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Simple Summary: Avian blood analysis is crucial for understanding the health of birds. Currently,
avian blood cells are often counted manually in microscopic images, which is time-consuming,
expensive, and prone to errors. In this article, we present a novel deep learning approach to automate
the quantification of different types of avian red and white blood cells in whole slide images of avian
blood smears. Our approach supports ornithologists in terms of hematological data acquisition,
accelerates avian blood analysis, and achieves high accuracy in counting different types of avian
blood cells.

Abstract: Avian blood analysis is a fundamental method for investigating a wide range of topics
concerning individual birds and populations of birds. Determining precise blood cell counts helps
researchers gain insights into the health condition of birds. For example, the ratio of heterophils to
lymphocytes (H/L ratio) is a well-established index for comparing relative stress load. However, such
measurements are currently often obtained manually by human experts. In this article, we present
a novel approach to automatically quantify avian red and white blood cells in whole slide images.
Our approach is based on two deep neural network models. The first model determines image
regions that are suitable for counting blood cells, and the second model is an instance segmentation
model that detects the cells in the determined image regions. The region selection model achieves
up to 97.3% in terms of F1 score (i.e., the harmonic mean of precision and recall), and the instance
segmentation model achieves up to 90.7% in terms of mean average precision. Our approach helps
ornithologists acquire hematological data from avian blood smears more precisely and efficiently.

Keywords: cell segmentation; bird blood analysis; microscopy images; blood smear images; object
detection; ornithology

1. Introduction

Automated visual and acoustic monitoring methods for birds can provide information
about the presence and the number of bird species [1] or individuals [2] in certain areas,
but analyzing the physiological conditions of individual birds allows us to understand
potential causes of negative population trends. For example, measuring the physiological
stress of birds can serve as a valuable early warning indicator for conservation efforts.
The physiological conditions and the stress of birds can be determined in several ways,
e.g., by assessing the body weight or the fat and muscle scores in migratory birds [3,4].
Other frequently used methods are investigating the parasite loads, measuring the heart
rates, and measuring the levels of circulating stress hormones, such as corticosterone [5–9].
Depending on the research questions studied, these methods can be a good choice for
assessing long-term stress or the investment in immunity.
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The method investigated in this article comprises analyzing blood smears and counting
blood cells [10]. Not only are white blood cells, i.e., leukocytes, an important part of the
immune system of vertebrates such as mammals or birds, but also the composition of
leukocytes is known to change in response to elevated stress hormones (glucocorticoids)
and can, therefore, be used to assess stress levels [10]. In particular, the ratio of heterophils
to lymphocytes (H/L ratio) is considered to be a well-established stress index for assessing
long-term stress in birds [10,11]. Since the H/L ratio changes only 30 to 60 min after
the onset of an acute stress event, it is possible to measure stress without mirroring the
influence of the capture event [12]. It is also possible to calculate the leukocyte concentration
(leukocytes per 10,000 erythrocytes) or the concentration of specific leukocyte cell types
for gaining an understanding of the current health status of a bird and the investment in
immunity [13–15].

Leukocyte counts are quite cost-effective since they do not require complex laboratory
techniques. However, evaluation under the microscope often requires manual interpre-
tation by human experts, is time-consuming, and can only assess small portions of the
entire smear. Typically, leukocytes are counted until 100 leukocytes are reached [16]. Con-
sequently, the counted values and subsequent ratios are not always reproducible, and the
result depends on the section counted. Furthermore, the method is prone to observer errors.
Therefore, there is an urgent need for automated methods to perform leukocyte counts in
avian blood smears.

Bird and human blood cell analysis have some aspects in common. The counted
leukocytes are similar: lymphocytes, eosinophils, basophils, and monocytes can be found
in mammalian as well as avian blood. However, there are some significant differences that
make the automated counting of avian blood cells more difficult [17]. The neutrophils in
human blood are equivalent to heterophils in birds. One of the main differences between
bird and human blood, however, is the presence of nuclei in bird erythrocytes (i.e., red
blood cells) and thrombocytes, whereas there is no nucleus in mammalian erythrocytes and
thrombocytes [17]. The presence of a nucleus in erythrocytes makes the cell identification
process more complicated since lysed and ruptured erythrocytes can be mistaken for other
cell types. Lastly, during ornithological field studies, the bird blood samples are usually not
taken in a sterile environment, leading to dirt contaminating the smears. Such contaminants
and stain remnants can further lead to confusion. Because of these differences from human
blood and the associated challenges, it is necessary to develop dedicated solutions instead of
relying on existing machine learning approaches for human blood analysis to automatically
analyze bird blood samples.

A solid understanding of the different leukocyte types is necessary when analyzing
avian blood samples since some are quite similar to each other. Figure 1 shows examples
of each blood cell type as well as two challenging anomalies, i.e., stain remnants and
lysed cells (Figure 1d) as well as ruptured cells (Figure 1h). Lymphocytes appear small,
round, and blue in blood smears and are most common in passerine birds. Their nuclei
usually take up more than 90% of the cell (see Figure 1b). Heterophils can be identified by
their lobed cell nuclei and rod-shaped granules in the cytoplasm, as shown in Figure 1e.
In birds, heterophils and lymphocytes make up approximately 80% of the leukocytes [18].
Eosinophils are similar to heterophils but have round granules (see Figure 1c). Basophils
can be recognized by their purple-staining granules, as shown in Figure 1f, but they are
rare to find. Monocytes are larger cells that can be confused with lymphocytes, but their
nucleus often has a kidney-shaped appearance and takes up only up to 75% of the cell (see
Figure 1g) [19]. Additionally, it is important to be aware of possible variations regarding
the morphology and staining characteristics of these cell types between different avian
species, which may affect their identification and interpretation.
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(e) (f) (g) (h)

Figure 1. Examples of different cell types: (a) erythrocytes of a blue tit (Cyanistes caeruleus) and a
Eurasian blackcap (Sylvia atricapilla); (b) lymphocytes of a common blackbird (Turdus merula) and a
common buzzard (Buteo buteo); (c) eosinophils of a common buzzard and a European robin (Erithacus
rubecula); (d) stain remnants and lysed cells in the blood sample of a black woodpecker (Dryocopus
martius); (e) heterophils of a common blackbird and a common buzzard; (f) basophils of a common
blackbird and a common buzzard; (g) monocytes of a common blackbird; and a European robin
and (h) ruptured cells in a blood sample of a Eurasian blue tit. The blood smears were stained with
Giemsa and scanned at 40× magnification.

Avian blood counts are still mostly obtained manually. However, there are several ap-
proaches for more systematic, automated ways of counting avian blood cells. For instance,
Meechart et al. (2020) [20] developed a simple computer vision algorithm based on Otsu’s
thresholding method [21] to automatically segment and count erythrocytes in chicken
blood samples. Beaufrère et al. (2013) [22] used image cytometry, i.e., the analysis of blood
in microscopy images, in combination with the open-source software CellProfiler [23,24]
to classify each cell using handcrafted features as well as machine learning algorithms.
However, they stated their results were not satisfactory.

Another way of automating avian blood counts is the use of hardware devices for blood
analysis. For example, the Abbott Cell-Dyn 3500 hematology analyzer [25] (Abbott, Abbott
Park, IL, USA) was used in studies analyzing chicken blood samples [26,27]. The Cell-Dyn
3500 works on whole blood samples and relies on flow cytometry, i.e., the analysis of a
stream of cells by a laser stream and electric impedance measurements. The device was
standardized for poultry blood.

The CellaVision® DC-1 analyzer [28] (CellaVision AB, Lund, Sweden) scans blood
smears and pre-classifies erythrocytes as well as leukocytes. In combination with the
proprietary CellaVision® VET software [29], the device can be used to analyze animal
blood, including bird blood. However, the pre-classification results still need to be verified
by a human expert. The device has a limited capacity of a single slide and is able to process
roughly 10 slides per hour, according to the manufacturer [28]. This throughput does not
appear to reduce turnaround times in (human) blood analysis [30]. Yet, in a distributed
laboratory network, the device could indeed contribute to reduced turnaround times [31].

In the last decade, deep learning models, in particular convolutional neural networks
(CNNs), have become the state of the art in many computer vision tasks, such as image
classification, object detection, and semantic segmentation. These deep neural networks are
highly suitable for image processing since they can learn complex image features directly
from the image data in an end-to-end manner. Apart from their success in natural image
processing, they have also contributed to biological and medical imaging tasks, e.g., in cell
detection and segmentation [32,33], blood sample diagnostics [34,35], histopathological
sample diagnostics [36], such as breast cancer detection [37], and magnetic resonance
imaging (MRI) analysis [38].
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However, only a few deep learning approaches are available for avian blood cell
analysis. For instance, Govind et al. (2018) [39] presented a system for automatically
detecting and classifying avian erythrocytes in whole slide images. Initially, they extract
optimal areas from the whole slide images for analyzing erythrocytes. In the first step,
regions are chosen from low-resolution windows using a quadratic determinant analysis
classifier. These optimal areas are then refined at higher resolution using an algorithm
based on binary object sizes. This algorithm identifies overlapping cells that need to be split.
The actual separation is conducted in a multi-step handcrafted algorithm. Intensity- and
texture-based features are used to distinguish between erythrocytes and leukocytes, but the
latter are not actually detected. In the final step, all detected erythrocytes, i.e., solitary
and separated from clumps, are classified. This is the only part of the approach that relies
on deep learning. Each detected cell is cropped and fed to a GoogLeNet deep neural
network [40]. The resulting model can classify the detected erythrocytes as mammalian,
reptilian, or avian. Furthermore, the model can categorize erythrocytes into one of thirteen
species. However, only one of these is a bird species.

Kittichai et al. (2021) [41] used different CNN models to detect infections of an avian
malaria parasite (Plasmodium gallinaceum) in domestic chickens. Initially, a YOLOv3 [42]
deep learning model was used to detect erythrocytes in thin blood smear images. Then, four
CNN architectures were employed for the classification of the detected cells to characterize
the different avian malaria blood stages.

However, to the best of our knowledge, there is no hardware-independent and publicly
available approach for the automated segmentation and classification of avian blood cells,
i.e., erythrocytes as well as leukocytes.

In this article, we present a novel deep learning approach for the automated analysis of
avian blood smears. It is based on two deep neural networks to automatically quantify avian
red and white blood cells in whole slide images, i.e., digital images produced by scanning
microscopic glass slides [43]. The first neural network model determines image regions that
are suitable for counting blood cells. The second neural network model performs instance
segmentation to detect blood cells in the determined image regions. For both models, we
investigate different neural network architectures and different backbone networks for
feature extraction in cell instance segmentation. We provide an open-source software tool
to automate and speed up blood cell counts in avian blood smears. We make the annotated
dataset used in our work publicly available, along with the trained neural network models
and source code [44]. In this way, we enable ornithologists and other interested researchers
to build on our work.

2. Materials and Methods

We present a deep learning approach for automatically identifying and counting avian
blood cells. The approach is divided into three main phases. Figure 2 gives an overview of
the entire process from acquiring blood smears to automatically emitting a blood cell count
for a whole slide image. In the first phase, avian blood samples are acquired and digitized.
Next, the resulting images are split into tiles that are uploaded to a web-based annotation
tool used by a human expert to thoroughly annotate tiles for both tasks, i.e., tile selection
and cell instance segmentation. In the second phase, adequate deep neural networks are
trained for both tasks. The deep neural network models assist a human expert during
annotation by providing pre-annotations for further labeling. In the third phase, the trained
deep neural network models are applied to process whole slide images that were not used
during training. These images are split into tiles that are analyzed by the tile selection
model. Only tiles approved as countable are forwarded to the instance segmentation
model. The final blood cell counts are determined based on the outputs of the instance
segmentation model.
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Figure 2. Overview of our approach for counting avian blood cells in whole slide images. Data
acquisition: Blood smears are prepared and scanned. The images are then cut into tiles and annotated
by a human expert via a web-based annotation tool. Training: The neural network models are trained
using annotated data for tile selection and instance segmentation. The models also assist in iteratively
annotating images. Inference: An input image is tiled and fed into the tile selection model. Countable
tiles are passed to the instance segmentation model before the final counts are determined.

2.1. Data Acquisition and Annotation

To be able to train deep learning models at scale, we used avian blood smear samples
from an ornithological field study in the Marburg Open Forest (MOF), a 250-hectare beech-
dominated forest in Central Hesse, Germany. The data collection took place over four
consecutive years, from 2019 to 2022, during the breeding seasons of the entire forest
bird community (29 species of 16 families and 5 orders) between mid-March and August.
The birds were captured using mist nets 12 m in length and 2.5 m in height; the mesh size
was 16 × 16 mm. Each bird was marked with a ring for re-capture identification with
the necessary permissions obtained from the Heligoland Bird Observatory (Institut für
Vogelforschung Heligoland, Germany). A blood sample was taken within 30 min from
capture by puncturing the brachial vein and using heparinized capillary tubes, following
the animal testing approval granted by the regional council of Giessen, Hesse, Germany
(V 54–19 c 20 15 h 01 MR 20/15 Nr. G 10/2019). The blood was then used to create one
or two whole blood air dry smears of each bird right after sampling in the field. In the
laboratory, the blood smears were fixed in methanol within 24 h and stained with Giemsa
within 21 days, following standard protocols [45].

Our work relies on two data sources. We created a first, small dataset consisting
of 160 images through manual acquisition. The images were digitized with a Zeiss [46]
AxioCam ERc 5s Rev.2 (Carl Zeiss AG, Oberkochen, Germany) in combination with a Zeiss
Primo Star microscope (Carl Zeiss AG, Oberkochen, Germany) at 100× magnification with
oil immersion and saved in the PNG image format with a resolution of 2560 × 1920 px.
However, this method is not suitable for creating a large dataset since there is a significant
manual effort involved, which makes the method very time-consuming.
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To create a second, larger dataset, we digitized one or two blood smears per bird
during the initial capture and, in recapture cases, we digitized another one or two blood
smears of the same bird by scanning the blood smears with a Leica Aperio AT2 Scanner [47]
(Leica Biosystems Nussloch GmbH, Nussloch, Germany) at 40× magnification. We selected
the highest quality smear of each bird per capture for our analysis. Aperio scanners generate
high-resolution images that are stored in the SVS file format, which consists of a series of
TIFF images. The first image is always the full-resolution scan. In subsequent layers, it is
split into tiles that are decreasing in size with each layer. Overall, we obtained 527 whole
slide images from 459 individual birds of 29 species. These images range from 47,807 px to
205,176 px in width and from 35,045 px to 93,827 px in height. To be able to process these
huge images with deep learning models, we used OpenSlide [48] to crop them into tiles.

The complete and accurate annotation of the dataset is crucial for training a high-
quality deep learning model. To reduce the impact of human errors and eliminate consis-
tency issues in the annotations, we relied on a single human expert for the labeling task.
In the following, we describe the annotation process in more detail for both of our tasks,
i.e., tile selection and cell detection and segmentation.

There are several criteria for classifying an avian blood smear image tile as either
countable or non-countable. Figure 3 shows examples of positive (i.e., countable) and
negative (i.e., non-countable) image crops. Cells should be equally distributed, as shown in
Figure 3b, without large empty spaces, as shown in Figure 3a. Furthermore, there should
be only a few overlapping cells and especially no overlapping nuclei, as contrasted in
Figure 3c,d. In general, good image quality is desirable (Figure 3f,e). To be able to train a
deep learning model to classify blood smear image tiles as countable or non-countable, a hu-
man expert manually selected image tiles and classified them as countable or non-countable.
This process led to a dataset consisting of 2288 positive and 2372 negative examples. While
it is sufficient for the tile selection task to simply annotate each sample to be countable or
not, we fully annotated the dataset for detection with segmentation masks instead of using
bounding boxes. Hence, each single cell instance needs to be precisely covered by a mask
and tagged with the corresponding class label. Although this annotation method takes
even more time, it improves the performance of the final model [49]. Providing exact cell
boundaries is particularly beneficial in crowded image regions, where several bounding
boxes may overlap.

We used the web platform Labelbox [50] for annotating images of our datasets. The in-
stance segmentation dataset was annotated in an iterative, model-assisted manner. This
means that we used the tile selection network to propose regions to be annotated and even-
tually selected them based on how many rare cells had been detected by an intermediate
instance segmentation model. In the very first iteration, we used a superpixel algorithm
to generate simple instance masks. In each iteration, we uploaded the corresponding in-
stance segmentation masks to Labelbox to be refined by our human expert. This procedure
significantly reduces the time needed to fully annotate an image file with masks and class
labels compared to annotating from scratch. Overall, we went through four iterations of
labeling. For the annotated cell instances, we established two primary categories: ery-
throcyte, with only the nucleus annotated, and leukocyte. The latter was further split
into five subtypes, namely, lymphocyte, eosinophil, heterophil, basophil, and monocyte.
Thrombocytes were not explicitly annotated; they were considered to be part of the back-
ground during training. Thus, our trained neural network model can distinguish between
non-relevant thrombocytes and other annotated cell types, e.g., erythrocytes. By annotating
only the nucleus of each erythrocyte rather than the entire cell including the cytoplasm,
we maintained the option to label parasite-infected instances individually in future work.
Cells infected with parasites may be annotated by masking the entire cell including the
cytoplasm. One erythrocyte can be simultaneously counted as both an erythrocyte and a
cell with blood parasite because of the distinct annotation regions.
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(a) Negative, large free spaces (b) Positive, evenly distributed

(c) Negative, overlapping cells (d) Positive, no overlapping cells

(e) Negative, low quality (f) Positive, high quality

Figure 3. Positive and negative examples for image tiles that are suitable for counting cells. Subfigures
(a,c,e) show non-countable examples, while Subfigures (b,d,f) show countable tiles.

Overall, our segmentation dataset consisted of 1810 fully annotated images. As Table 1
shows, the dataset contained 226,781 annotated cell instances that were unevenly spread
across 5 taxonomic bird orders, namely, Accipitriformes, Columbiformes, Falconiformes, Passeri-
formes, and Piciformes. The orders Passeriformes and Accipitriformes dominated the dataset.
Moreover, with a share of 98% of all cells, erythrocytes were by far the most frequent
type of blood cells in our dataset. Among the leukocytes, the subtypes were also not dis-
tributed equally. While lymphocytes, eosinophils, and heterophils numbers were between
1000 and 2000 samples, basophils and monocytes were expectedly very rare, as Figure 4
demonstrates. This imbalance is often challenging for machine learning approaches. The
annotation of the instance segmentation dataset took our human expert more than 70 h.



Birds 2024, 5 55

Table 1. Summary of annotated bird blood cells across 24 bird species and 1810 blood smear images.
Numbers are given for each order of birds occurring in the dataset and for each blood cell type,
i.e., erythrocytes as well as five subtypes of leukocytes.

Order Erythrocyte Lymphocyte Eosinophil Heterophil Basophil Monocyte Overall

Accipitriformes 26,867 254 504 208 28 5 27,866
Columbiformes 329 1 1 5 0 0 336
Falconiformes 245 2 0 0 0 0 247
Passeriformes 192,188 1638 611 815 130 76 195,458

Piciformes 2573 15 9 12 0 0 2609

Σ 222,202 1910 1125 1040 158 81 226,781

Figure 4. Distribution of annotated bird blood cell types. The plot shows how the annotated
cell instances are spread among different cell types, i.e., erythrocytes, lymphocytes, eosinophils,
heterophils, basophils, and monocytes.

2.2. Deep Learning Approach

Our novel approach for analyzing whole slide avian blood smear images consists of
two stages, i.e., tile selection and instance segmentation. The tile selection process is shown
in Figure 5. Initially, we decompose the input whole slide image into tiles. For each tile, we
perform a binary classification to ensure that the contained cells fulfill the requirements to
be countable. Next, an instance segmentation model is applied to all tiles that are classified
as countable. This model detects all cells in the image and classifies each one as either an
erythrocyte or as one of the subtypes of leukocytes. Figure 6 illustrates this procedure. Each
step is explained in more detail in the following sections.

Tiling

countable

non-
countable

…

EfficientNet

Figure 5. Overview of the tile selection phase. The original image is split up into single tiles. Each
tile is fed into the EfficientNet CNN model that classifies it as either countable or non-countable. We
finally visualize the results by blacking out all tiles classified as non-countable. For visualization
purposes, we aggregated 16 × 16 tiles to one patch in the depicted output.



Birds 2024, 5 56

CondInst

Figure 6. Overview of the cell instance segmentation phase. Countable image tiles serve as inputs to
the CondInst instance segmentation model. On the right, we visualize the predictions made by the
model. Each color corresponds to one cell type. In the example, the model recognized one lymphocyte
(red), one heterophil (orange), four eosinophils (green), and many erythrocytes (blue) reliably.

2.2.1. Tile Selection

For the tile selection model, we used EfficientNet [51] as our architecture. EfficientNet
is a family of neural network architectures that has proven to be an excellent choice for
image classification. We experimented with the two smallest versions of EfficientNet,
namely EfficientNet-B0 and EfficientNet-B1. In a pre-processing step, we randomly applied
data augmentation to prevent our model from overfitting the training data. Besides random
contrast, random hue, random cropping, and horizontal as well as vertical flipping, these
augmentations included elastic transformations that have proven to be very beneficial for
cell recognition tasks [32,33]. The input size of our model was 512 × 384 px. Our training
was based on a well-established pre-trained ImageNet model and fine-tuned in two phases
using the Adam optimizer [52] and binary cross-entropy loss. By experimenting with
different learning rates, we found an initial learning rate of 1 × 10−4 to work best in our
case. During the first training phase, we kept the majority of the model parameters fixed.
We made an exception for the last layer, where we introduced a new set of weights. This
approach ensured that the new layer would not interfere with the pre-trained weights
in the rest of the model. In this way, the randomly initialized last layer could adapt to
the training data. We trained the network for 20 epochs, i.e., iterating with the whole
training dataset 20 times. In the second training phase, we lowered the initial learning
rate by a factor of 10 and trained the last 20 layers of the model to ensure that the model
would learn useful features for the tile selection task. The loss converged again after up to
30 more epochs. Furthermore, in both phases, the learning rate was reduced whenever the
validation accuracy stagnated in order to help the model find the optimal set of weights.

2.2.2. Detection and Segmentation

For the instance segmentation task, we used the CondInst architecture [53], as shown
in Figure 6. This neural network is based on the anchor-free object detector FCOS [54] that
tackles object detection in a fully convolutional way. To solve object detection or instance
segmentation tasks, many approaches rely on anchor boxes and proposals, e.g., Faster
R-CNN [55] and most versions of YOLO [56].

For instance, Faster R-CNN generates bounding box proposals based on pre-defined
anchor boxes. Anchor boxes of different scales and aspect ratios are placed in each area
of the image and are assigned a score based on how likely they are to contain a relevant
object. High-scored proposals are resized to a common size and processed in parallel in two
different branches of the network, the so-called heads. One refines the proposed bounding
boxes, i.e., the box regression head, while the other predicts the corresponding class label,
i.e., the classification head.

However, using anchor boxes has several drawbacks. First, deep neural networks
based on anchor boxes are sensitive to the choice of hyperparameters. For example,
since anchor box scales and aspect ratios are fixed, they cannot easily adapt to new tasks.
Furthermore, such networks are computationally inefficient. They produce many negative
boxes and have to calculate many Intersection over Union (IoU) values to find the optimal
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proposals. The object detector FCOS [54] relies on neither anchor boxes nor proposals.
Instead, one of its heads simply predicts a 4D vector regressing the bounding box centered
at this location.

While fully convolutional networks have been commonly used for semantic segmenta-
tion for many years, the CondInst architecture [53] successfully applies this type of neural
network to instance segmentation. To be able to predict instance segmentation masks
rather than bounding boxes, CondInst adds a mask branch to FCOS and inserts a so-called
controller head, along with the classification and bounding box heads for each location
(x, y). The controller head dynamically generates convolutional filters specifically built
for each instance in an image by predicting its parameters. In this way, the mask branch
becomes instance aware, i.e., it can predict one segmentation mask for each object instance
in the image. This strategy yields very good results for irregular shapes that are challenging
to tightly enclose within a bounding box.

To train our model, we used two different kinds of input data. The first part of
our training dataset consisted of 138 images with a resolution of 2560 × 1920 px from
the manually acquired data source. Since these images were captured with a magnitude
different from the one used for the whole slide images, we needed to choose the crop tile
size such that they contained a comparable number of similarly sized cells. This resulted in
a tile size of 512 × 384 px.

In a pre-processing step, we resized each image to 1066 × 800 px, matching the
maximal short-edge input size of CondInst. Furthermore, we applied extensive data
augmentation to enrich the dataset and prevent the model from overfitting to the training
data. In particular, we applied random horizontal and vertical flipping as well as random
adaptations of brightness, contrast, and saturation in an empirically chosen range of
0.7 to 1.3, respectively. Additionally, we applied random elastic transformations that are
explicitly useful for cell segmentation tasks [32,33] since they produce realistic alternations
of the cells by using an x × x grid overlay and distorting it with random displacement
vectors. We empirically chose x ∈ {6, 7, 8, 9}. The order of magnitude ranged from 5 to 10.
Through visual inspection, we made sure that deformations based on these parameters did
not produce unrealistic cell structures.

We built our CondInst model based on a ResNet-101 backbone architecture. To enable
transfer learning, the entire CondInst network was initialized with weights pre-trained on
the COCO (Common Objects in Context) object detection dataset [57]. Hence, we lowered
the initial learning rate by a factor of 10, which resulted in a learning rate of 0.001. To match
the number of classes, we modified the classification head accordingly. We optimized
the network for 16,600 iterations at a batch size of 4, i.e., more than 50 epochs. When
approaching the end of the training, the learning rate was decreased twice according to the
scheduler used in CondInst [53].

2.3. Hardware and Software

We implemented our method using the AdelaiDet [58] and Detectron2 [59] frame-
works and utilized the Augmentor Python library [60] for pre-processing and, in particular,
for generating elastic transformations. All our experiments were conducted on a worksta-
tion equipped with an AMD EPYC™ 7702P 64-Core CPU, 256 GB RAM, and four NVIDIA®

A100-PCIe-80GB GPUs.
For runtime measurements, we used only a single GPU to run the instance segmenta-

tion model. The tile selection model was applied as a parallelized pre-processing step on
the CPU.

2.4. Quality Metrics

We evaluated the EfficientNet approach for choosing countable image regions by
using the accuracy score, a widely used metric defined as the proportion of true positive
results, i.e., both true positives and true negatives in all predictions made by the model.
Furthermore, we calculated the F1 score, which is the harmonic mean of recall and precision,
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i.e., 2 · p·r
p+r . Recall and precision were computed as p = TP

TP+FP and r = TP
TP+FN , where

TP, TN, FP, and FN are true positives, true negatives, false positives, and false negatives,
respectively. We evaluated our instance segmentation models in terms of average precision
(AP), a common metric for object detection tasks. The AP is defined as the mean precision
for equally spaced recall values. The metric corresponds to the area under the precision-
recall curve, where predicted bounding boxes with an Intersection over Union (IoU) of
more than a threshold t are considered to be true positives (TPs). For two sets of pixels,
the IoU is defined as IoU(A, B) = A∩B

A∪B . Predictions that have no matching ground truth
boxes are false positives (FPs) and ground truth boxes with no matching prediction are
false negatives (FNs). For a given IoU threshold t, the AP is computed as an interpolation
based on 101 values [57]:

AP(t) =
1

101 ∑
r∈{0,0.01,...,1}

pinterp(r), (1)

where pinterp(r) = max
r̃:r̃≥r

p(r̃) and p(r̃) is the measured precision at recall r̃. In our experi-

ments, we set t = 0.5, i.e., an IoU of 50% between ground truth and the predicted bounding
box or segmentation is required for a proposal to be counted as a true positive. We denote
this metric as AP@50.

To evaluate the overall performance, we calculated the mean AP (mAP) score by
taking the mean value of the AP scores from the different classes.

We performed each experiment five times with random seeds and report the standard
deviation to make sure that we present reliable results.

3. Results
3.1. Tile Selection

The models were evaluated on a held-out dataset consisting of 298 positive and
346 negative examples.

As Table 2 shows, both of the models performed very well with accuracies and F1
scores above 96%. The smaller version, i.e., EfficientNet-B0, performed better with an
accuracy of 97.5% and an F1 score of 97.3%.

Table 2. Results for tile selection model. We present accuracy and F1 score for the smallest available
EfficientNet architectures, i.e., B0 and B1. All experiments were performed five times, and the
standard deviation is reported. Values in bold indicate the best results for each metric.

Model Accuracy F1 Score

EfficientNet-B0 0.975 ± 0.002 0.973 ± 0.003
EfficientNet-B1 0.970 ± 0.006 0.968 ± 0.006

3.2. Detection and Segmentation

First, we performed the training with no augmentation at all. The results are summa-
rized in Table 3 for the detection task. Adding the default data augmentation of CondInst,
i.e., random horizontal flipping, improved the results by roughly 1.9% in terms of mAP.
The application of further data augmentation, namely, random vertical flipping, random
brightness, random contrast, and random saturation, again improved the score by roughly
2.8%. If we instead applied horizontal flipping and elastic deformations, the models still
achieved an mAP of 87.7%. Combining all data augmentation methods in one model
resulted in the best model, achieving 98.9% for erythrocytes, 90.2% for lymphocytes, 87.3%
for eosinophils, and 86.3% for heterophils in terms of AP and, hence, an mAP score of
90.7%. Overall, combining all data augmentation methods resulted in an improvement of
roughly 5.2% in terms of mAP.
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Table 3. Detection results for erythrocytes and several subtypes of leukocytes. We experimented
with different methods for data augmentation, i.e., random horizontal flipping (HFlip), random
combinations of vertical flipping, brightness, contrast and saturation (DA), and elastic deformations
(ED). We experimented with different architectures, i.e., CondInst and Mask R-CNN, and backbone
models, i.e., ResNet-50 (R-50) and ResNet-101 (R-101). We report average precision at an Intersection
over Union (IoU) of 50% (AP@50) for each class and the corresponding mean average precision
(mAP). Values in bold indicate the best results for each metric.

Model Backbone HFlip DA ED
Detection (AP@50)

Erythrocyte Lymphocyte Eosinophil Heterophil mAP

CondInst

R-101 0.989 ± 0.000 0.847 ± 0.020 0.837 ± 0.006 0.765 ± 0.016 0.860
R-101 ✓ 0.989 ± 0.000 0.869 ± 0.009 0.849 ± 0.007 0.799 ± 0.014 0.877
R-101 ✓ ✓ 0.989 ± 0.000 0.896 ± 0.004 0.869 ± 0.004 0.852 ± 0.009 0.902
R-101 ✓ ✓ 0.989 ± 0.000 0.882 ± 0.004 0.862 ± 0.008 0.813 ± 0.009 0.887
R-101 ✓ ✓ ✓ 0.989 ± 0.000 0.902 ± 0.006 0.873 ± 0.006 0.863 ± 0.011 0.907

CondInst R-50 ✓ ✓ ✓ 0.989 ± 0.000 0.877 ± 0.007 0.853 ± 0.004 0.818 ± 0.007 0.884
Mask-RCNN R-101 ✓ ✓ ✓ 0.938 ± 0.004 0.844 ± 0.006 0.785 ± 0.007 0.812 ± 0.005 0.845

The results of the instance segmentation shown in Table 4 are similar to those obtained
for the corresponding bounding box detections. Each additional data augmentation step
increased the mAP scores, and the best result was achieved by applying all random data
augmentation techniques. However, the best model was not as dominant as in the detection
task and could not outperform the other approaches in every category.

We observe that erythrocytes were continuously recognized almost perfectly with
98.9% and 99.0% AP for detection and segmentation, respectively. Thus, the model learned
to not confuse thrombocytes or immature erythrocytes with erythrocytes. However, there
was also an obvious drop in performance for all leukocyte subclasses. On the one hand,
erythrocytes were easiest to identify because of the characteristic nucleus, and on the other
hand, they were by far the most frequent cell type in avian blood samples, i.e., roughly
98% of all instances in our dataset. Therefore, the model could learn better features from
this large set of samples. Among the leukocytes, this trend was evident as well. The most
frequent leukocyte class, i.e., lymphocytes, still achieved 90.0% in terms of AP, while
eosinophils and heterophils achieved 87.3% and 85.2%, respectively. Thus, there appears
to be a correlation between the number of training samples and performance, which is,
however, not statistically significant.

To further analyze the relation of precision and recall in more detail, we plotted the
precision–recall curve of our best model in Figure 7. The graph of the erythrocyte (blue
line) class is almost perfect, as expected, with an AP and, hence, an area under the curve
of 99%. The graphs for the other classes start descending sooner, but by choosing the best
threshold, in our case 0.5, a good balance between precision and recall could be achieved.

CondInst with a smaller backbone, namely ResNet-50, performed very well but could
not compete with the model based on ResNet-101. In comparison, the performance de-
teriorated by roughly 2.5% in terms of mAP. However, the anchor-based Mask R-CNN
approach using a ResNet-101 backbone showed a clear drop in performance of roughly
6.8% compared to the anchor-free CondInst approach using the identical backbone.
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Table 4. Instance segmentation results for erythrocytes and several subtypes of leukocytes. We
experimented with different methods for data augmentation, i.e., random horizontal flipping (HFlip),
random combinations of vertical flipping, brightness, contrast and saturation (DA), and elastic
deformations (ED). We experimented with different architectures, i.e., CondInst and Mask R-CNN,
and backbone models, i.e., ResNet-50 (R-50) and ResNet-101 (R-101). We report average precision
at an IoU of 50% (AP@50) and the corresponding mean average precision (mAP). Values in bold
indicate the best results for each metric.

Model Backbone HFlip DA ED
Segmentation (AP@50)

Erythrocyte Lymphocyte Eosinophil Heterophil mAP

CondInst

R-101 0.989 ± 0.000 0.846 ± 0.019 0.835 ± 0.006 0.766 ± 0.017 0.859
R-101 ✓ 0.990 ± 0.000 0.871 ± 0.010 0.846 ± 0.007 0.798 ± 0.014 0.876
R-101 ✓ ✓ 0.990 ± 0.000 0.895 ± 0.004 0.869 ± 0.004 0.852 ± 0.009 0.902
R-101 ✓ ✓ 0.990 ± 0.000 0.883 ± 0.007 0.860 ± 0.008 0.812 ± 0.010 0.886
R-101 ✓ ✓ ✓ 0.990 ± 0.000 0.903 ± 0.007 0.873 ± 0.006 0.862 ± 0.013 0.907

CondInst R-50 ✓ ✓ ✓ 0.990 ± 0.000 0.877 ± 0.009 0.853 ± 0.004 0.817 ± 0.006 0.884
Mask R-CNN R-101 ✓ ✓ ✓ 0.938 ± 0.004 0.844 ± 0.006 0.783 ± 0.007 0.812 ± 0.005 0.844
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Figure 7. Precision–recall curve. The curves for the corresponding cell types are drawn in dif-
ferent colors, i.e., blue for erythrocytes, orange for eosinophils, green for lymphocytes, and red
for heterophils.

We did not have enough samples of basophils and monocytes for a comprehensive
evaluation of their respective classes, but these samples could be aggregated into their
superclass leukocytes. We trained a binary CondInst model that could classify avian blood
cells into erythrocytes and leukocytes. As Tables 5 and 6 show, our model could perform
very well on this task, achieving more than 93% and 98.8% in terms of AP for leukocytes
and erythrocytes, respectively. As before, the larger backbone, i.e., the ResNet-101, pushed
the model to a better performance on leukocytes.

The mAP score regarding all leukocytes was higher than for any of the subclasses.
Presumably, the multi-class model confused cell instances of the different subclasses.
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Table 5. Detection results for binary model. We report the AP at an IoU of 50% (AP@50) based on the
predicted bounding boxes for the CondInst architecture with two different backbone models, namely,
ResNet-50 (R-50) and ResNet-101 (R-101). Values in bold indicate the best results for each metric.

Model Backbone
Detection (AP@50)

Erythrocyte Leukocyte mAP

CondInst R-50 0.989 ± 0.000 0.933 ± 0.002 0.961
R-101 0.989 ± 0.000 0.936 ± 0.002 0.963

Table 6. Segmentation results for binary model. We report the AP at an IoU of 50% (AP@50) based
on the predicted segmentation masks for the CondInst architecture with two different backbone
models, namely, ResNet-50 (R-50) and ResNet-101 (R-101). Values in bold indicate the best results for
each metric.

Model Backbone
Detection (AP@50)

Erythrocyte Leukocyte mAP

CondInst R-50 0.990 ± 0.000 0.932 ± 0.002 0.961
R-101 0.990 ± 0.000 0.937 ± 0.002 0.964

3.3. Inference Runtimes

The inference runtimes for samples of different sizes are shown in Table 7.

Table 7. Inference runtimes. We present details on the samples regarding their size and countability
along with the inference time of the respective image. The number of countable tiles is determined by
our best area-selection model based on the EffcientNet-B0 architecture.

Sample Width (px) Height (px) Area (px) Overall Tiles Countable Tiles Fraction (%) Time (mm:ss)

1_023 195,126 91,974 17.947 B 91,059 49,369 54.22 52:01
1_044 155,375 92,066 14.305 B 72,417 61,998 85.61 57:07
2_013 63,743 65,396 4.169 B 21,080 4140 19.64 05:26
5_055 53,784 46,887 2.511 B 12,705 535 4.21 01:58
8_036 205,167 93,585 19.201 B 97,200 24,743 25.46 25:09
8_040 195,216 88,232 17.224 B 87,249 9697 11.11 13:39

We included the largest whole slide image (i.e., sample 8_036) consisting of more
than 19 billion pixels as well as the smallest sample (5_055) with only roughly 2.5 billion
pixels. However, in addition to the size of the image, the fraction of actual countable
tiles played a crucial role in the processing times. For the largest file (8_036) containing
97,200 tiles with a countable tiles fraction of roughly one-fourth, our approach took roughly
25 min. Yet, another sample (1_023) with only 91,059 tiles, but more than half of them
classified as countable, took roughly 52 min. Processing the three smaller samples took less
than 15 min each. In general, none of the selected images needed more than one hour to
determine the cell counts in the corresponding blood smear. Depending on the mentioned
factors, processing took mostly less than a tenth of a second for one countable tile, including
tile selection, segmentation, and identification, as well as counting of the respective cell
instances. In contrast, our human expert took an average of roughly two minutes to
annotate a tile with labels and segmentation masks in our semi-automated setting.

4. Discussion

Our novel approach offers a proficient assessment of avian blood scans, which speeds
up the workflow of blood cell counting significantly compared to the traditional method of
visually counting on microscopes. Compared to existing hardware devices for automated
blood analysis [25,28], which are usually quite expensive, our approach is freely available.
Hence, we enable researchers who do not have access to such devices used in veterinarian
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laboratories to utilize an automated cell-counting method. The CellaVision® DC-1 analyzer
has been evaluated for mammalian, reptilian, and avian blood by comparing its pre-
classification to the final results after review by veterinarians [61]. The agreement was
very good for neutrophils, heterophils, and lymphocytes (each > 90%) and good for
monocytes (81%). However, eosinophils and basophils needed massive re-classification
by human experts. Interestingly, while we agree that achieving good performance for
basophils is a challenge, our model appears to be more reliable for eosinophils. However,
we could not evaluate our model on monocytes that were recognized in a satisfactory way
by the CellaVision® DC-1. Moreover, our approach can be more efficient than hardware-
based approaches. The DC-1 [28] analyzer processes given slides sequentially, achieving a
throughput of no more than roughly 10 slides an hour. Our approach allows users to scan
slides with various methods, e.g., with microscope cameras or high throughput scanners,
like the Leica Aperio AT2 Scanner [47] with a capacity of 400 slides, as used in our study.
The Leica Aperio AT2 Scanner can be used to digitize a large number of slides in a very
time-efficient manner. Our approach can be arbitrarily scaled by processing several slide
images in parallel and is only limited by the available hardware resources. Furthermore,
our approach can handle low-quality blood smears because it has been trained under
such conditions, while the CellaVision® DC-1 analyzer is primarily designed for usage
in veterinary laboratories. Moreover, because of its proprietary design, it is not possible
to use custom training data to adapt the classification approach. Hence, regarding large
numbers of avian blood data sampled in ornithological field studies, our approach opens
new possibilities for bird-related research.

While our approach shows that it is feasible to automatically count not only red but
also white avian blood cells with open-source software, it still has some downsides. Because
of the low number of samples in our training set, our neural network model is not yet
able to reliably recognize basophils or monocytes. Furthermore, the model is trained on
a limited number of bird species. Because of potential variations in staining intensity,
coloration, and cell morphology, it may be a challenge to detect cells of other bird species
as reliably as for the given species [62]. In particular, eosinophils may be quite different
between bird species.

However, these issues indicate several areas for future work. The model performance
can be further improved by extending the dataset in general and particularly for the rare
classes, i.e., for basophils and monocytes. Instead of bluntly annotating more images that
barely contain any of these cells, this can be done using an active learning approach, which
reliably provides unlabeled images that contain these types of avian white blood cells.
Moreover, it is a promising direction to generate more training samples by generative
deep learning approaches, like GANs [63], or image generation models based on latent
diffusion [64]. Furthermore, our approach can be extended to recognize and count blood
parasites (e.g., Haemosporida and Trypanosoma). Another interesting aspect is investigating
and improving the generalization ability of our neural network model in cross-domain
scenarios. This can include different techniques when creating blood smears for different
bird species. We plan to include further bird species into our model, e.g., penguins.

Several studies have indicated that extreme ecological conditions can significantly
increase hematocrit levels in birds. For example, a female great tit from the northernmost
populations in Northern Finland showed a hematocrit level of 0.83 [65]. This makes the
blood viscous and leads to densely packed cells in the blood smear image, which can be
challenging for automated counting approaches. Since we trained our model to count only
areas matching human quality standards, we only counted tiles from the monolayer. Hence,
a high hematocrit level may lead to significantly more rejected tiles. However, our approach
is adaptable to new annotated data sources. Thus, providing our models with manually
labeled images with high hematocrit levels in future training iterations will improve their
ability to process and count cells with such rare conditions better. In general, our approach
is based on open-source software. Therefore, the models can easily be adapted to other
datasets or extended to recognize further cell types.
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So far, our approach aims to automate the tedious task of manually counting avian
blood cells. Furthermore, it eliminates inter-observer errors. However, it still counts cells
only in the monolayer. Future work may expand the countable areas, as achieved by
handcrafted feature algorithms [39]. For a deep learning approach like ours, this can be
achieved by training the model with data involving lower-quality areas. By learning useful
features from the annotated samples, the resulting models may be capable of achieving
superhuman performance.

Our deep learning model opens up new opportunities in ornithology and ecology for
documenting and evaluating the stress levels and health conditions of bird populations
and communities efficiently and can, therefore, be used as an early warning indicator to
detect physiological changes within populations or communities even before a population
declines. With this fast, reliable, and automated approach, even old collection samples
may retrospectively be incorporated into modern ornithological research. Our approach
is currently used in practice for research on the relative stress load of forest birds by
automatically determining H/L ratios.

5. Conclusions

We presented a fully automated open-source software approach to determine not
only the total erythrocyte count but also the total and differentiated leukocyte counts of
avian blood samples. Our approach operates on whole slide blood smear images. First, we
select tiles using a deep neural network model to determine the areas of the images that are
suitable for counting contained cells by classifying all tiles into countable and non-countable
ones. Each tile classified as countable is then fed into another deep neural network model.
This model is capable of detecting and classifying avian blood cells, i.e., erythrocytes
and leukocytes, with 96.1% in terms of mAP. Furthermore, if the model is trained to also
recognize subtypes of leukocytes, it achieves up to 98.9%, 90.2%, 87.3%, and 86.3% in
terms of AP for erythrocytes (with nuclei), lymphocytes, eosinophils, and heterophils,
respectively.
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