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Abstract: Equilibrium molecular dynamics simulations are performed to examine the hydration
behavior of Ca2+ and Cl− across a wide range of salt concentrations (from 1 wt.% to 60 wt.%
CaCl2) in an aqueous solution. The predicted radial distribution functions (RDFs) and coordination
numbers (CNs) of Ca2+–water, Cl−–water, and Ca2+–Cl− agree with the previous studies conducted
at concentrations below the solubility limit at room temperature. The hydration limit of aqueous
calcium chloride solution is identified at 10 wt.% CaCl2 as the CNs remain constant below it. Beyond
the bulk solubility limit ~44.7 wt.% CaCl2, a noticeable decrease in the CN of Cl− and water is
recorded, implying the saturation of the solution. The solvating water molecules decrease with
increasing salt concentration, which can be attributed to the growth in the number of ion pairs.
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1. Introduction

In aqueous electrolyte solutions, the structure and coordination of water molecules
around a solute vary with relative concentrations, contributing to differences in the ther-
modynamic properties of the solution, such as specific heat and freezing temperature.
These molecular scale effects can have a pronounced effect of the macroscopic properties.
For instance, an aqueous calcium chloride (CaCl2) solution with a solute concentration of
50.7 wt.% has a freezing point of ~29 ◦C and can release latent energy of ~170 kJ/kg upon
freezing [1]. In the solid phase, calcium chloride hexahydrate (CaCl2·6H2O) is employed as
an inorganic phase-change material (PCM). The relatively high volumetric energy storage
capacity within a narrow range of temperatures, together with an inexpensive and wide
availability of the salt, situate it as a promising candidate for low-temperature thermo-
chemical energy storage applications [2]. Additionally, Ca2+ and Cl− ions play useful
biological roles for chemical bond activation and cell osmotic pressure, respectively [3].
One of the driving mechanisms for such characteristics is the hydration behavior of the
solute resulting from ion–ion and ion–water interactions [4], which has been well studied
using various methods [5–8]. Ion–ion interactions, also known as ionic bonding, result from
the electrostatic attraction between oppositely charged ions. These interactions significantly
affect the structural characteristics of the hydration shell, altering the physical and chemical
properties of the solute in solution. On the other hand, ion–water interactions involve
the attraction between water molecules and ions, governed by electrostatic forces. These
forces orient the water molecules in the hydration shell in specific directions and influence
their mobility.

X-ray diffraction (XRD), neutron diffraction (ND) and extended X-ray absorption
fine structure (EXAFS) measurements are commonly used experimental methods to study
the hydration behavior of the aqueous electrolyte solution [9–14]. Todorova et al. [13]
summarized experimental results on the average Ca-O distance in a CaCl2 solution as
ranging from 2.39 to 2.46 Å, and the coordination number (CN) as ranging between 5.5 and
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10.0. Wang et al. [15] reported that the distance and CN of the first hydration shell of Ca2+ in
a CaCl2 solution to be 2.41–2.43 Å and 6.2–6.7 using an X-ray scattering method, respectively.
These results imply that the experimental measurements have been inconclusive.

Molecular simulations allow for the examination of aqueous salt solutions at the
nanoscale, where the physical interactions of the associated atoms can be analyzed. Smith
et al. [16] discussed in their review the recent advancements in forcefields and methodol-
ogy for calculating solubility and osmotic pressure in molecular simulations of aqueous
electrolyte solutions. Moucka and Lisal et al. [17–20] utilized a rigorous thermodynamic
method to compute the salt solubility via osmotic molecular simulations. Megyes et al. [12]
used diffraction methods and molecular dynamics (MD) simulation to study the solution
structures of 2.5 M and 4.0 M aqueous solutions of CaCl2. They found that the distance of
the first hydration shell of Ca2+ was between 2.43 and 2.46 Å, as determined using both
experimental methods and MD simulation. Biriukov et al. [10] studied a concentrated 7.3 M
CaCl2 solution based on five different forcefields [21–25], three with scaled charges and
two others based on the Ca-NDIS data. Their results showed that coordination numbers for
Ca-Cl, Ca-O, and Cl-O were within the ranges of 0.1–1.5, 4.5–7.1, and 6.3–8.8, respectively.
For self-diffusion coefficient predictions, models with scaled charges rendered a better
performance than those with absolute charges; however, the authors noted that full-charge
models are important and apt for predicting certain properties, including Gibbs free energy
of hydration and ion–water distances.

While multiple reports are available in the literature examining the salt-water coordi-
nation, both experimentally and computationally [3,12,26,27], these efforts are focused on
the dilute solution regime, providing a limited understanding of molecular interactions for
concentrated solutions that can be potentially considered for slurry-based PCMs. Herein
lies the novelty and originality of our work; we extend the focus of our investigation into
the realm of concentrated solutions. To achieve this goal, a scrutiny of the aqueous CaCl2
solution is conducted from the dilute (1 wt.%) to a beyond-saturated concentration above
the solubility (44.7 wt.%), and we identify the hydration limit using molecular dynamics
(MD) simulations. Our findings reveal a notable decrease in the number of water molecules
solvating the ions with increasing concentrations, contributing to increased ion pair forma-
tion and reduced coordination numbers between the hydration and solubility limits. This
insight on the behavior of concentrated CaCl2 solutions addresses the knowledge void in
the current literature, and provides a fundamental basis for both future theoretical research
and practical applications.

2. Simulation Methods

To investigate the hydration characteristics of Ca2+ and Cl− ions, equilibrium MD
simulations are employed with the GROMACS package [28,29], while the RasMol [30]
tool is used for the visualization and postprocessing of the recorded atomic trajectories.
An electrostatically neutral cuboidal simulation box of 6 × 6 × 6 nm3 is set up to contain
specified numbers of randomly distributed Ca2+, Cl− ions, and water molecules as a
function of the salt concentrations, as shown in Table 1. Two representative simulation
boxes at 1 and 60 wt.% CaCl2 are shown in Figure 1. The simulation domain is first
equilibrated at 298.15 K and 1 atm. pressure under the isothermal–isobaric (NPT) ensemble
for 5 nanoseconds (ns) under the V-rescale thermostat and Berendsen barostat with coupling
time constants of 2 picoseconds (ps). Next, the canonical (NVT) simulation is performed at
the same temperature for 10 ns as the production run. For concentrations of 50, 55, and
60 wt.%, an additional 25 ns is implemented to account for their extended ion-pairing
time. The temperature is restrained by the Nose–Hoover thermostat [31] with a time
constant of 2 ps to control the period of the temperature oscillations at equilibrium. All
simulations are independently repeated three times, using a timestep of 0.001 ps and the
leap-frog integrator.
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Table 1. Number of ions and water molecules present in the simulated systems at different salt
concentrations (weight %) of the solution.

CaCl2 wt.%
Molality
(mol/kg)

Number of Molecules/Ions

Water Ca2+ Cl−

1.00% 0.1 6996 11 22
5.00% 0.5 6852 59 118
10.00% 1.0 6669 120 240
15.00% 1.6 6474 185 370
20.00% 2.3 6267 254 508
25.00% 3.0 6048 327 654
30.00% 3.9 5814 405 810
35.00% 4.9 5568 487 974
40.00% 6.0 5307 574 1148
45.00% 7.4 5025 668 1336
50.00% 9.0 4728 767 1534
55.00% 11.0 4407 874 1748
60.00% 13.5 4062 989 1978
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respectively. This color scheme is consistent throughout the following figures. 

The water molecules are modeled by the flexible three-site simple point charge (SPC) 
potential [32], which has demonstrated a superior performance on the dynamical and 
dielectric properties [33] of bulk water relative to the rigid water model. The Lennard-
Jones potential parameters for the nonbonded van der Waals and Coulomb interactions 
are obtained from a GROMOS-53A6 forcefield that has successfully replicated the free 
enthalpies of solvation using the thermodynamic integration approach [34,35]. This 
combination of GROMOS-53A6 forcefield and SPC water model has been widely 
employed in the literature [4,13,36]. These parameters, together with those for the bond 
and angle interactions, are listed in Table 2. Periodic boundaries are implemented along 
all the three directions, and neighbor lists are created via the Verlet cutoff scheme [37]. 
Long-rage electrostatics are accounted for using the particle mesh Ewald [38] (PME) 
scheme. Both the Coulombic and van der Walls functions are truncated at a 1.0 nm cut-off 
distance. This approach omits any interactions between atom pairs displaced further than 
this distance, enabling an enhanced computational efficiency. Cross-interaction 
parameters between the dissimilar species are calculated using the Lorentz–Berthelot 
mixing rules [39]. The concentration at which ion pairs start to form is defined as the 

Figure 1. The initial state of the simulation box for (a) 1 wt.% CaCl2 and (b) 60 wt.% CaCl2, where
the white, red, green, and grey particles represent hydrogen, oxygen, chloride, and calcium atoms,
respectively. This color scheme is consistent throughout the following figures.

The water molecules are modeled by the flexible three-site simple point charge (SPC)
potential [32], which has demonstrated a superior performance on the dynamical and
dielectric properties [33] of bulk water relative to the rigid water model. The Lennard-Jones
potential parameters for the nonbonded van der Waals and Coulomb interactions are ob-
tained from a GROMOS-53A6 forcefield that has successfully replicated the free enthalpies
of solvation using the thermodynamic integration approach [34,35]. This combination of
GROMOS-53A6 forcefield and SPC water model has been widely employed in the litera-
ture [4,13,36]. These parameters, together with those for the bond and angle interactions,
are listed in Table 2. Periodic boundaries are implemented along all the three directions,
and neighbor lists are created via the Verlet cutoff scheme [37]. Long-rage electrostatics are
accounted for using the particle mesh Ewald [38] (PME) scheme. Both the Coulombic and
van der Walls functions are truncated at a 1.0 nm cut-off distance. This approach omits any
interactions between atom pairs displaced further than this distance, enabling an enhanced
computational efficiency. Cross-interaction parameters between the dissimilar species are
calculated using the Lorentz–Berthelot mixing rules [39]. The concentration at which ion
pairs start to form is defined as the hydration limit, while the solubility limit is attained at a
concentration when only ion pairs exist in the solution.
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Table 2. The non-bonded (Lennard-Jones and Coulomb) and bonded (bonds, angles) interaction
parameters for Ca2+, Cl−, and parameters for water modeled using the SPC potential [34].

Sites σ (nm) ε (kJ/mol) q (e)

Ca 0.2813 0.5069 2.000
Cl 0.4448 0.4571 −1.000
Ow 0.3166 0.6502 −0.820
H 0.0000 0.0000 0.410

Bond types Interaction function r0 (nm) kb (kJ·mol−1·nm−4)

Ow-H 1
2 kb(r− r0)

2 0.1 2.32 × 107

Angle types Interaction function θ0 degrees kθ kJ mol−1 rad−2

H-Ow-H 1
2 kθ(θ − θ0)

2 109.5 434

3. Results and Discussion

We examine the coordination behavior for the hydrated ions in the salt solutions with
concentrations ranging from 1 to 60 wt.% of CaCl2. Figure 2 illustrates the variations
in the radial distribution functions (RDFs), g(r), for Ca2+–water and the corresponding
coordination numbers (CNs) of water molecules surrounding a Ca2+ ion in the aqueous
solution. We note that the RDF and CN are calculated based on the oxygen (OW) of the
water molecule. The RDF [28] is computed as gAB(r) =

<ρB(r)>
<ρB>local

, where the < > represents
the average, and < ρB(r) > is the mean particle density of atom B at a radial distance r
from atom A, while < ρB >local is the same physical quantity but considered over all such
spheres around A, with a maximum extent being half of the simulation domain dimension.
The CN indicates the number of water molecules present in each neighboring spherical
shell, and obtained through the integration of the RDF [28], i.e., CN(r) = 4πρ

∫ r
0 g(r)r2dr.
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Figure 2. (a) The radial distribution function (RDF) presented as continuous lines, and the corre-
sponding coordination number (CN), shown with dashed lines, for Ca2+ and water at different salt
concentrations. Representative orientations for the water molecules around a Ca2+ ion for (b) 10 wt.%,
(c) 20 wt.%, (d) 40 wt.%, and (e) 60 wt.% CaCl2 concentrated solutions are illustrated, with distances
in nm (nanometer). The blue arrow labels the typical distance between a water molecule and a Ca2+

ion corresponding to the peak RDF in (a) denoting the first shell.

The first hydration shell around a Ca+ ion is recorded at a distance of 0.23 nm, as
noted by the RDF peak in Figure 2a. The radius of the first shell of water molecules
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surrounding Ca2+ is also illustrated in Figure 2b,e. Beyond the first shell, gCaOw (r) becomes
zero from 0.30 to 0.38 nm due to absence of water molecules and subsequently gCaOw (r)
increases at about 0.47 nm, indicating the occurrence of a second hydration shell across
the range of concentrations for the solution, from dilute to concentrated. Due to their
negative partial charges, the oxygen atoms in the water molecules are attracted to the Ca2+

ions. Consequently, the hydrogen atoms being on the outer surface of the hydration shell
creates an effective positive charge around the shell. This positive-charge surface of the
first shell only weakly attracts other water molecules, forming a second hydration shell
corresponding to the second smaller peak in Figure 2a. The occurrence of the rather weak
second hydration shell around Ca2+ ions is also noted from the coordination number curve
whose slope changes at 0.47 nm, which is the location of the second peak.

With increasing salt concentration, the intensity of the first peak drops due to the
changes in the cation hydration structure. The coordination number CNCaOw decreases
from 8 at dilute CaCl2 solutions to ~3 for the 60 wt.% CaCl2 solution. Figure 2b,e presents
the first hydration shell around Ca2+ for several selected solutions. For the 10 wt.% and
20 wt.% CaCl2 solutions, there are eight water molecules surrounding the Ca2+ ion, creating
the first hydration shell. However, with increasing CaCl2 concentrations, fewer water
molecules are able to surround the salt cations to construct the hydration shell. As shown
in Figure 2d,e, the first hydration shell contains only six and three water molecules for
the 40 wt.% and 60 wt.% CaCl2 solution because the Cl− ions present in the concentrated
solutions replace the water molecules to form ion pairs with Ca2+.

The ion pairs are illustrated in Figure 3. In Figure 3a, the gCaCl(r) profile suggests
that for dilute CaCl2 solutions below the hydration limit (~10 wt.% CaCl2), only a sparse
number of Cl− ions are present around Ca2+ ions until about 0.51 nm. This long distance
implies that no ion pair exists in the dilute salt solutions. For the CaCl2 concentrations
above the hydration limit, the first, as well as the highest, peak occurs at 0.276 nm and the
corresponding coordination number CNCaCl ranges from 0 to 3 across the concentration
regime. Similar to the hydration shell of the Ca2+ ions, the gCaCl(r) then decreases to and
persists at 0 for a short distance from 0.330 to 0.410 nm. Subsequently, a weaker peak is
realized at 0.512 nm, which gradually decreases with increasing concentrations. Figure 3b,e
representatively describes the locations of the five nearest Cl− ions to the Ca2+ ion. In
Figure 3b,c, for the salt solutions with 10 wt.% and 20 wt.% CaCl2, no Cl− is located around
the Ca2+ until about 0.50 nm. However, as shown in Figure 3d,e, when the concentration
of CaCl2 reaches 40 wt.% and above, the Cl− ions are attracted to neighboring Ca2+, thus
forming the ion pairs. Therefore, the number of water molecules in the hydration shell of
Ca2+ ions decreases (Figure 3a) because the ion pairs replace the water molecules in the
hydration shell. With a higher CaCl2 concentration, more ion pairs are formed; there are
two Cl− ions around the Ca2+ within 0.300 nm in the 40 wt.% CaCl2 solution, but three in
the 60 wt.% CaCl2 solution.

For an exhaustive scrutiny of the solvation characteristics in CaCl2 solutions, the
hydration structure of Cl− ions is also studied. Figure 4a shows the RDF and CN profile
for Cl− ions and water at different concentrations. The first peaks of gCLOW(r) for all
concentrations are at around 0.318 nm. For the concentrated solution, including the 40, 50,
and 60 wt.% CaCl2 solutions, an additional weaker peak is identified at 0.514 nm. However,
the absence of a plateau between the two peaks in the CN profile indicates that water
molecules are always present in the vicinity of Cl− ions even when ion pairs are dominant
in the solution. Figure 4b,e presents the hydration shell of Cl− ion in CaCl2 solution with
different concentrations. Since Cl− is negatively charged, the hydrogens of water molecules
with the positive partial charges align towards the Cl− ion. All the Cl− hydration shells
comprise a similar number of water molecules, as explained below.
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Figure 3. (a) The radial distribution function (RDF) presented as continuous lines, and the corre-
sponding coordination number (CN), shown with dashed lines, for Ca2+ and Cl− at different salt
concentrations. Representative orientations for the Cl− ions around a Ca2+ ion for (b) 10 wt.%,
(c) 20 wt.%, (d) 40 wt.%, and (e) 60 wt.% CaCl2 concentrated solutions are illustrated, with distances
in nm (nanometers). The orange arrow labels the typical distance between a Cl− ion and a Ca2+ ion
corresponding to the peak RDF in (a) denoting the first shell.

In addition, the RDF and CN profiles for Ca2+, Cl− ions and water molecules are
shown in Figure 5. The first and second RDF peaks resemble the first dominant RDF peak
of Ca2+–water and Cl−–water, respectively, but do not replicate the similar intensities. The
coordination number corresponding to these two peaks is smaller than the summation of
the first coordination number of in Ca2+–water and Cl−–water, which further corroborates
that Cl− indeed shares the water molecules from the hydration shell of Ca2+.

Figure 6 presents the variation in the CN for different pairs of species across the
range of the simulated salt concentrations. As expected, all CNs remain constant until
the hydration limit of the solution at room temperature is attained around 10 wt.% CaCl2.
Beyond this salt concentration, as the solution gradually proceeds towards saturation,
the CNCaO gradually decreases as an increasing number of ion pairs form, which is also
reflected from the CNCaCl that increases (from being nearly zero) beyond the hydration
limit. Nevertheless, with increasing CaCl2 concentrations, unlike the CNCaO, the CNClO
counterintuitively increases past the hydration limit, suggesting that the number of water
molecules also increases in the hydration shell of the Cl− ions. This increase can be
attributed to the increasing number of ion pairs. As Ca2+ ions are increasingly surrounded
by Cl− ions, the water molecules in the hydration shell of the ion-paired Ca2+ are also
counted in the hydration shell of the Cl− ions. Thus, the first peaks of gClO(r) become
wider in concentrated solutions, as shown in Figure 4a. The values and trends of the CN
profile are in agreement with those found in previous studies [40] for the salt concentration
below the solubility limit. However, for CaCl2 fractions above the solubility, CNClO ceases
to rise and starts to decrease. The inflection point of increasing CNClO can be regarded
as a signature of the CaCl2 solution attaining the solubility limit. As the CaCl2 solution
approaches saturation, the water molecules solvating the Ca2+ fail to compensate for the
loss of the water molecules from the hydration shell of Cl− ion, thus leading to the decrease
in CNClO.
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Figure 7 presents the variations of the self-diffusion coefficients of the ions and the wa-
ter molecules in the solution for different salt concentrations. The predictions from the MD
simulations are calculated using the Einstein relation lim

t→∞

〈
‖ri(t)− ri(0)‖2

〉
i∈A

= 6DAt,

where t, r, and DA, represent time, atom position, and the self-diffusion coefficient [41].
These simulation outcomes are in agreement with the previously published experimen-
tal data at dilute concentrations [42]. As the concentration increases, the ion pairs form,
impeding the diffusion, and corroborating the solubility behavior [10,43]. The molality
above which the ions become significantly sluggish and precipitate corresponds to the
findings in Figure 6 from the variations of the CN with increasing salt concentrations,
thereby validating our prediction of the solubility limit.

We additionally perform Luzar–Chandler analyses on the solvent–solute system to
understand the binding/unbinding times between the ions and the water molecules, and
how that reflects on the structure of the solution. Figure 8a describes the variation in
function c(t) with the simulation times across all salt concentrations considered. c(t) is
representative of the probability of the bonds, predominantly hydrogen bonds, remaining
intact with time. It is defined as 〈h(0)h(t)〉/〈h〉 [44], where h(t) = 1 if a specific pair
of water molecules is hydrogen bonded at time t, and h(t) = 0 otherwise. 〈h(0)h(t)〉
provides the average likelihood, over all pairs of molecules, that a pair initially bonded
at time zero remains bonded at time t, while 〈h〉 denotes the average probability that
any pair of molecules is hydrogen bonded at a given time. We note that with increasing
concentration, the bonds tend to persist over a longer duration of the simulation. The
positively charged hydrogen of water molecules is attracted to the negatively charged
Cl− ions by hydrogen bonding, while the oxygen is attracted to the positively charged
Ca2+ ions. It takes a relatively longer time to break the ion pair interactions to enable
the dissolution of the salt. The solution reaches a point of complete dissolution as the
probability tends to zero. Nonetheless, at higher concentrations, since ion pair formation
dominates in lieu of hydration shells, the ion pairs in equilibrium further form hydrogen
bonds with surrounding water molecules, denoted by the variation in c(t) for extreme
concentrations. Likewise, in Figure 8b, the temporal evolution of the function k(t), defined
as −dc(t)/dt [44], reproduces the rate of relaxation towards attaining equilibrium. We find



Physchem 2023, 3 327

that the rate of change in hydrogen bond population for bonds that have been disrupted
ceases monotonically to zero after 80–100 ps, suggesting that the simulation times of 10 ns
employed are sufficient to sample the dynamics of the solution at equilibrium.
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corresponding variations in the mean square displacement (MSD) for CaCl2 with simulation time
for selected salt concentrations (c) Self−diffusion coefficients for Ca2+, Cl−, and water with changes
in salt concentration. Above the solubility limit, ~7 M, the diffusion of ions and water molecules is
significantly reduced, leading to the diffusion coefficient approaching near-zero values.

The Kirkwood–Buff integrals (KBIs) for the ion–ion and ion–water interactions derived
from the spatial integral over the corresponding radial distribution functions are presented
in Figure 9. These are calculated as Gij =

∫ [
rd f ij(R)− 1

]
dR, where Gij is the KBI for a

pair of components i and j, which could be ions or water molecules, and rd f ij is the RDF
between particles i and j at a distance R. The RDF is subtracted by 1 to remove the ideal gas
contribution, as the KBI is intended to describe deviations from the ideal gas behavior. At
low concentrations (1–10%), due to the complete dissolution of the salt, and, consequently,
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the absence of ion pairs in the dilute solution, KBIs for the ion–ion interactions do not
converge; however, we note that for increasing concentrations, the KBIs (Figure 9a) attain a
plateau around 1.5 nm, indicating the mean size of the structural configurations of the ion
pairs attained in concentrated solutions. Conversely, the KBIs for ion–water interactions
presented in Figure 9b,d exhibit a reciprocal behavior; at low concentrations, the presence
of hydration shells creates defined structural configurations that converge around 1.5 nm,
while at higher concentrations (>40%), the formation of ion pairs disrupts the hydration
shells and diverges from the aforementioned structural order.
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and water indicate the relative effects of salt concentration on the structural configuration formed by
the ion pairs in (a) and the hydration shells in (b,c).

4. Conclusions

Our study, based on molecular dynamics simulations, provides a comprehensive
examination of the solvation characteristics of CaCl2 across a broad spectrum of concentra-
tions. A hydration limit is observed at a solution concentration of 10 wt.% CaCl2. Below
this threshold, the coordination numbers for Ca2+–water, Ca2+-Cl−, and Cl−–water remain
constant. When this hydration limit is surpassed, the formation of ion pairs instigates
divergent trends within the coordination number profiles. Notably, the quantity of water
molecules solvating Ca2+ reduces as the concentrations rise, a phenomenon attributable
to the increase in ion pair formation. This is further mirrored in the coordination number
profile of Ca2+-Cl−, which continues to augment beyond the hydration limit.

With regard to Cl−, its coordination number experiences an increase between the
hydration and solubility limits, followed by a subsequent decrease beyond the latter. This
coordination number transition point of Cl− can be perceived as a predictor of the solubility
limit. Beyond this point, ion pair formation intensifies, which consequently reduces the
amount of solvating water molecules available for both Ca2+ and Cl−.

Our findings provide a deeper insight into the solvation behavior of CaCl2 and the
impact of ion pair formation on the solvation dynamics for concentrated salt solutions.
These outcomes can contribute to the understanding and prediction of solubility limits in
aqueous media containing inorganic salts.
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