). This is probably due to
the involvement of MCP-1 (Monocyte chemoattractant protein-1), an important factor in
the progression and onset of systemic sclerosis, which promotes collagen experience in
fibroblasts and is up-regulated in patients with SSc [91,92].

2.5. IRF8 SNPs and SSc Susceptibility

As mentioned above, some of the susceptibility genes for SSc are similar to other au-
toimmune diseases. Therefore, Arismendi and colleagues in 2015 started their investigation
on 16 SNPs published at that time as susceptibility factors for SSc and SSc subtypes. They
showed for the first time the specific association between IRF8 rs11117432 SNP and SSc
susceptibility [64]. This association seemed to be more present in SSc patients with ACA an-
tibodies and in those with lcSSc, suggesting a role in the pathogenesis of SSc at least in these
groups of patients. As already documented, IRF8 is a nuclear protein that, upon activation
of pathogen-associated molecular agents (PAMPs), moves into the cytoplasm, activating the
NF-κB and TLR signaling pathways. IRF8 and NFKB gene variants can interact, through
an epistatic interaction, and have a role in determining patients’ susceptibility to SSc [64].
IRF8 rs11117432 might have a role in the regulation of extracellular matrix and collagen
deposition in fibrotic disease by the modulation of inflammation (pro-inflammation vs.
anti-inflammation). More recently, in 2023, by generating promoter capture Hi-C data for
CD4 T cells and CD14 monocytes from a small cohort of SSc patients, it was shown that the
IRF8 rs11117420 variant can be a new hypothetical SNP for SSc [59].

2.6. Physical Interaction with Chromatin for IRF8 Expression in Monocytes

Studies in mouse models have observed that the deletion of an enhancer region leads
to decreased IRF8 gene expression, leading to an overproduction of Ly6C+ inflammatory
monocytes [92]. In this case, the most plausible hypothesis is that the variant of IRF8 is
associated with SSc through a possible physical interaction with chromatin in CD14+ mono-
cytes. All this leads to an alteration in genetic expression, thus inducing genetic imbalance
at the cellular level.

Figure 2 depicts the possible effect of IRF8 down-regulation in SSc monocytes. At one
side, IRF8 down-regulation favors M2 development, which is involved in SSc. However, a
second general effect of IRF8 down-regulation is the lack of regulation of IFN-I, as IRF8
acts as a negative regulator of the IFN-I signaling (also depicted in Figure 2). However,
the effect in SSc of IRF8 mutation should be studied in more detail. For example, a study
in a mouse model, although not related to SSc, has shown that a single-point mutation in
the IRF8 gene, the Irf8R294C mutation, was able to strongly impair the IFN-I-mediated
response by murine pDCs [93]. Thus, although IRF8 is acting as a negative regulator of
the IFN-I pathways, some changes in IRF8 could also inhibit IFN-I by the most important
cells that produce IFN-I, the pDCs. This paper is interesting as pDCs are strongly involved
in SSc pathogenesis. The latter assumption is derived from several pieces of evidence, as
described above. The authors of Ref. [93] suggest the utility of this mouse model harboring
the IRF8 R294C mutation as a tool to investigate the effect of IRF8 in autoimmune diseases
characterized by an aberrant IFN-I signature. Among these IFN-I dominated diseases, SSc
and SLE are the most relevant.

In Table 1, we have summarized the most important papers (in chronological order)
that have studied IRF8 involvement in SSc, as well as the model systems used to reach their
conclusions. We have evidenced the main results of each study.
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Table 1. IRF8 involvement in SSc. 

Authors  Years of Publication  Methods  Results 

Gorlova et al. 

[63] 
2011 

Genome-wide association 

study 

Association between the IRF8 gene and the 

lcSSc subtype and the ACA positive subgroup 

Kurotaki et al. 

[80] 
2013 

Chromatin immunoprecipita-

tion sequencing; gene expres-

sion 

IRF8-KLF4 in monocyte differentiation 

Terao et al. 

[83] 
2013 

Genome-wide association 

study 

IRF8 as susceptibility gene for SSc in a Japa-

nese population 

Mahoney et al. 

[91] 
2015  Microarray 

Connection between inflammatory- and fi-

broproliferative-specific genes 

Arismendi et al. 

[64] 
2015  Gene expression, genotyping 

IRF8 rs11117432 SNP and SSc susceptibility in 

lcSSc subtype and the ACA positive subgroup 

Qiu et al. 

[94] 
2017 

Gene expression, quantitative 

methylation analysis 

IRF8 demethylation as suppressor of Th1 re-

sponse 

Lòpez-Isac et al. 

[81] 
2019 

Genome-wide association 

study 

IRF8 rs11117420 SNP interaction and regula-

tion of its promoter 

Ototake et al. 

[87] 
2021 

Gene expression, immunob-

lotting, Irf8 knockout mice 

Involvement of altered IRF8 regulation in 

monocytes and macrophages in lcSSc 

González et al. 

[59] 
2023 

Promoter capture 

Hi-C 

IRF8 rs11117420 variant as new hypothetical 

SNP for SSc 

3. Conclusions 

As we reviewed here, SSc is a heterogeneous disease, and in recent years, the scien-

tific focus has shifted to the identification of novel mutated or deleted gene loci that may 

explain the presence or absence of a certain cellular phenotype or molecular phenomena. 

The identification of mutated, non-mutated, or deleted genes for IRF8 can currently be a 

new area of research  in SSc.  Indeed,  the existing articles on  this subject confirm  IRF8’s 

involvement in SSc (particularly in lcSSc and in ACA positive patients). The dysfunction 

of the IRF8 factor is found to be specific for macrophages and monocytes in SSc, which are 

cell types crucial in SSc pathology. In the literature, in different GWASs, the presence of 

SNPs at the IRF8 gene locus is reported. 

Future studies focused on the possible role played by this transcription factor in SSc 

development and maintenance, and on the possible role of IRF8 in other cell types in SSc, 

may be crucial  for a better understanding of  the  role of  IRF8  in SSc pathogenesis and 

Figure 2. Model for IRF8 downregulation effects in macrophages leading to systemic sclerosis.
M1: M1 macrophages; M2: M2 macrophages.

Table 1. IRF8 involvement in SSc.

Authors Years of Publication Methods Results

Gorlova et al.
[63] 2011 Genome-wide association study Association between the IRF8 gene and the

lcSSc subtype and the ACA positive subgroup

Kurotaki et al.
[80] 2013 Chromatin immunoprecipitation

sequencing; gene expression IRF8-KLF4 in monocyte differentiation

Terao et al.
[83] 2013 Genome-wide association study IRF8 as susceptibility gene for SSc in a

Japanese population

Mahoney et al.
[91] 2015 Microarray Connection between inflammatory- and

fibroproliferative-specific genes

Arismendi et al.
[64] 2015 Gene expression, genotyping IRF8 rs11117432 SNP and SSc susceptibility in

lcSSc subtype and the ACA positive subgroup

Qiu et al.
[94] 2017 Gene expression, quantitative

methylation analysis
IRF8 demethylation as suppressor of

Th1 response

Lòpez-Isac et al.
[81] 2019 Genome-wide association study IRF8 rs11117420 SNP interaction and

regulation of its promoter

Ototake et al.
[87] 2021 Gene expression, immunoblotting,

Irf8 knockout mice
Involvement of altered IRF8 regulation in

monocytes and macrophages in lcSSc

González et al.
[59] 2023 Promoter capture

Hi-C
IRF8 rs11117420 variant as new hypothetical

SNP for SSc

3. Conclusions

As we reviewed here, SSc is a heterogeneous disease, and in recent years, the scientific
focus has shifted to the identification of novel mutated or deleted gene loci that may
explain the presence or absence of a certain cellular phenotype or molecular phenomena.
The identification of mutated, non-mutated, or deleted genes for IRF8 can currently be
a new area of research in SSc. Indeed, the existing articles on this subject confirm IRF8’s
involvement in SSc (particularly in lcSSc and in ACA positive patients). The dysfunction of
the IRF8 factor is found to be specific for macrophages and monocytes in SSc, which are
cell types crucial in SSc pathology. In the literature, in different GWASs, the presence of
SNPs at the IRF8 gene locus is reported.

Future studies focused on the possible role played by this transcription factor in SSc
development and maintenance, and on the possible role of IRF8 in other cell types in
SSc, may be crucial for a better understanding of the role of IRF8 in SSc pathogenesis
and IRF8’s role as a new possible biomarker for SSc. For this kind of analysis, more
studies, not directly linked to the SSc fields, could be illuminating, as some IRF8 mutations
have been found as rare events in particular cases in patients. In this regard, there is
a study [95] which describes a mutation of IRF8 called IRF8R291Q in one patient. This
mutation is orthologous to the murine IRF8R294C mutation. In the clinical case described,
this mutation has several immunological consequences, which culminate in recurrent
viral infections experienced by the patient and is linked to a deficit of the immune cell
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functions or to wrong pathways of immune cell activation and aberrant expression of
functional molecules. Excessive granulopoiesis was evident with a massive neutrophil
infiltration in the lungs of the studied subject. Many mediators of inflammation were
up-regulated, and among these were Tumor necrosis factor (TNF)-α, IL-8, IL-6, IL-1β, and
several chemokines [95]. Impairment of B-cells, T-cells, and natural killer (NK) cells was
also observed by the authors. These results clearly indicate that additional cell types are
affected by IRF8 mutations. For instance, T-cells were affected, so they did not express
C-X-C motif chemokine receptor 3 (CXCR3), an important factor that drives immune cells
into inflamed tissues. The authors also observed profound defects in T-helper (TH)1, TH17,
and CD8 effector memory development. Thus, a single-point mutation in IRF8 seems to
have a great effect on many immune cell types. The paper describes biallelic mutations
in one person, which affect all these immune cells. An additional paper reports that IRF8
can control Th1 immune responses independently from the T-box transcription factor
TBX21, also called T-bet, a factor crucial for TH1 polarization. IRF8 was also found to
control T regulatory cells (Tregs). Indeed, the authors reported that expression of Forkhead
Box P3 (Foxp3), the specific factor for Tregs, induced IRF8 in the Tregs [96]. From both
papers cited above, we can conclude that IRF8 is involved in a T-cell phenotype that has
relevance also for SSc. Indeed, there are several studies that addressed the role of T-helper
cells in SSc and the fact that Tregs cells do not properly work in SSc [97,98]. Finally, a
study showed that circulating CD123+CD127+ lymphoid progenitors sustain human innate
lymphoid cells (ILCs) in addition to T-cell development. These progenitors also reside
in the thymus and have an increased expression of IRF8 and CD123. The authors utilize
CD123 expression as a surrogate for IRF8 expression in these cells [99]. Although only a
few studies have examined the role of ILCs in the pathophysiology of human SSc, some
studies have analyzed these cells in SSc [100]. All these studies suggest that the role of IRF8
is pleiotropic as it affects several cell types that can have an impact on SSc pathogenesis.
Future research in these directions is necessary in the SSc field.
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