Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Physchem, Volume 3, Issue 4 (December 2023) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 934 KiB  
Article
Simulations of Lattice Vibrations in a One-Dimensional Triatomic Network
by Romualdo Alejandro Ferreyra and Alfredo Juan
Physchem 2023, 3(4), 440-450; https://doi.org/10.3390/physchem3040028 - 5 Dec 2023
Viewed by 1461
Abstract
Using equivalent electrical circuits (EEC) is not common practice in several areas of physical chemistry. The phonon concept is used in solid-state works but much less frequently in branches of chemistry. Lattice vibration phenomena present a high complexity when solving equations in real [...] Read more.
Using equivalent electrical circuits (EEC) is not common practice in several areas of physical chemistry. The phonon concept is used in solid-state works but much less frequently in branches of chemistry. Lattice vibration phenomena present a high complexity when solving equations in real systems. We present here a methodology that crosses disciplines and uses EEC that can be analyzed and solved using freely downloaded computer codes. To test our idea, we started with a one-dimensional lattice dynamics problem with two and three masses. The initial mechanical model is numerically solved, and then an equivalent circuit is solved in the framework of electrical network theory through the formalism of transfer function. Our lattice model is also solved using circuit analysis software. We found the dispersion relationship and the band gaps between acoustical and optical branches. The direct solution of a mechanical model gives the correct answers, however, the electrical analogue could give only a partial solution because the software was not designed to be converted into an analogue simulator. Due to the finite size of the circuit elements, the number of computed frequencies is less than those expected for two unit cells and right for eight. On the other hand, by using a huge number of electrical components, the network behaves like a low-pass filter, filtering higher frequencies. Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
Show Figures

Figure 1

29 pages, 6813 KiB  
Article
Irradiation of ZnPPIX Complexed with Bovine β-Lactoglobulin Causes Chemical Modifications and Conformational Changes of the Protein
by Abdullah Albalawi, Omar Castillo, Michael L. Denton, John Michael Rickman, Gary D. Noojin and Lorenzo Brancaleon
Physchem 2023, 3(4), 411-439; https://doi.org/10.3390/physchem3040027 - 29 Nov 2023
Viewed by 741
Abstract
Photosensitization of proteins mediated by chromophores is a mechanism commonly employed by nature and mimicked in a broad array of laboratory research and applications. Nature has evolved specialized complexes of proteins and photosensitizers (PS) that assemble to form photoreceptor proteins (PRP). These are [...] Read more.
Photosensitization of proteins mediated by chromophores is a mechanism commonly employed by nature and mimicked in a broad array of laboratory research and applications. Nature has evolved specialized complexes of proteins and photosensitizers (PS) that assemble to form photoreceptor proteins (PRP). These are used by many organisms in diverse processes, such as energy conversion, protection against photodamage, etc. The same concept has been used in laboratory settings for many applications, such as the stimulation of neurons or the selective depletion of proteins in a signaling pathway. A key issue in laboratory settings has been the relationship between the photooxidation of proteins and conformational changes in host proteins. For several years, we have been interested in creating non-native PRP using porphyrin PS. In this study, we investigated the self-assembled complex between zinc protoporphyrin IX (ZnPPIX) and bovine β-lactoglobulin (BLG) as a model of non-native PRP. Since BLG undergoes a significant conformational transition near physiological pH, the study was carried out at acidic (pH 5) and alkaline (pH 9) conditions where the two conformations are respectively prevalent. We employed a series of steady-state and time-resolved optical spectroscopies as well as gel electrophoresis to experimentally characterize the photosensitization mechanisms and their effect on the host protein. Our results show that ZnPPIX prompts light-dependent modifications of BLG, which appear to be much more significant at alkaline pH. The modifications seem to be driven by photooxidation of amino acid residues that do not lead to the formation of cross-links or protein fragmentation. Full article
(This article belongs to the Section Photophysics, Photochemistry and Photobiology)
Show Figures

Figure 1

26 pages, 4640 KiB  
Review
Kinetics and Timescales in Bio–Nano Interactions
by André F. Lima and Alioscka A. Sousa
Physchem 2023, 3(4), 385-410; https://doi.org/10.3390/physchem3040026 - 28 Oct 2023
Viewed by 1215
Abstract
Engineered nanoparticles (NPs) have the potential to revolutionize disease diagnostics and treatment. However, NP interactions with proteins in biological fluids complicate their in vivo control. These interactions often lead to the formation of protein coronas around the NP surface, shaping NP fate and [...] Read more.
Engineered nanoparticles (NPs) have the potential to revolutionize disease diagnostics and treatment. However, NP interactions with proteins in biological fluids complicate their in vivo control. These interactions often lead to the formation of protein coronas around the NP surface, shaping NP fate and behavior within biological systems. To harness the full potential of NPs in biomedical applications, it is therefore essential to gain a comprehensive understanding of their interactions with proteins. Within this context, it must be recognized that traditional equilibrium-based descriptions of NP–protein interactions, which encompass parameters like equilibrium binding affinity and corona composition, do not provide sufficient detail to predict NP behavior in vivo. This limitation arises because the open in vivo system is a nonequilibrium state characterized by constantly changing concentrations and dynamic regulation of biological processes. In light of these considerations, this review explores the kinetics and timescales of NP–protein interactions, discussing their relevance, fundamental concepts, measurement techniques, typical ranges of association and dissociation rate constants, and dynamics of protein corona formation and dissociation. The review concludes by outlining potential areas for further research and development in this field. Full article
(This article belongs to the Section Biophysical Chemistry)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop