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Abstract: The utilization of plasmonic nanomaterials in catalytic technologies is an emerging research
field with foreseeable applications in energy-catalytic technologies. On this front, the coupling of
plasmonic nanomaterials with molecular catalysts is a newly approached, thus far unexploited field,
that we discuss herein. In the present mini review, we contrast the case where the plasmonic particle
itself is the catalytic center against the case where the plasmonic particle acts as a co-catalyst for
an operational catalytic system. In the first part, we present an outline of the key phenomena in
nanoplasmonics, and their potential implications in catalytic processes. The concepts of hot electrons,
hot holes, and the dynamics of their generation and transfer are reviewed, as are the contribution of
near-field and photothermal effects to catalytic processes. All these plasmonic-phenomena are then
discussed in conjunction with representative catalytic systems from the literature.

Keywords: nanoplasmonics; molecular catalysts; nanohybrids; PAMC; LSPR; hot electrons; photocatalysis;
hydrogen; oxidation catalysis

1. Introduction

The global energy crisis mandates the adoption of clean energy technologies, based on
renewable sources such as sunlight. To this end, two key issues can be considered among
forward-looking solutions: [i] one is exploitation of the full spectrum of solar photons, since
the highest efficiency of sunlight energy conversion into chemical activity has so far almost
exclusively been confined to the utilization of UV-absorbing TiO2-based nanomaterials [1].
In years, there mounting evidence has emerged that plasmonic nanomaterials can provide
a decisive boost to photo-driven reactions [2]. In brief, the underlying physics of plasmonic
nanostructures and their action as “antennae” can be outlined as follows: the incoming
light can be concentrated in nanoscale volumes, thus giving rise to collective oscillations
of electrons, a phenomenon known as localized surface plasmon resonance (LSPR) [3].
Consequently, locally intense electric fields (hot spots) at the particle–particle interface, form
an ideal active site for chemical processes to occur [4,5]. The plasmonic effect also generates
hot carriers [6], namely highly energetic photoinduced e−—h+ pairs. Moreover, the stored
quanta of energy in the oscillating charge density during LSPR can be dissipated via several
mechanisms and utilized in different ways [7], such as the photothermal effect, i.e., heat
generation from the photo-excited plasmonic nanoparticles (PNPs) [8] (Figure 1). Thus,
the plasmonic phenomenon manifests in different ways, and each of them can be utilized
in different types of catalytic processes [9]. These properties of plasmonic nanoparticles
render them highly attractive for various applications, including sensing, imaging, and
enhancing light–matter interactions.

In recent years, numerous review articles have been published focusing on catalytic
applications where the plasmonic materials themselves act as catalysts for a wide range of
catalytic reactions [10–12]. In particular, the local temperature increase around PNPs has
led to, for example, applications in nanomedicine, for tumor targeting [13,14], or in catalysis
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for the thermal acceleration of reactions [15]. The LSPR-induced local electric field in close
proximity to the PNPs is another intriguing property that has been utilized for surface-
enhanced Raman scattering (SERS) spectroscopy [16], sensor-related applications [17,18],
and catalysis [19,20]. Finally, in the context of catalysis, the generation of hot carriers
by plasmonic nanostructures is the most widely exploited mechanism [21]. Gold (Au0),
silver (Ag0), copper (Cu0), and aluminum (Al0) are the most common metals possessing
measurable LSPR properties, giving birth to the field of plasmonic catalysis [22]. The
coupling of plasmonic materials with catalytic metals (e.g., Pt, Pd, etc.) can promote the
transfer of electrons from a PNP to the catalytic metal, for example, via LSPR-induced local
electric fields in the PNP’s vicinity [23].
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Figure 1. Concept of plasmon-assisted molecular catalysis (PAMC). Molecular catalysts perform a 
specific catalytic reaction. Photoexcited plasmonic nanoparticles can intervene in the catalytic pro-
cess via three mechanisms: [i] generation of hot carriers and [ii] the photothermal effect of [iii] near-
field effects. 
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From a forward-looking perspective, the combination of plasmonic nanoparticles 
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ous catalytic applications. Herein, our aim is to present the first review on the field plas-
mon-assisted molecular catalysis (PAMC)—see the concept outline in Figure 1. Thus, for 
the sake of clarity, we conceptualize PAMC as those cases where a molecular catalyst is 
the key catalytic entity and the plasmonic particles exert an auxiliary effect on the catalytic 
process. As we discuss, this effect does not always boost the catalysis, and it can result in 
a reversible pause of the catalytic process. 

Although the literature concerning this subject has, thus far, remained highly limited, 
it is possible to realize the potential of PAMC systems by studying the interaction between 
plasmonic nanoparticles and simpler moieties. For instance, there is extensive research on 
the interaction and catalytic behavior of plasmonic nanostructures with small molecules 
[24]. Considering all of the above, it is evident that, depending on the molecular moiety 
and its catalytic function, a different feature of plasmonic structures can be employed, 

Figure 1. Concept of plasmon-assisted molecular catalysis (PAMC). Molecular catalysts perform
a specific catalytic reaction. Photoexcited plasmonic nanoparticles can intervene in the catalytic
process via three mechanisms: [i] generation of hot carriers and [ii] the photothermal effect of [iii]
near-field effects.

From a forward-looking perspective, the combination of plasmonic nanoparticles with
molecular catalysts is an emerging research field with significant potential for various
catalytic applications. Herein, our aim is to present the first review on the field plasmon-
assisted molecular catalysis (PAMC)—see the concept outline in Figure 1. Thus, for the
sake of clarity, we conceptualize PAMC as those cases where a molecular catalyst is the
key catalytic entity and the plasmonic particles exert an auxiliary effect on the catalytic
process. As we discuss, this effect does not always boost the catalysis, and it can result in a
reversible pause of the catalytic process.

Although the literature concerning this subject has, thus far, remained highly lim-
ited, it is possible to realize the potential of PAMC systems by studying the interaction
between plasmonic nanoparticles and simpler moieties. For instance, there is extensive
research on the interaction and catalytic behavior of plasmonic nanostructures with small
molecules [24]. Considering all of the above, it is evident that, depending on the molec-
ular moiety and its catalytic function, a different feature of plasmonic structures can be
employed, from simply acting as a thermal source to inducing redox phenomena in more
complex systems. For completeness, we can cite numerous interdisciplinary reviews focus-
ing on the implementation of plasmonic materials as catalysts themselves in energy-related
catalysis such as solar cells [25], CO2 reduction [26], environmental remediation [27], H2O
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splitting [28], photocatalysis [22,29,30], as well as plasmonic catalysts [31]. In this mini
review, we focus on the PAMC where the catalysis performed by the molecular catalyst
is quantified by indices classically used in molecular catalysis such as turn over numbers
(TONs) and turn over frequencies (TOFs), etc.

2. Fundamentals of the Plasmonic Phenomenon

To trigger plasmon-enhanced chemical activity, the plasmonic mechanisms derived by
illuminating metallic nanoparticles need to have been thoroughly understood. Considering
the multiple degrees of freedom in these systems, properly distinguishing the relative
contributions of each plasmonic mechanism to a given reaction can be quite challenging.
The scope of the present mini review is not the detailed disentanglement of every plasmonic
phenomenon, shown in Figure 2, but to provide a comprehensive classification in order to
facilitate a better understanding and interpretation of the underlying mechanisms. In this
context, we can classify the plasmonic phenomena into three families: [i] those evidenced
from “outside the particle”, i.e., these are mainly phenomena involving light scattering [32];
[ii] those evidenced from “inside the particle”, which refers to the hot electrons and holes
generated by the decay of photoexcited plasmon modes inside the particle [33]; and [iii]
those evidenced at the particle–particle interface, i.e., also involving the presence of hot
spots [34]. On that point, the required energy that activates these plasmonic reaction
channels originates from the oscillating motion of a metal’s free electrons, storing energy
in quanta also known as plasmons. In LSPR, the restricted motion of electrons in the
particle–environment nano-interface gives birth to new energy transfer pathways, which
are, herein, summarized according to the occurrence of each phenomenon, i.e., outside,
inside, and the interface of the plasmonic nanostructure, as depicted in Figure 2.
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Figure 2. A schematic depicting the plasmon-driven mechanisms regarding the scale at which
they occur. The LSPR-induced energy dampens through radiative phenomena outside the particle
(light scattering) and non-radiative phenomena inside the particle (hot-carrier generation) and at the
particle–particle interface (thermal effects, electric fields, and charge transfer to near acceptors).

Starting from outside the particle, the response of the electron density to an external
electromagnetic wave, i.e., light, and the subsequent light-scattering phenomena are clas-
sically described by the Drude model [35] and Mie theory [36], respectively, for the case
of a single nanosphere. Although this is the least interesting plasmon event in catalysis,
Mie theory established control over the optical properties of the plasmonic nanostructures
by adjusting the particle size, shape, and dielectric properties of the metal and surround-
ing medium [37–40]. Furthermore, the Mie absorption cross-section is the starting point
that describes how the plasmonic metal’s electrons gain energy from this light–matter
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interaction, i.e., the energy that eventually will be transferred to a catalytic active site. In
this regard, it is clear that plasmonic effects can be distinguished to radiative and non-
radiative processes [41], see Figure 2. In a radiative process, LSPR relaxes and re-radiates
light into the far field, thus the metal nanostructures can act as a secondary light source
(“antenna”) that concentrates light on the particle surface and enhances local electric fields
in its proximity. In the case of the non-radiative process, plasmon dephasing causes photon
absorption that deposits electronic energy in the electron cloud inside the particle, which
in turn results in highly energetic electrons with energy above the Fermi level—so-called
“hot” electrons [6,33]. These routes of plasmon energy dissipation will be described in more
detail in the following section.

Photoinduced plasmonic hot carriers are electrons in a metallic particle follow the
Fermi–Dirac distribution. Figure 3 exemplifies the case of Ag0 nanoplasmonics, which
contain electrons in the sp-band as well as in the d-band. The photoexcitation process in
plasmonics is more complex than in typical semiconductors [40]. The key idea is that the
decay of the plasmons creates the electronic excitations/pathways which, in a broad context,
can be involved in catalytic processes. Thus, understanding plasmon creation and decay is
of crucial importance for the connection between plasmonic phenomena and catalysis, see
Figure 4. Hereafter, we provide a short comprehensive overview of the fundamentals.
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Figure 3. The allowed electro-transitions in the case of photoexcited metallic Ag0 nanoparticles. The
arrows describe the main plasmon energy damping channels, occurring after plasmon decay.

When PNPs are illuminated by discrete photons with energy h̄ω, photon absorption in
this light–matter interaction is impossible because such transitions require additional mo-
mentum through inelastic scattering (e.g., with a lattice defect or a lattice phonon) or occur
in a confined system with boundaries (backscattering events), as shown in Figure 3 [42,43].
In addition to the dynamics of charge carriers in a metal, the effects of quantum confinement
in small particles should be considered.

The first immediate consequence of this transition is that the current created by the
electromagnetic field will accumulate electric charge at the surface of the particle. In the
classical picture, these charges would accumulate solely at the surface of the particle, but in
realistic systems, the charges at the interface extend into a non-zero volume inside the metal,
screened and interacting with other mobile charges. Therefore, by decreasing the particle
size, the quantum effects at the surfaces become more relevant over plasmon dynamics [44].
Specifically, they contribute to plasmon dephasing, with the coherent collective oscillation
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of the carriers inside the metal decaying into incoherent electronic excitations [32], see
Figure 4. This is parametrized by Equation (1)

γsur f = A
uF
R

(1)

where γsurf is the surface-assisted damping factor of the plasmons, A is an empirical
constant ~1, uF is the metal’s Fermi velocity, and R is the particle radius [32]. More
generally, the surface-induced damping arises from electron collisions with the particle’s
boundaries [45,46]. The boundary discretizes the electronic states inside the metal [45,46].
Then, the surface allows a breaking of the momentum conservation by discretizing the
electronic states in the particle, a process known as surface-assisted plasmon decay or
Landau damping [45,46]. It is this anelastic scattering that allows excitation of hot electrons
with energies EHE higher than the Fermi level, ranging in the interval [47], see also Figure 4,

EF < EHE < EF + h̄ω,
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Figure 4. Hot-carrier relaxation events (from left to right): (1): absorption of light photons excites
plasmons, which decay and stimulate the creation of [hot electron]–[hot hole] pairs. Some of the
hot electrons attain energy above the Fermi level. These can participate in catalytic processes.
Subsequently, (2) the hot carriers relax via electron–electron scattering, and then they equalize their
temperature with the lattice vibrations via electron–phonon scattering, (3) all this in a few ps. Finally,
(4) the relaxation of the hot lattice is achieved via phonon–phonon interactions, where the stored
energy in the vibrational modes is dissipated from the nanoparticle to the surrounding medium as
heat, i.e., leading to a rise in temperature. This can contribute thermal input to catalytic processes.

Thus, the generation of hot carriers can be controlled by modifying the size and shape
of the metallic particle [48–50]. Another factor that correlates to surface confinement, and
hence the stimulation of hot carriers, is the presence of the intense electric fields in the
vicinity of the particle’s boundary (hotspots) [34]. When this local field distribution is con-
centrated in sharp features of the nanostructure or in nanogaps, in the case of coupled PNPs,
the plasmonic field significantly amplifies the population of nonthermal carriers [51–53].

More generally, the creation of hot carriers in metallic nanoparticles depends on the
lossy nature of the LSPR process, i.e., the way the plasmons decay. Hence, overall plasmon
decay involves all non-radiative decay mechanisms expressed by the plasmon lifetime
as [54]

γplasmon = γDrude + γinterband + γsur f + γHotSpots + γrad (2)

where γDrude is the term for the electron–electron and electron–phonon interaction following
the classical electrodynamic picture of coherent charge oscillation. γinterband is the term for
the direct optical transitions (typically from the d to sp band in the case of Ag and Au),
which is not included in the classical model. The previously described surface and hotspot
effects are included in γsurf and γHotSpots, respectively. In contrast to the other terms, γrad is
the term for radiative losses, where light is re-emitted in the far-field.
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When the light-induced plasmon energy is not shared with other systems with any
of the aforementioned pathways, the following relaxation events dampen the plasmon
resonance until the energy is dissipated as heat (shown in Figure 4): [55,56].

• Step 1: Electronic thermalization, hot electron generation

The decay of light-induced plasmons stimulates the creation of electron–hole pairs
above the Fermi level. These are called “hot electrons” and “hot holes”, since this can
be a highly energetic process with energies in the range of several eV. To put this in the
context of catalytic processes, we should consider that typical covalent-bond energy is in
the range ~100–400 kJ/mole that, by the conversion factor 1 eV = 96 kJ/mole, is ~1–4 eV.
The rest of the electrons decay via a plasma decay-type process, i.e., plasma = the hot
electron cloud inside the particle, bringing the electron plasma to an equilibrium state
at a high temperature, within fs [57]. We underline that this is an internal process, i.e.,
occurring inside the plasmonic particle, thus it is rather unlikely to contribute directly in a
catalytic process.

• Steps 2,3: Hot carrier relaxation

The following stage involves the conversion of electronic energy to vibrational energy
via electron–phonon interactions [58] where the plasma relaxes and equalizes its temper-
ature with the particle lattice vibrations. As a result, the equilibrium inside the particle
has been restored, as the electron gas temperature matches the crystal lattice temperature,
and internal thermal homogeneity has been achieved [59]. The particle size influences the
timescale of electron–phonon interactions as demonstrated by Hartland et al. [55] and Link
and El-Sayed [59].

• Step-4: Lattice relaxation, heat generation

Finally, the relaxation of the hot lattice is achieved via phonon–phonon interactions,
where stored energy in the vibrational modes is dissipated from the nanoparticle to the
surrounding medium. This is the step where heat is provided to the surrounding medium,
leading to a temperature rise in the immediate vicinity of the PNP, known as a “thermo-
plasmonic” process [60]. The thermoplasmonic process may be very important in catalysis,
since it may provide a direct heat source to the catalysis system.

Govorov and co-workers and Manjavacas et al. highlighted the influence of particle
size on hot carrier generation rate and on energy distribution [48,54]. Specifically, Figure 5
demonstrates that despite being larger, Ag particles excite more electrons, since they are
low-energy, Drude-like carriers. By decreasing particle size, surface effects dominate and
plasmons decay into high-energy electrons, although the population of hot carriers remains
low compared to Drude carriers [48,54]. In the case of 2 nm particles, the overall carrier
population is lower than that of the larger particles but the relative concentration of hot
and Drude carriers is almost equal.
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2017, ACS.).

Hotspots: In contrast to the non-radiative process, in a radiative process [41] (see
Figure 2), plasmon excitation relaxes via the re-radiation of light into the far-field, thus
metal nanostructures can act as secondary light sources (“antennas”) that concentrate
light on the particle surface and enhance local electromagnetic (EM) fields in their close
proximity. In turn, hot carrier generation depends on the electric fields on the particle
surface [54]. Specifically, hotspots formed in coupled PNPs and/or sharp geometrical
features in the PNP shape increase the number of hot electrons drastically [54,62–64]. These
local electric fields can enhance catalytic processes too. Here we must understand that this
can happen only in the proximity of the hotspot, which means the catalytic process should
occur on the particle–solution interface rather in the bulk. We have explained, this holds
true for the case of plasmon-enhanced hydrogen atom transfer in hybrid nano-antioxidants
such as SiO2@Ag-[Gallic Acid] [65].

3. How Plasmonic Catalysis Works

So far, plasmonic nanostructures have been incorporated into catalytic systems in
many ways. Therefore, “plasmonic catalysis” has become an umbrella term for catalytic sys-
tems that utilize a plasmonic component. This can happen using: [i] stand-alone plasmonic
catalysts or [ii] plasmonic structures in conjunction with a heterogeneous (nano)catalyst or
molecular catalyst. In the first case, the plasmonic structure has a dual role, both absorbing
light and catalyzing the desired reaction. Plasmonic nanostructures have been used in a
variety of different catalytic systems, acting as the catalyst themselves [66–71] or utilizing
high light intensities. Up to now, in most cases, plasmonics have been used in electrochemi-
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cal and/or photochemical reactions [72,73] or gas-phase reactions at high temperatures [74].
In fact, the lack of selectivity is a challenge for plasmon-assisted reactions [23,66,75–79].

In the second case, there is a more complex system with a plasmonic component and a
second structure that acts as the catalyst. When the second structure is a heterogeneous cat-
alyst, there can be various heterostructures forming the final catalytic material, depending
on its spatial structure. Thus, there can be A@B structures (A: catalyst, B: plasmonic metal),
A-B core–shell structures, or AB alloy structures (Figure 6). In the majority of these combi-
nation systems, there is a conjunction of plasmonic structures with semiconductors [80–83].
In the case of plasmon-assisted molecular catalysis (PAMC), a plasmonic nanostructure
can be used in tandem with a molecular catalytic moiety [84–86], giving birth to a new and
promising concept in the field of catalysis.
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tion catalysis.

In this context, is has been shown that plasmonic Ag and Au can act as the light
controller and electron supplier to adsorbate molecules accelerating chemical transforma-
tions [87,88], despite the poor catalytic activity of stand-alone Ag or Au. In this case, [89,90],
the surface-assisted plasmon dephasing results in the stimulation and transfer of high-
energy nonthermal electrons, that induce the activation of the adsorbed species via vibra-
tional excitation. When the kinetic energy is sufficient, these hot electrons are injected into
the lowest unoccupied orbital of the adsorbate (LUMO). It is important to highlight that
low-energy Drude electrons cannot overcome the interfacial barrier, thus they are trans-
ferred to the adsorbate. The constantly expanding literature has showcased the enhanced
chemical activity in adsorbed species, induced by the excitation of hot holes [91–106] and
hot electrons [90,96–109], with some pertinent case-studies listed in Table 1.
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Table 1. Key cases on the mechanistic insight of plasmonic catalysis.

Reaction Material Mechanism Reference

H2 dissociation Au, Au/SiO2, Al Weakening the H–H bond due to accumulated
hot electrons Halas [110–112]

O2 dissociation Ag Depositing energy in the O–O bond due to hot
electron back-and-forth transfer

Christopher et al.
[74]

MB
decomposition/desorption Ag Direct electron transfer involving hybridized

Ag-MB electronic states Boerigter et al. [113]

CO2 Reduction Au/Al2O3/TiO2

Controlled synergy of hot electrons/near-field
enhancement by tuning the Al2O3 shell

thickness
Zhao et al. [89]

C-F dehydrofluorination Al-Pd Enhanced Pd optical absorption caused by the
near-fields of the plasmonic Al antenna Robatjazi et al. [90]

Formic Acid Dehydrogenation Au-Pd
Plasmon-assisted reduction of adsorbed H

atoms and and the C–H cleavage bond of the
FA−

Herran et al. [114]

Fe3+ Reduction Au e/h formation due to the synergistic interband
(d-sp) and intraband (hot carriers) transitions Kim et al. [115]

Alkene Epoxidation Ag@SiO2

Hot-carrier-assisted, on-demand pause of
oxidation by inhibiting the LMnIV = O

intermediate
Gemenetzi et al. [84]

Cr6+ Reduction Ag@SiO2

Light-driven decrease of the activation barrier
and hotspot-assisted generation of hot

electrons
Moularas et al. [116]

Formic Acid Dehydrogenation Ag@SiO2
Hot electron-induced lowering of the solution

potential Gemenetzi et al. [85]

Among them, the pioneering work of Halas’ group demonstrated the plasmon-
mediated dissociation of adsorbed H2 species [110]. Using Au nanoparticles under visible
light, they have shown that the kinetic energy of the excited nonthermal carriers overcomes
the large activation energies and drives the catalytic process at room temperature. Initially,
the nonthermal hot electrons are injected into antibonding orbitals of the H2 molecule;
however, due to their short lifetime, they are transferred back to the Au. The H-H bond
stretching induced by the accumulated vibrational energy leads to H2 dissociation. Fur-
thermore, the same group provided evidence that the dissociation occurs on the Au surface
by changing the substrate (TiO2, SiO2) [111], normalizing any charge transfer between
the Au and the substrate [117]. Also, the fact that H2 species adsorb weakly on the Au
surface indicates that the dominant charge transfer mechanism is the indirect interfacial
transfer mechanism.

On a similar note, another prominent plasmon-driven reaction is O2 dissociation,
as demonstrated for the first time by Christopher and co-workers [74]. They reported
enhanced performance in the oxidation of ethylene utilizing Ag nanocubes. In the same
way as H2 dissociation, the hot electrons with sufficient energy to be transferred to LUMO,
dissipate energy into the vibrational modes stretching O2 bonds, and activating the dissoci-
ation process.

The thermodynamic basis of plasmon-assisted catalysis: In the cases above, there is a
catalytic process advancing, meaning that in some way or another, there was a lowering
of the transition state energy barrier; thus, lowering the activation energy (Ea). This
thermodynamic basis has been experimentally evidenced in various cases [118]. Zhou
et al. reported a light-induced decrease in the activation energy of ammonia decomposition
under the presence of antennae–reactor Cu-Ru PNPs, from 1.21 to 0.35 kJ mol−1 [119].
In the case of the antioxidant hydrogen atom transfer (HAT) process achieved by hybrid
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SiO2@Ag-[Gallic-Acid], the nominal activation energy barrier was decreased by at least
1.8 kJ mol−1, shown in Figure 7a,b [65]. In the case of photocatalytic Cr6+ reduction by
SiO2@Ag nanostructures, we have demonstrated a significant light-induced four-fold
decrease of the activation energy (from 25.4 to 6.2 kJ mol−1), depicted in Figure 7c–e [116].
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grafted GA to a DPPH radical (a) without and (b) under 785 nm laser irradiation. Adopted from the
work [65]. (c) The controlled hot electron generation by illuminating core–shell Ag@SiO2 PNPs and
(d) the subsequent light-induced lowering of the activation energy. (e) The proposed mechanism
of hot electron excitation and transfer to adsorbed Cr6+ species. Adapted with permission from
Ref. [116], 2023, ACS.

Mechanism-wise, in the case of a hot carrier-mediated catalytic process, the plasmon-
induced hot electrons, after being ejected from the metal, can decrease the activation barrier
of a chemical reaction by exciting the chemically attached adsorbates, either electronically or
vibrationally, unlocking the rate-limiting step for challenging chemical reactions [120,121].
Interestingly, using an illuminated plasmonic nanoparticle to change the landscape of a
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chemical process can initiate reactions that would otherwise be thermodynamically and/or
kinetically blocked. This opens up new possibilities for tuning the selectivity and efficiency
of heterogeneous photocatalytic processes. Regarding selectivity, the metal–adsorbate
interactions may enable new electron transfer channels through the hybridization of the
metal’s energy levels and the adsorbate’s orbitals, so that photon energies different to
LSPR and/or optical absorption of adsorbates can be harvested, triggering unique chemical
pathways [122]. Here we underline that a successful plasmonic intervention to a given
catalytic process that involves electron transfer requires efficient electron injection from the
PNP to a proximal electron acceptor [123].

The chemical interface damping (CID) concept: Despite the promising potential of
using highly energetic charge carriers to drive challenging chemical reactions, the most
studied indirect charge transfer mechanism exhibits insufficient yields because of the short
carrier lifetime and rapid recombination [61]. Recently, a broadening of plasmon bands
in single-particle systems in contact with adsorbed/semiconducting species is attributed
to a new damping process called “chemical interface damping” (CID) [124]. CID arises
from the hybridization between the electronic states of the metal and the molecular orbitals
of the attached species, providing a novel pathway for direct electron injection in the
adsorbate [125]. The conventional indirect electron transfer is a lossy two-step mechanism,
where Landau damping triggers the generation of nonthermal hot electrons with energies
up to [EF + h̄ω], which are then injected into the LUMO of the adsorbate. However, the
direct electron transfer is completed during the plasmon decay via CID, where the electron
is transferred through the hybridized states. Thus, CID can be inserted into Equation (2) as
an additional damping term, i.e., similar to γCID, with a similar size dependence as surface-
induced damping [124,126]. This pathway is considered far more efficient and overcomes
limitations such as short carrier lifetime and e–e interactions. Despite the superior electron
transfer efficiency, the engineering of direct transfer is challenging since the overlap of
LSPR resonance and the HOMO-LUMO transition of hybridized states is required.

On this front, Linic’s group demonstrated that degradation of methylene blue (MB)
adsorbed on Ag nanocubes is induced by direct charge transfer [113]. Employing SERS,
they evidenced that MB decomposition occurs under illumination at 785 nm and not
532 nm. One would expect increased efficiency from high-energy photons (532 nm) because
they excite more energetic hot electrons that overcome the energy gap between Fermi
level and LUMO of MB. These findings suggest that the electrons follow a CID route via
Ag-MB hybridized electronic states, providing selectivity for particular chemical pathways
activated exclusively by CID-induced direct electron transfer [127].

Furthermore, Seemala et al. correlated enhanced O2 dissociation using Ag nanoparti-
cles to CID phenomena assisted by surface electric fields [128]. The yield trend does not
correspond to the calculated hot carrier density, indicating that the preferred mechanism
is direct electron transfer induced by CID [128]. In both aforementioned works, the direct
transfer route is ostensibly promoted by the local fields that mitigate the energy dissipation
to the vibrational modes of the attached species and alleviate the dissociation process.
Moreover, Christopher and co-workers demonstrated that hybridized metal adsorbate
electronic states between CO and Pt surface can selectively control CO oxidation via direct
electron transfer to CO-Pt bonds [129]. Thus, CID is an auspicious plasmon-induced path-
way for highly efficient electron transfer that drives chemical activity in the PNP vicinity,
overcoming the bottleneck of the rapidly relaxed non-thermal hot carriers. Nonetheless,
the verified evidence of plasmon-driven direct transfer events in the literature remains
surprisingly limited, possibly due to the complexity of the formation of resonant hybridized
states and the strong chemisorption on the chemically inert surfaces of plasmonic metals
such as Ag and Au.

4. Plasmon-Assisted Molecular Catalysis (PAMC)

It is well established that compared to other catalytic systems, molecular catalysts
display unique reaction mechanisms providing high selectivity and activity in challenging
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catalytic processes [130,131], and their usage has been extensively reviewed in numerous
works [132,133]. On this front, the fundamentals of plasmon-derived mechanisms analyzed
herein (hot carriers, hotspots, or thermal effects), as depicted in Figure 8, are able to enhance
the activity of a molecular catalyst located in the proximity where these phenomena occur.
In particular, our group has presented some key studies [84,85] which show that the
plasmonic hot electrons are the primary mechanism of the observed PAMC phenomena.
In [84], we have shown that plasmon-generated hot electrons could reversibly stop/start the
oxidative advancement of the Mn catalytic center via “pausing on demand” the oxidation
catalytic process under light excitation [84], as depicted in Figure 9. The molecular catalysis
studied was alkene epoxidation in the presence of a biomimetic Mn catalyst utilizing H2O2.
This is based on the catalytic activation of H2O2 by the Mn catalyst forming a LMnIV = O
transient intermediate. It was found that under the photoinduced action of plasmonic
Ag0@SiO2 nanoparticles, the oxidation catalytic process can be reversibly switched off.
When photoexcitation of the PNPs stops, the catalytic process recommences. Utilizing three
types of plasmonic core–shell Ag0@SiO2 nanoparticles with a varying thickness (0.1–5 nm)
SiO2 shell, it was shown that the intensity of the observed phenomenon changed. Using
EPR spectroscopy, it was demonstrated that the key step related to the photoinduced pause
of the catalytic process by the Ag0@SiO2 PNPs is the reversible inhibition of transient
LMnIV = O intermediate formation [84]. Moreover, the SERS and redox potential data
indicated that the Ag0@SiO2 PNPs present a moderate SERS effect on the LMnII catalyst,
while the solution redox potential Eh decreases considerably [84]. Our data showed that
the plasmonic heating was insignificant [84]. Therefore, the reversible switch off of the
catalytic process is a result of =hot electron generation by the Ag0@SiO2 PNPs, along with
near-field generation. Overall, this work revealed a novel phenomenon, where plasmonics
can act as a reversible switch for a molecular catalytic process.
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Figure 9. (a) Cyclohexene epoxidation by the [Ag0@SiO2/LMnII] system. (b) Reaction kinetics under
no/intermittent illumination. (c) EPR spectra of the LMnII catalyst and its evolution after the addition
of H2O2 in the absence or in the presence of PNPs and illumination. (d) Established catalytic cycle of
the LMnII complex. Adapted with permission from Ref. [84], 2022, ACS.

In [85], we have shown that photoexcited core–shell Ag0@SiO2 PNPs can dramatically
enhance production of H2 via a formic acid dehydrogenation (FADH) reaction, catalyzed
by the molecular catalyst [Fe(BF4)2·6H2O/P(CH2CH2PPh2)3, PP3], see Figure 10. This is
based on the catalytic activation of HCOOH by the catalyst forming a Fe-hydride transient
intermediate. An almost 10-fold increase in H2 gas production rate was achieved in the
presence of photoexcited PNPs, while the TONs were boosted by ~400% and the TOFs
by ~600% [85]. Through selective excitation at wavelengths (λex) ranging over the photo-
response profile of the Ag0@SiO2 NPs, it was demonstrated that the enhancement on
FADH is maximal at λex = 405 nm, namely the peak of the photo-plasmonic response of
the Ag0@SiO2 NPs [85]. The study of the solution redox potential (Eh) under catalytic
conditions showed that the excitation of the Ag0@SiO2 PNPs results in hot electron injection
into the reaction solution. The hot electron injection rates and the ensuing FADH rates
could be controlled by varying the SiO2-shell thickness of the Ag0@SiO2 PNPs in the range
of 3 nm to 5 nm. Thermoplasmonic effects, albeit not macroscopically observed, seem to
play a secondary role, if any [85]. This work demonstrated the possibility to approach
industrial-scale H2 production rates via FADH, using low-cost Fe-based molecular catalysts
and without any sacrificial cocatalysts.
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Figure 10. (a) Schematic illustration of the [Ag0@SiO2/(Fe/PP3)/HCOOH] catalytic system. (b) Cat-
alytic gas production kinetics in the absence (gray circles) and presence (purple triangles) of PNPs
and illumination. (c) Enhancement of H2 production is correlated to more negative solution potentials
Eh (negative ∆Eh). Both the H2 production boosting and ∆Eh are maximized at the maximum of the
plasmonic photo-response of the Ag@SiO2 nanoplasmonic particles. (d) Schematic illustration of
the involvement of hot electrons in the catalytic cycle of the [Ag0@SiO2/(Fe/PP3)/HCOOH] system.
Adapted with permission from Ref. [85], 2023, ACS.

Lu et al. have found a strong synergistic relation between gold nanoparticles and cobalt
porphyrin which induces highly efficient photocatalytic hydrogen evolution (Figure 11) [86].
This was another example where the catalytic activity of molecular catalysts near plasmonic
nanostructures may be enhanced dramatically. The authors [86] developed a photocatalytic
system for the hydrogen evolution reaction (HER) by combining a cobalt-porphyrin molec-
ular catalyst together with plasmonic gold nanoparticles. After optimization, the HER rate
and turnover frequency (TOF) reached 3.21 mol g−1 h−1 and 4650 h−1, respectively. It has
been demonstrated that the lifetime of plasmon-generated hot carriers is prolonged at the
AuNP-CoTPyP interface, and transferred to the LUMO of CoTPyP hot carriers favoring
catalytic HER. Moreover, this catalytic system could remain stable after 45 h of catalytic
cycles and being illuminated for two weeks.
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Figure 11. (a) Schematic illustration of the enhanced photocatalytic HER in AuNP@CoTPyP. (b) Pho-
tocatalytic HER curves of AuNP, CoTPyP, and AuNP@CoTPyP. (c) Photocatalytic HER cycles and the
corresponding TON of AuNP@CoTPyP. (d) Schematic illustration of the charge transfer processes in
AuNP@CoTPyP. Adopted from this work [86].

5. Conclusions—Future Directions

Plasmonic catalysis offers a powerful toolbox to utilize energetic electrons and heat
to accelerate chemical reactions by exploitation of solar light, allowing the discovery of
innovative reaction pathways. We discuss an operational classification of the fundamentals
of localized surface plasmon resonance (LSPR), and of the dominant plasmon-driven
mechanisms (such as hot electron generation, hotspots, plasmon decay routes, etc.). This
classification allows us to comprehend the inherently complex dominant mechanisms,
pertinent to the catalytic process. The concept of plasmon-promoted molecular catalysis
(PAMC), i.e., the coupling of PNPs to molecular catalysts, has a thermodynamic basis via
activation of chemical bonds and the lowering of the activation barrier.

However, despite the bold advancements in plasmonic catalysis, moving from the “op-
tical” hotspots (hot carriers, field enhancement, and energy transfer) to the “chemical” hot
spots (reactant adsorption, CID, reaction activity, and selectivity), some critical bottlenecks
need to be tackled. In particular, Cortez and co-workers [76] provided a comprehensive
summary of the present challenges in the field with the most important being: [i] the
creation of a theoretical model with a general description of all the possible plasmon mech-
anisms in photocatalysis; [ii] the complex degrees of freedom in plasmonic catalysis require
the diligent control of numerous experimental parameters such as plasmonic photocatalyst
characteristics (size, shape, composition, surface chemistry) and illumination settings (exci-
tation wavelength, absorbed optical power, reactor geometry); [iii] the development and
implementation of such robust plasmonic systems at relevant industrial levels; and, lastly,
[iv] the design of highly efficient plasmonic devices (TRL 6–7) using abundant low-cost
plasmonic materials (e.g., Al).
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