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Abstract: The design of biosourced and/or bioinspired photoinitiators is an active research field as it
offers a unique opportunity to develop photoinitiating systems exhibiting better biocompatibility as
well as reduced toxicity. In this field, flavonoids can be found in numerous fruits and vegetables so
these structures can be of interest for developing, in the future, polymerization processes, offering a
reduced environmental impact but also better biocompatibility of the polymers. In this review, the
different flavonoids reported to date as photoinitiators of polymerization are presented. Over the
years, different modifications of the flavonoid scaffold have been examined including the grafting of
well-known chromophores, the preparation of Type II photoinitiators or the introduction of photo-
cleavable groups enabling the generation of Type I photoinitiators. Different families of flavonoids
have also been investigated, enabling to design of high-performance photoinitiating systems.
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1. Introduction

Photopolymerization is an active research field. Nowadays, tremendous efforts are
devoted to developing highly efficient photoinitiating systems activable under visible light.
Indeed, photopolymerization is used in a wide range of applications of photopolymeriza-
tion from coatings and varnishes, adhesives, solvent-free paints and dental restoration ma-
terials to 3D/4D printing and microelectronics [1–15]. If the reactivity of photoinitiators
remains the main parameter governing the design of new structures, their toxicities and
biocompatibilities are more and more regarded [16–19]. Indeed, for applications such as
food packaging and different bioapplications, the toxicity of the final polymers and more
generally the final composites (obtained by the introduction of fillers in polymers) is of
crucial importance. Therefore, a good balance between toxicity and reactivity has to be
found [16,20–26]. For decades, a great deal of effort has been devoted to developing greener
photopolymerization processes, consisting in the use of biosourced photoinitiators and/or
biosourced monomers [27–29], the use of sunlight instead of artificial light to initiate the
polymerization [30–35] or the development of water-soluble photoinitiating systems en-
abling to avoid the use of organic solvents [36–39]. In order to identify the appropriate
scaffold for designing high-performance visible light photoinitiators, a wide range of struc-
tures have been screened over the years, as exemplified with diketopyrrolopyrroles [40],
bodipy [41–46], perylenes [47], dithienophosphole derivatives [48], thiophenes [49], cyclo-
hexanones [50–52], quinoxalines [53–66], glyoxylates [67], cyanines [68], benzylidene ke-
tones [69–73], phenothiazines [74], iodonium salts [75–81], naphthalimides [82–85], tripheny-
lamines [86–88], photochroms [89], pyridinium salts [90], helicenes [91], silane, germane and
stannane [92,93], push–pull dyes [32,33,94,95], acridine-1,8-diones [96], zinc complexes [97],
biosourced photoinitiators [98], copper complexes [99–103], iron complexes [104,105], thioxan-
thones [37,41,106–118], furan derivatives [119], camphorquinone [120,121], anthracenes [122],
benzophenones [123,124], chalcones [125–131], terphenyls [132], phenacyl bromide [133],
NIR dyes [134], pyrenes [135–137], carbazoles [138–142], coumarins [143–146], gold com-
plexes [147] and iridium complexes [148]. Natural compounds were also examined as pho-
toinitiators of polymerization such as curcumin [149–152], different anthraquinones [153–155]

Photochem 2023, 3, 495–529. https://doi.org/10.3390/photochem3040030 https://www.mdpi.com/journal/photochem

https://doi.org/10.3390/photochem3040030
https://doi.org/10.3390/photochem3040030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photochem
https://www.mdpi.com
https://orcid.org/0000-0003-4872-094X
https://doi.org/10.3390/photochem3040030
https://www.mdpi.com/journal/photochem
https://www.mdpi.com/article/10.3390/photochem3040030?type=check_update&version=1


Photochem 2023, 3 496

or naphthoquinones [156]. Flavonoids that can be found in numerous fruits and vegeta-
bles [157–165], but also in plant products such as chocolate, tea and wine, were identified as
promising candidates for the design of visible light photoinitiators. Flavonoids are a family of
compounds including more than six thousand low-molecular-weight phenolic compounds
derived from flavan [166].

Flavonoids are composed of nine main subgroups including flavones, flavonols, fla-
vanols, flavononols, flavonones, isoflavones, anthocyanines, neoflavonoids and chalcones
(see Figure 1). Plants clearly constitute an inexhaustible source of flavonoids on earth.
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Figure 1. The different subgroups of flavonoids.

Flavonoids are extensively used in the biomedical field, due to their anti-oxidative,
anti-inflammatory, anti-mutagenic, anti-carcinogenic and anti-diabetic properties [167–169].
Flavonoids are important therapeutic agents used in a variety of heath disorders including
hypoglycemia, cancer, chronic inflammation or cardiovascular complications [170,171].
These natural dyes are also used in food and cosmetic industries since these structures
can be used as pigments and biopreservatives [172]. Among flavonoids, chalcones have
been extensively studied as visible light photoinitiators of polymerization due to their
easiness of synthesis, low cost and chemical stability [173,174]. The other subgroups of
flavonoids have been less studied, attributable to more difficult synthetic routes and the
low availability of these structures in nature, inducing high costs for the commercially
available flavonoids and thus drastically limiting their potential use as photoinitiators
for the industrial production of polymers. In addition, numerous structures have been
identified as interesting scaffolds for the design of Type I and Type II photoinitiators.
Indeed, photoinitiators can be divided into two main groups, namely Type I photoinitiators,
which are monocomponent systems and can generate radicals by homolytic cleavage of
a specific bond [175–177], and parallel to this, Type II photoinitiators, which can only
generate initiating species by means of a multi-step reaction mechanism when combined
to a hydrogen donor or an electron acceptor/donor. The first flavonoids to be studied as
visible light photoinitiators were flavonols which could efficiently promote the cationic
polymerization (CP) of epoxides upon irradiation with a laser diode emitting at 457 nm but
also in soft irradiation conditions with an LED emitting at 462 nm [178]. Following this
work, various flavonoids were studied, paving the way toward biosourced or bioinspired
photoinitiators. In this review, an overview of the different flavonoids examined as visible
light photoinitiators of polymerization is given.

2. Flavonoids as Visible Light Photoinitiators
2.1. Flavonols

Flavonols have been extensively studied in health sciences, due to their low toxicities
but also due to their antioxidant and anticancer activities [179–187]. Flavonols also possess
excellent optical properties [188–192]. Due to the presence of the hydroxy group close to the
ketone group, these dyes also exhibit excited state intramolecular proton transfer (ESIPT)
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properties, enabling these dyes to have large Stokes shifts and a dual emission associated with
the formation of two excited states, the first one corresponding to the Franck–Condon excited
state and the second one attributed to the tautomeric form issued from ESIPT [193–205].
Despite these appealing features, several drawbacks can be cited, especially regarding the
stability of flavonols under light irradiation. In addition to the aforementioned intramolecular
proton transfer [193–196,206–211], photooxidation [212–214], reverse proton transfer [215]
or photorearrangement reaction [216,217] can be cited as the main photoinduced chemical
reactions. Despite this attested instability under irradiation, flavonols were used in photopoly-
merization. Notably, the remarkable fluorescence of a flavonol derivative was used for the
real-time monitoring of the FRP of an acrylate-based E-Shell 300 biocompatible polymer by
using the flavanol derivative as a fluorescent probe. However, this flavonol derivative was
not used as a photoinitiator/photosensitizer but only as a probe [205].

The first report mentioning the use of flavonoids as photoinitiators of polymerization
was reported in 2013 by Lalevée and coworkers [178]. In order to provide sufficient
absorption in the visible range, different chromophores were connected to the flavonol
scaffold, namely pyrene, anthracene or a para-dimethylaminophenyl group (see Figure 2).
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From the absorption viewpoint, modification of the side groups strongly impacted
the absorption properties of the dyes. All dyes exhibited an absorption maximum located
in the near-UV-visible range, except for CH_4 for which an absorption maximum located
at 431 nm was determined in acetone. In the case of CH_1-CH_3 and CH_5, maxima lo-
cated at 394, 377, 325 and 385 nm were respectively measured in acetonitrile. Noticeably,
alkylation of the phenolic group in CH_1 blueshifted the absorption of CH_2 by ca. 17 nm,
from 394 nm for CH_1 up to 377 nm for CH_2. Improvement in the electron-donating
ability of the side group contributed to the redshift of the absorption, as exemplified
with CH_2 exhibiting an absorption redshifted by ca. 50 nm compared to CH_3 bearing
a weak electron donor (See Figure 3). Considering that the absorption of all dyes extends
until the visible range, these dyes were thus appropriate candidates for polymerization
experiments performed at 457 nm with a laser diode (I = 100 mW/cm2), at 462 nm with
an LED (I = 15 mW/cm2) and upon irradiation with a halogen lamp (370–800 nm range,
I = 12 mW/cm2). Two different mechanisms were investigated, an oxidative and a reduc-
tive pathway. Among the two possible mechanisms, the oxidative pathway proved to be
the most reactive one. By using the three-component dye/Iod/NVK systems (where Iod
and NVK respectively stand for [methyl-4-phenyl-(methyl-1-ethyl)-4-phenyl]iodonium
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tetrakis(pentafluorophenyl)borate and N-vinylcarbazole), the phenyl radicals formed by
photoinduced electron transfer from the excited dye toward the electron-deficient iodo-
nium salt can further react with NVK, producing Ph-NVK•. These radicals can also react
with Iod, generating Ph-NVK+ [97,218,219]. Therefore, this mechanism can contribute to
promoting both the free radical polymerization (FRP) of acrylates and the free-radical-
promoted cationic polymerization (FRPCP) of epoxides (see Equations (r1)–(r3)). By
UV-visible absorption spectroscopy, the formation of CH_1•+ could be detected at ca.
500 nm, supporting the oxidation step. The formation of CH_1•+ and Ph• was also
evidenced by electron spin resonance (ESR).
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Figure 3. UV-visible absorption spectra of CH_1–CH_5 in acetonitrile, except CH_4 in acetone.
Reproduced with permission from Ref. [178]. Copyright 2013, Royal Society of Chemistry.

CH→ 1CH (hν)

1CH + Ph2I+ → CH •+ + Ph2I• and Ph2I• → Ph• + Ph-I (r1)

Ph• + NVK→ Ph-NVK• (r2)

Ph-NVK• + Ph2I+ → Ph-NVK+ + Ph-I + Ph• (r3)

In the case of the three-component dye/MDEA/R-Br system (where MDEA and R-
Br stand for N-methyldiethanolamine and phenacyl bromide), the formation of phenacyl
radicals could be identified as the unique radicals formed with this three-component system
during the ESR experiments (see Equations (r4) and (r5)).

1CH + MDEA→ CH •− + MDEA•+ (r4)

CH•− + R-Br→ CH + R• + Br− (r5)

Examination of the photoinitiating abilities of CH_1–CH_5 during the CP of (3,4-
epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate (EPOX) upon irradiation with
a halogen lamp revealed CH_1 to outperform the other dyes. Thus, a conversion of 60%
after 800 s of irradiation was determined, contrarily to 30–40% for CH_2-CH_5 in the
same conditions (see Figure 4). Using CH_1 as the chromophore, a slightly higher EPOX
conversion was determined at 457 nm (65% conversion vs. 60% with the halogen lamp).
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Figure 4. Photopolymerization profiles of EPOX under air upon irradiation with a halogen lamp
using the three-component dye/NVK/Iod (0.5%/3%/3% w/w) system with (1) CH_1; (2) CH_4; (3)
CH_3; (4) CH_2; (5) CH_5. Reproduced with permission from Ref. [178]. Copyright 2013, Royal
Society of Chemistry.

Comparison with the reference three-component phenylbis(2,4,6-trimethylbenzoyl)
phosphine oxide (BAPO)/Iod/NVK system revealed CH_1 to furnish similar monomer
conversions to BAPO in three-component systems. While examining the FRP of trimethy-
lolpropane triacrylate (TMPTA) using the reductive pathway, only CH_1 and CH_2 could
furnish acceptable monomer conversions (see Figure 5). If no monomer conversion could be
detected with the two-component CH_1 or CH_2/MDEA systems, a conversion of ca. 40
and 35% could be obtained after 300 s of irradiation with a halogen lamp using the three-
component CH_1/MDEA/R-Br (0.5%/4%/3% w/w) and CH_2/MDEA/R-Br (0.5%/4%/3%
w/w) systems. This conversion could be significantly increased by using a laser diode emit-
ting at 457 nm. In these conditions, a conversion of 60% could be determined using the
three-component CH_1/MDEA/R-Br (0.5%/4%/3% w/w) system. Comparison with the
reference two-component Eosin-Y/MDEA (0.1%/3% w/w) system (30% conversion after
300 s) revealed the two three-component systems based on CH_1 and CH_2 to outperform
the reference system. Considering that cations and radicals are both formed with the three-
component CH_1/Iod/NVK system, the elaboration of interpenetrated polymer networks by
the concomitant polymerization of TMPTA and EPOX was examined under air. After 1000 s
of irradiation at 457 nm with a laser diode, photopolymerization of a TMPTA/EPOX blend
(50%/50%) under air furnished tack-free polymers. Using low light intensities (LED@462 nm
and a halogen lamp), 30 min. was required to get tack-free coatings.
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Figure 5. Photopolymerization profiles of TMPTA in laminated conditions upon exposure to (1) a
halogen lamp or laser diode (457 nm) in the presence of CH_1/MDEA (0.5%/4% w/w); (2) a halogen
lamp in the presence of CH_1/MDEA/R-Br (0.5%/4%/3% w/w); (3) the laser diode in the presence
of CH_1/MDEA/R-Br (0.5%/4%/3% w/w); (4) a halogen lamp in the presence of CH_2/MDEA/R-
Br (0.5%/4%/3% w/w); (5) a halogen lamp in the presence of Eosin-Y/MDEA (0.1%/3% w/w).
Reproduced with permission from Ref. [178]. Copyright 2013 Royal Society of Chemistry.
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In 2016, the first natural flavonoid dye, namely quercetin (3,5,7,3′,4′-pentahydroxyflavone),
was examined by Versace and coworkers both as a photosensitizer and an antibacterial agent
for the design of antibacterial coatings (see Figure 6) [220]. Indeed, an efficient strategy to
cause the apoptosis of bacteria consists in producing reactive oxygen species (ROS) that will
be capable of degrading cells [221–224]. Among ROS, singlet oxygen constitutes the best
approach to prevent microorganism adhesion and proliferation on any surface. Prior to this
work, several photoinitiators of polymerization have been identified as providing antimicro-
bial properties to coatings such as hydroxyethyl Michler’s ketone [225], rose Bengal [226,227],
porphyrins and phthalocyanines [228,229], eosin Y [226,230], toluidine blue [231] or methylene
blue [231–233]. If these synthetic dyes showed interesting properties, a step further consists
in using natural dyes to act as antibacterial agents, which constitutes a major environmental
challenge. Quercetin was selected as the dye in this study as this flavonoid is among the most
abundant ones in nature [234–239]. It can notably be found in numerous fruits and vegetables
(onion, lemon, apple, grape, tomato, etc.), different beverages such as tea and red wine and
even olive oil [240–242].
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Figure 6. Chemical structures of quercetin, Iod1 and the biosourced monomer GTE.

Quercetin also exhibits antiviral, anti-inflammatory, anti-allergic and antioxidant activ-
ities, and this natural compound is also beneficial to limit cancer risks and cardiovascular
problems [243–245]. Considering that quercetin is responsible for the green color of oak
leaves, an absorption extending up to 430 nm was determined in acetonitrile, with an
absorption maximum at 370 nm (ε = 19,000 M−1·cm−1). An emission peak was also de-
termined at 535 nm so that a Stokes shift of 8350 cm−1 could be calculated (see Figure 7).
This large Stoke shift is indicative of a significant electronic change between the ground
state and the excited state. Photolysis experiments performed with the two-component
quercetin/Iod1 system revealed the photogeneration of Bronsted acid (H+) using rho-
damine B as an acid indicator. Quercetin was thus identified as a promising candidate
for CP.
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Using glycerol triglycidyl ether (GTE) as the monomer and upon irradiation with a
Xe lamp (I = 70 mW/cm2), a GTE conversion of 75% could be determined after 1200 s
of irradiation using the two-component quercetin/Iod1 (2.5%/4% w/w) system (where
Iod1 stands for 4-(2-methylpropyl)phenyl iodonium hexafluorophosphate). Interestingly,
the quercetin-based coatings exhibited remarkable thermal stability since a decomposition
temperature higher than 375 ◦C could be determined by thermogravimetric analysis (TGA).
Examination of the fluorescence of the polymer films revealed the presence of remaining
quercetin that could be advantageously used to generate reactive oxygen species upon
light activation. Antibacterial properties were examined with Gram-negative bacteria
(E. coli) and Gram-positive bacteria (S. aureus). Noticeably, quercetin-based coatings only
exhibited antiproliferation properties for Gram-positive bacteria. In the case of E. coli, the
development of bacteria was neither inhibited by light nor affected by the presence of
quercetin within the polymer film. On the contrary, a total death of Gram-positive bacteria
(S. aureus) was determined after 2 h of irradiation. The insensitivity of Gram-negative
bacteria to singlet oxygen was assigned to the presence of lipopolysaccharides in the cell
wall offering some protection against exogenous agents.

More recently, quercitin and morin, which are two isomers of position, were com-
pared for their photoinitiating abilities during the FRP of a BisGMA/TEGDMA (1/1)
blend (where BisGMA and TEGDMA stand for bisphenol A-glycidyl methacrylate and
triethylene glycol dimethacrylate, respectively) or TMPTA, the cationic polymerization
of tri(ethylene glycol) divinyl ether (DVE-3), and the polymerization thiol-ene of a DVE-
3/trimethylolpropane tris(3-mercaptopropionate) (Trithiol) (1/1) blend or a 1,3,5-triallyl-
1,3,5-triazine-2,4,6(1H,3H,5H)-trione (Trione)/Trithiol (1/1) blend (see Figure 8) [246].
Morin is a natural compound that can be extracted from Osage orange and is well known
to exert antioxidant, anti-inflammatory and anti-carcinogenic effects [247–250].
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Figure 8. Chemical structure of quercetin and its isomer of position morin, different monomers and
additives.

From the absorption viewpoint and despite the similarity of structures between
quercetin and morin, totally different absorption spectra were determined in ethanol.
If no absorption peaks could be detected for morin, an absorption peak could be clearly
detected for quercetin (λmax = 372 nm, ε = 23,300 M−1·cm−1) (see Figure 9). In addition, the
absorption spectrum of morin extends up to 575 nm so that polymerization experiments
could be carried out at 374, 394, 410 and 445 nm (see Table 1).
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Table 1. Absorption properties of morin and quercetin in ethanol at different wavelengths.

λmax
(nm)

εmax
(M−1·cm−1)

ε374nm
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FRP experiments performed with morin and quercetin revealed the two-component
morin/Iod2 system to be unable to initiate the FRP of the BisGMA/TEGDMA (70/30 w/w)
blend upon irradiation at 410 and 445 nm. Conversely, a conversion of 26% was obtained
with the quercetin/Iod2 system upon excitation at 410 nm (I = 110 mW/cm2) for 300 s.
No polymerization was detected at 445 nm with quercetin due to the lack of absorption.
A significant improvement in the monomer conversion was obtained by using the three-
component quercetin/Iod2/N-phenylglycine (NPG) (0.5%/2%/2% w/w/w) system. A
conversion of 60% at 410 nm and 57% at 445 nm. These values are higher than those
obtained with the reference NPG/Iod2 system (26% at 410 nm, 47% at 445 nm). While
examining the cationic polymerization (CP) of DVE-3, the best monomer conversion was
obtained at 410 nm with the two-component quercetin/Iod2 (0.5%/2% w/w) system (89%
after 300 s of irradiation) vs. 78% with the morin/Iod2 system. Parallel to this, an induction
time of 25 s was determined with the quercetin-based system contrarily to 110 s with morin.
Finally, the two-component quercetin/Iod2 (0.5%/2%, w/w) system was examined for the
thiol-ene polymerization of the DVE-3/Trithiol (1/1) and Trione/Trithiol (1/1) blends (see
Figure 10).
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Interestingly, DVE-3 was entirely polymerized in the presence of Trithiol for which a
trithiol conversion of only 51% was detected. A shorter induction time was determined
for DVE-3, reduced to only 8 s contrarily to 25 s for the homopolymerization of DVE-
3. By replacing DVE-3 with Trione, a similar conversion was obtained for Trione and
Trithiol, around 80% for the two monomers (see Figure 10b). To support the unequal
monomer conversion determined during the thiol-ene polymerization of a DVE-3/Trithiol
blend, the occurrence of a homopolymerization of DVE-3 concomitant to the thiol-ene
polymerization was suggested. Conversely, homopolymerization of Trione is difficult,
avoiding this undesired reaction [251–253].

In 2018, another flavonol, i.e., 3-hydroxyflavone (3HF) was used in combination with
an amino acid, namely N-phenylglycine (NPG), to produce free radicals upon irradiation
at 385, 405 and 477 nm (see Figure 11) [254].
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From the absorption viewpoint, the absorption maximum of 3HF was blue-shifted by
ca. 20 nm compared to quercetin (350 nm vs. 370 nm for 3HF). Only low molar extinction
coefficients could be determined in the visible range, ranging between ε ~ 250 M−1·cm−1

at 405 nm and ε ~ 40 M−1·cm−1 at 470 nm. Conversely, at 350 nm, a molar extinction
coefficient of ε~14,000 M−1·cm−1 could be calculated. The high reactivity of 3HF was
evidenced when combined with NPG. Thus, using the 3HF/NPG (0.5%/1% w/w) couple,
a conversion as high as 71% could be determined during the FRP of a BisGMA/TEGDMA
(1/1) blend (where BisGMA and TEGDMA stand for bisphenol A-glycidyl methacrylate
and triethylene glycol dimethacrylate, respectively) (see Table 2) upon irradiation at 405 nm
with an LED (I = 110 mW/cm2).

Table 2. Monomer conversions obtained during the FRP and CP experiments using different pho-
toinitiating systems.

Resin/PIS Conditions Conversion (%)
at 100 s Light Source

BisGMA/TEGDMA

3HF/Iod3 (0.5%/1% w/w)
3HF/NPG (0.5%/1% w/w)
3HF/NPG (0.5%/1% w/w)

3HF/Iod3/NPG (0.5%/1%/1% w/w/w)
3HF/Iod3/NPG (0.5%/1%/1% w/w/w)
3HF/Iod3/EDB (0.5%/1%/1% w/w/w)

19
71
48
79
65
17

LED@405 nm
LED@405 nm
LED@477 nm
LED@405 nm
LED@477 nm
LED@385 nm

EPOX 3HF/Iod3/EDB (0.5%/1%/1% w/w/w) 55 LED@385 nm

This value is higher than that obtained with the reference Iod3/EDB (1%/1% w/w)
system (68% after 100 s of irradiation at 405 nm) [255]. If an excellent monomer conver-
sion could be obtained with the reductive pathway, a different situation was found using
the oxidative one. Thus, only a low monomer conversion of 19% was obtained with the
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two-component 3HF/Iod3 (0.5%/1% w/w) system upon irradiation at 405 nm. By using
the three-component 3HF/Iod3/NPG (0.5%/1%/1% w/w/w) system, high monomer con-
versions could be determined at 405 and 477 nm (79 and 65%, respectively). In particular,
the monomer conversion of 65% obtained at 477 nm is remarkable, considering the weak
molar extinction coefficient of 3HF at 477 nm. The crucial role of the amine in the monomer
conversion was evidenced by replacing NPG with ethyl 4-(dimethylamino)benzoate (EDB).
In this case, the conversion was reduced to only 17%. The difference in reactivity for the
three-component system based on EDB and NPG can be ascribed to the decarboxylation
reaction occurring with NPG, avoiding back electron transfer [256,257]. Upon irradiation
at 385 nm, the CP of EPOX furnished the high conversion of 55% after 100 s of irradiation
with the three-component 3HF/Iod3/EDB (0.5%/1%/1% w/w/w) system. For comparison,
only an EPOX conversion of 15% was obtained with the reference BAPO/Iod3 (0.5%/1%
w/w) system in the same conditions. Considering the high performance of the different
photoinitiating systems designed with 3HF as a photosensitizer, interest in these photoiniti-
ating systems was demonstrated during direct laser writing experiments (see Figure 12)
and during the design of composites (see Figure 13). In the case of the direct laser writing
experiments, 3D patterns exhibiting an excellent spatial resolution could be evidenced.
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Figure 12. Direct laser writing experiments performed at 405 nm using a BisGMA/TEGDMA
(70%/30%) blend as the monomer and the two-component 3HF/NPG (0.5%/1% w/w) system.
(A) Logo. (B) Fluorescence of the 3D patterns. (C) Characterization of the 3D pattern by numerical
optical microscopy. Reproduced with permission from Ref. [254]. Copyright 2018, The American
Chemical Society.
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Figure 13. FRP experiments of a BisGMA/TEGDMA (70%/30%) blend for composites cured using
an LED emitting at 395 nm. Reprinted/adapted with permission from Ref. [254]. Copyright 2018,
The American Chemical Society.

Composites were obtained by impregnating a BisGMA/TEGDMA (70%/30%) resin
with glass fibers (50% glass fiber/50% resin). Using the 3HF/NPG combination, composites
could be fully cured in only one pass (2 m/min belt speed) upon irradiation with an LED
emitting at 395 nm.
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To support the high efficiency of the 3HF/NPG and 3HF/Iod3 systems, the following
mechanisms could be determined by combining steady-state photolysis and fluorescence
quenching experiments, ESR and electrochemistry (see Equations (r6)–(r12)).

3HF→ 1,33HF (hν) (r6)

1,33HF+ NPG→ (3HF-H)• + NPG(-H)
• (r7)

NPG(-H)
• → NPG(-H;-CO2)

• (r8)

1,33HF + Iod→ 3HF•+ + Ar2I• → Ar• (r9)

NPG + Iod↔ [NPG- Iod]CTC (r10)

[NPG- Iod]CTC →→→ Ar• (hν) (r11)

NPG(-H;-CO2)
• + Ar2I+ → NPG(-H;-CO2)

+ + Ar• + ArI (r12)

In 2020, 3HF was revisited by Wang and coworkers in a series of seven flavonols
differing in the substitution pattern (see Figure 14) [258]. The influence of halogens on the
photoinitiating ability of flavonols could be examined, these groups being introduced at
different positions on the flavonol core.
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Figure 14. Chemical structures of different derivatives of 3HF, the monomer and different additives.

Noticeably, the absorption of the different dyes was not significantly affected by the
halogen substitution, and absorption in the 280–450 nm range could be determined for
all dyes. Thus, absorption maxima between 342 nm for 3HF and 3HF-B-F and 349 nm for
3HF-A-F were determined in methanol (see Figure 15 and Table 3). Examination of the
fluorescence properties of the different 3HF revealed the presence of two emission peaks,
the first one at ca. 450 nm, corresponding to the Franck–Condon excited state, and the
second one at 550 nm, corresponding to the emission of the tautomer formed by ESIPT. In
the case of 3HF-A-F and 3HF-A-Br, emission peaks at 450 nm could not be detected for
these tow dyes, attributable to a fast ESIPT process.
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Figure 15. UV-visible absorption spectra (a) and fluorescence spectra (b) of different 3HF derivatives
in methanol. Reproduced with permission from Ref. [258]. Copyright 2020, Elsevier.

Table 3. Optical characteristics of different 3HF derivatives in methanol.

3HF λmax (nm) εmax (M−1·cm−1) ε385 nm (M−1·cm−1)

3HF-H 342 17,800 1900

3HF-B-CH3 347 14,700 2600

3HF-B-F 342 16,200 1850

3HF-B-Cl 345 19,900 2100

3HF-B-Br 346 20,500 2250

3HF-A-F 347 16,900 2400

3HF-A-Br 349 13,800 3200

Based on their absorption spectra, photopolymerization experiments were carried
out at 385 nm. Photolysis experiments performed at 385 nm for the two-component
dye/triethanolamine (TEOA) and dye/Iod4 systems revealed the photolysis rate to be
higher for the two-component dye/Iod4 systems. The different dyes are thus easier to
oxidize than to reduce. Fluorescence quenching experiments performed in methanol
revealed the fluorescence of the ESIPT tautomer to be drastically reduced by increasing
the concentration of Iod4 and TEOA, evidencing the reaction with the additives to be
faster than the ESIPT process. In the case of the two-component dye/Iod4 systems, the
formation of three different 3HF-based toluene adducts resulting from the addition of the
toluene radical (formed by photoinduced electron transfer between the excited dye and the
iodonium salt) to the 3HF dyes was detected by mass spectrometry.

Photopolymerization experiments were carried out on a difunctional monomer, namely
tripropylene glycol diacrylate (TPGDA). Among the four amines tested for the two-
component dye/amine systems (TEOA, morpholine (MP), triethylamine (TEA) and NPG)
and irrespective of the 3HF derivatives examined, the highest monomer conversions were
obtained with TEOA, whereas the lowest conversions were determined with NPG. Using
TEOA as the amine, the influence of the substitution pattern on the photoinitiating ability
could be examined. Thus, it was found that the introduction of halogens on the pendant
phenyl ring was favorable for monomer conversions compared to the flavonol core. As
shown in Figure 16b, higher monomer conversions were obtained with 3HF-B-F and 3HF-B-
Br compared to their 3HF-A-F and 3HF-A-Br analogs. Except for 3HF-B-CH3 and 3HF-A-Br,
which furnished monomer conversions around 70% after 180 s of irradiation, all the other
dyes furnished similar monomer conversions, peaking at 80%. While examining the series
of flavonols substituted with different groups on the pendant phenyl ring, the introduction
of electron-donating groups (such as 3HF-B-CH3) reduced the monomer conversion and the
polymerization rate, whereas the introduction of electron-withdrawing groups improved
both the conversion and the polymerization rates. A different trend was found for the
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dye/Iod3 system. Using the dye/Iod4 (0.2%/1% w/w) system, the highest polymerization
rate was obtained with 3HF-B-CH3, followed by 3HF-B-Cl, 3HF-B-Br, 3HF-B-F and 3HF.
If different polymerization rates were determined using Iod4 as the co-initiator, similar
conversions were obtained after 120 s of irradiation at 385 nm. A comparison with identical
halogen atoms revealed the brominated derivatives to be more reactive than the fluorinated
ones, and this trend of reactivity is comparable to that determined with the two-component
dye/TEOA systems.
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In 2021, the same group developed an innovative strategy for the design of photoin-
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sponsible for the ESIPT process which is a competitive process to photoinitiation, this in-
tramolecular proton transfer could be efficiently avoided by etherifying or esterifying the 

Figure 16. TPGDA conversions determined upon irradiation at 385 nm with an LED and by using
the two-component dye/TEOA (1%/3% w/w) systems (a) first series of dyes (b) second series of
dyes. Reproduced with permission from Ref. [258]. Copyright 2020, Elsevier.

In 2021, the same group developed an innovative strategy for the design of photoini-
tiating systems based on flavonols. Considering that the presence of the OH group is
responsible for the ESIPT process which is a competitive process to photoinitiation, this
intramolecular proton transfer could be efficiently avoided by etherifying or esterifying
the OH group with benzoyl or benzenesulfonyl groups [259]. Using this strategy, the
ESIPT process could be suppressed, and the design of highly efficient Type I photoinitiators
became possible (see Figure 17). In particular, the triplet lifetime could be increased, and a
reduction in the fluorescence intensity was jointly observed, resulting in an improvement
in the photopolymerization efficiency.
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Noticeably, 3HF-S and 3HF-C could act as efficient monocomponent systems during
the FRP of TPGDA but also in combination with TEOA or Iod4 upon irradiation at 405
and at 460 nm with LEDs. Photopolymerization results also revealed the polymerization
efficiency of 3HF-S to be higher than that of 3HF-C and 3HF-OH. In particular, the poly-
merization efficiency of 3HF-S could be greatly improved by decreasing the photoinitiator
content, 3HF-S exhibiting aggregation-induced emission (AIE) properties adversely af-
fecting its polymerization efficiency. From the absorption viewpoint, the presence of the
triphenylamine moiety was the key element to redshift the absorption of 3HF-C, 3HF-S and
3HF-OH compared to those previously reported by Lalevée and coworkers [178]. Thus,
absorption maxima located at 384, 386 and 396 nm were determined for 3HF-C, 3HF-S and
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3HF-OH (see Figure 18). Interestingly, the broad absorption band extending up to 480 nm
enabled the polymerization tests to be carried out at 405 nm but also at a longer wavelength,
namely 460 nm. The solubility of photoinitiators is an important parameter governing the
reactivity. Indeed, a low solubility in monomers will adversely affect the polymerization
efficiency. As shown in Table 4, 3HF-S exhibited the highest solubility of the three dyes. In
particular, compared to 3HF-OH, an improvement in the solubility was determined for the
OH-substituted dyes, namely 3HF-C and 3HF-S. Among these dyes, 3HF-S showed the
best solubility in aqueous solutions, favorable to polymerization processes used in green
conditions. The photoacid generation abilities of 3HF–S and 3HF–C were also examined
in acetonitrile using Rhodamine B as an acid indicator upon irradiation with an LED at
405 nm. Interestingly, 3HF-S exhibited the best photoacid generation ability (φH+ = 0.2),
significantly higher than that of 3HF-C for which a value of only 0.002 was determined.
This is directly related to the fact that benzenesulfonic acid is generated with 3HF-S after
photocleavage, contrary to benzoic acid in the case of 3HF-C.
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Figure 18. UV-visible absorption spectra of 3HF-OH, 3HF-C and 3HF-C in acetonitrile. Reproduced
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Table 4. Solubility of different flavonols in various solvents at room temperature (g/100 mL).

Toluene Ethyl
Acetate THF CH3OH CH3CN DMSO CH3OH:H2O

(1:1)
CH3CN:H2O

(1:1)
DMSO:H2O

(1:1)

3HF-OH 0.9 2.0 2.0 1.4 0.8 3.5 0.5 0.7 0.7
3HF-S 8.0 5.0 >10 1.7 1.8 >10 0.8 1.0. 2.0
3HF-C 6.4 3.9 8.2 1.5 1.3 >10 0.6 0.8 1.6

FRP experiments of TPGDA performed at 405 and 460 nm revealed the photoinitiating
ability of 3HF-C and 3HF-S to outperform that of the reference 3HF-OH. Using 3HF-S as
a monocomponent system at 405 nm, a photoinitiator concentration as low as 0.125 wt%
could be used while maintaining a high monomer conversion. Eighty-percent conversions
could thus be obtained after 180 s of irradiation at 405 nm using 3HF-S. Conversely, no
monomer conversion could be detected with 3HF-OH when used as a monocomponent
system. The use of 3HF-S in a two-component system enabled drastic shortening of the
reaction time using additives such as triethanolamine (TEOA) or triethylamine (TEA) as
the amines. By using TEA and TOEA, 80% conversions could be obtained within 20 s. A
threefold elongation of the reaction time was determined by using MP and EDB as the
amines. Finally, by using NPG as the additive for 3HF-S, 180 s were required to get 80%
TPGDA conversion (see Figure 19). Comparisons of the TPGDA conversions obtained
with camphorquinone (CQ) in one- and two-component systems revealed the 3HF-S-based
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systems to outperform those prepared with camphorquinone, irrespective of the irradiation
wavelength (405 nm or 460 nm). 3HFs were also used for the sensitization of Iod4 (see
Figure 20). In this case, short reaction times (i.e., 20 s) were determined with all systems,
evidencing that 3HFs were easier to oxidize than to reduce. Conversions ranging between
85 and 90% could be obtained within 30 s.
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w/w); 3HF-S/TEA (0.125%/3.0% w/w) and 3HF-S/MP (0.125%/3.0% w/w). Reproduced with
permission from Ref. [259]. Copyright 2021, Elsevier.
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(0.125%/1.0% w/w) and CQ/Iod4 (0.125%/1.0% w/w). Reprinted/adapted with permission from
Ref. [259]. Copyright 2021, Elsevier.

Considering the good solubility of 3HF-S in water, the polymerization of hydrogels
could be performed at 405 nm. Using PEGDA (70% in water), an excellent monomer
conversion could be determined by using a photoinitiator content as low as 0.042 wt%.
After 60 s of irradiation at 405 nm, final conversions of 33, 75 and 85% were determined by
using 3HF–S (0.042 wt%), 3HF-S/TEOA (0.042%/3% w/w) and 3HF-S/Iod4 (0.042%/3%
w/w), respectively (see Figure 21).

By ESR spin-trapping experiments, the photochemical mechanism involved with the
one- and two-component systems could be determined, and the results are summarized in
Scheme 1.
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Figure 21. Polymerization profiles determined at 405 nm using different one- and two-component
systems based on 3HF-S. (Note: Iod4 corresponds to ONI in the Figure.) Reproduced with permission
from Ref. [259]. Copyright 2021, Elsevier.
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3HF-C revealed the cell viability of HeLa cells to be higher than 80%, whereas cell viability 
lower than 80% was determined for polymers prepared with 3HF-OH. Considering that 
sulfonate derivatives can outperform all other derivatives, another sulfonate derivative, 
i.e., 3HF-F, was examined, bearing a pendant carbazoyl group (see Figure 22) [260]. Using 
this high-performance photoinitiator in three-component 3HF-F/Iod4/TEOA (0.5%/2%/1% 
w/w/w) systems, 4D-printed objects could be designed and synthesized. As shown in Fig-
ure 23, the presence of the carbazoyl moiety was crucial in order to get a significant ab-
sorption in the visible range. Indeed, the reference compound, namely 3HF-A, bearing a 
tolyl group, only exhibited UV-centered absorption, evidencing the role of the carbazole 
moiety in the absorption properties. In particular, 4D-printed objects could be prepared 

Scheme 1. Photochemical mechanism involved with the different one- and two-component systems
(A) and (B) The two possible mechanism of reaction of 3HF-S with TEOA and (C) reaction of 3HF-S
with an iodonium salt.
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Examination of the cytotoxicity of the polymer films prepared with CQ, 3HF-S and
3HF-C revealed the cell viability of HeLa cells to be higher than 80%, whereas cell viability
lower than 80% was determined for polymers prepared with 3HF-OH. Considering that
sulfonate derivatives can outperform all other derivatives, another sulfonate derivative,
i.e., 3HF-F, was examined, bearing a pendant carbazoyl group (see Figure 22) [260]. Using
this high-performance photoinitiator in three-component 3HF-F/Iod4/TEOA (0.5%/2%/1%
w/w/w) systems, 4D-printed objects could be designed and synthesized. As shown in
Figure 23, the presence of the carbazoyl moiety was crucial in order to get a significant
absorption in the visible range. Indeed, the reference compound, namely 3HF-A, bearing a
tolyl group, only exhibited UV-centered absorption, evidencing the role of the carbazole
moiety in the absorption properties. In particular, 4D-printed objects could be prepared
using a hydrophilic monomer, namely PEGDA, enabling the use of a sequence of hy-
dration/dehydration for designing shape memory objects (snowflake and airplane) (see
Figure 24).
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It has to be noticed that this strategy (hydration/dehydration) has been extensively
used by Lalevée and coworkers for designing 4D-printed objects by using chalcones as the
chromophores [9,127,261,262].

In 2023, an interesting strategy was developed for the design of Type I photoinitiators,
consisting in introducing a camphorquinone derivative on the photocleavable side [263].
Five derivatives were investigated, differing by the substitution of the flavonol core (see
Figure 25).
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Figure 25. Chemical structures of Type I photoinitiators based on camphorsulfonate.

The choice of camphorsulfonic acid as the additional chromophore was motivated by
the different advantages this photoinitiator exhibits such as low sensitivity to oxygen, good
water solubility and low toxicity [264,265]. From the absorption viewpoint, almost similar
absorption maxima were determined for the different dyes, except for MeO-HF-Cas bearing
an electron donating group and for which a redshifted absorption was determined. Thus,
absorption maxima located at 294, 295, 296, 300 and 313 nm were respectively determined for
H-HF-Cas, F-HF-Cas, Br-HF-Cas, Me-HF-Cas and MeO-HF-Cas (see Figure 26 and Table 5).
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Table 5. Optical characteristics of different flavonol camphorsulfonates and quantum yield of pho-
toacid generation in acetonitrile.

Compounds λmax
(nm)

εmax
(M−1·cm−1)

ε365 nm
(M−1·cm−1)

λem1
(nm)

λem1
(nm)

Stokes Shift
(cm−1) φ(H+)

a

H-HF-Cas 294 13,150 106 378 531 5235 0.06

Me-HF-Cas 300 16,000 34 381 530 5347 0.31

F-HF-Cas 295 12,100 285 377 528 5319 0.22

Br-HF-Cas 296 14,850 189 382 535 5154 0.39

MeO-HF-Cas 313 18,200 395 396 532 5494 0.29
a quantum efficiency of photoacid generation.

Examination of their fluorescence properties also revealed that the different dyes
exhibit a dual emission, with an emission in the UV range and a second one in the visible
range. Even if the ESIPT effect is hindered by the substitution of the OH group at the
C3-position, the intramolecular charge transfer still exists, with the presence of tautomers
in the excited state, as shown in Scheme 2. Considering the similarity of emission around
530 nm, the low contribution of the aromatic ring on the fluorescence de-excitation process
was determined.
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Photolysis experiments performed in acetonitrile confirmed the Type I behavior of
the different flavonol camphorsulfonates. Upon irradiation at 365 nm, photocleavage
of flavonols can clearly be evidenced by NMR. Investigation of the photolysis products
by mass spectrometry enabled us to confirm the formation of camphorsulfonic acid and
the corresponding flavonol due to water traces in acetonitrile (see Scheme 3). Flavonol
camphorsulfonates can thus behave as photoacid generators [266].
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The highest photoacid generation quantum yield was determined for Br-HF-Cas bear-
ing a halogen atom upon excitation at 365 nm (see Table 5). In this context, the cationic
polymerization of DVE-3 was examined with the different photoinitiators. Upon excitation
at 365 nm, only low monomer conversions were obtained using a 1 wt% photoinitiator,
consistent with the low photoacid generation ability of camphorsulfonic acid and the inabil-
ity of the flavonol moiety to initiate a cationic polymerization process. By using flavonol
camphorsulfonates as monocomponent systems (1 wt%), the free radical polymerization
of PEGDA could be efficiently initiated, and conversions of 80, 96, 91, 88 and 67% were
respectively obtained with Me-HF-Cas, F-HF-Cas, Br-HF-Cas, MeO-HF-Cas and H-HF-
Cas. By using the different flavonol camphorsulfonates as photosensitizers for Iod4, a
slight improvement in the PEGDA conversion could be detected with the two-component
dye/Iod4 (0.1%/0.1% w/w) systems. Thus, PEGDA conversions of 90, 84, 86 and 85% could
be obtained after 120 s of irradiation at 365 nm using MeO-HF-Cas, Me-HF-Cas, Br-HF-Cas,
F-HF-Cas and Me-HF-Cas.

2.2. Flavones

Flavonoids are composed of a large group of polyphenolic dyes, and flavone is one
of them. Flavone was used as early as 2016 for the photoinduced controlled/“living”
polymerization of MMA [267]. Using an LED emitting in the 350–440 nm range, linear
PMMA polymers with a polydispersity index (PDI) ranging between 1.34 and 1.42 could
be prepared by photopolymerization. Even if the approach is promising, the control of
the polymerization process is still lower than what can be currently obtained by thermal
polymerization. Photopolymerization is more classically used for the polymerization
of multifunctional monomers, and this point was only recently examined by Lalevée
and coworkers for the FRP of a dental resin, i.e., a BisGMA/TEGDMA 70/30 blend (see
Figure 27) [268]. Different flavones were investigated in this work, all these derivatives
being natural products. Notably, chrysin can be found in the flowers of blue passionflower
(Passiflora caerulea) and myricetin in various edible plants such as onion leaves, Semambu
leaves, bird chili, black tea, papaya shoots and guava [269–276]. As specificities, these
dyes are also (poly)phenolic dyes, and phenols are extensively used as stabilizers for
monomers [277,278]. In addition, efficient polymerization processes could be performed
with these structures.
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zation of PEGDA could be efficiently initiated, and conversions of 80, 96, 91, 88 and 67% 
were respectively obtained with Me-HF-Cas, F-HF-Cas, Br-HF-Cas, MeO-HF-Cas and H-
HF-Cas. By using the different flavonol camphorsulfonates as photosensitizers for Iod4, a 
slight improvement in the PEGDA conversion could be detected with the two-component 
dye/Iod4 (0.1%/0.1% w/w) systems. Thus, PEGDA conversions of 90, 84, 86 and 85% could 
be obtained after 120 s of irradiation at 365 nm using MeO-HF-Cas, Me-HF-Cas, Br-HF-
Cas, F-HF-Cas and Me-HF-Cas. 
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presence of the numerous OH groups acting as electron-withdrawing groups, improving 
the electronic delocalization existing in this structure. An absorption extending up to 450 
nm could be determined for Myricetin, whereas almost no absorption could be detected 
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related to the solubility of the photosensitizers in resins. This point was notably examined 
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Figure 27. Chemical structures of different flavones used as photoinitiators of polymerization.

As shown in Figure 28, all dyes exhibit UV-centered absorption, except for myricetin
for which a redshift of the absorption was detected for this dye. It can be assigned to the
presence of the numerous OH groups acting as electron-withdrawing groups, improving
the electronic delocalization existing in this structure. An absorption extending up to
450 nm could be determined for Myricetin, whereas almost no absorption could be detected
anymore for the other dyes. The efficiency of the polymerization process is also strongly
related to the solubility of the photosensitizers in resins. This point was notably examined
in TMPTA and BisGMA/TEGDMA. Noticeably, the increase in the OH groups per dye
adversely affected the solubility of dyes. Thus, the worse solubilities were determined for
Chrysin and Myricetin (see Table 6).
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Table 6. Absorption properties of dyes at 405 nm in methanol and monomers.

F 6HF 7HF Chrysin Myricetin

Absorption properties at 405 nm
(M−1·cm−1) in methanol ~70 ~70 ~427 ~336 4800

Solubility in BisGMA/TEGDMA + + + - -

Solubility in TMPTA + + + - -

Examination of their photoinitiating abilities during the FRP of TMPTA in thin
films revealed the two-component dye/Iod3 system to be inefficient for promoting any
polymerization. Conversely, by using the two-component dye/NPG system and the
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three-component dye/Iod3/NPG system, a monomer conversion could be detected with
the different dyes. Among them, 6HF furnished good monomer conversions both at
385 and 405 nm, as shown in Figure 29. The highest monomer conversion was obtained
at 385 nm, using the three-component 6HF/Iod3/NPG (0.5%/1%/1% w/w/w) system,
resulting from the perfect adequation between the emission of the LED and the absorption
of the chromophore. At 405 nm, a reduction in the monomer conversion by ca. 10% could
be determined, consistent with a decrease in the molar extinction coefficient. Noticeably,
an important effect of the additives could be evidenced. Thus, by using EDB as the amine
in three-component systems, a severe reduction in the monomer conversion could be
determined, compared to that obtained with NPG. This was assigned to the strong oxygen
inhibition competing with initiation [26,228,279–283]. This point was evidenced by using
4-dppba as the additive. Indeed, phosphines are well known to convert the unreactive
peroxyl radicals as initiating alkoxyl radicals [279,284,285]. Using the three-component
6HF/Iod3/4-dppba (0.5%/1%/1% w/w/w) system at 385 nm, a conversion comparable to
that obtained with the three-component 6HF/Iod3/NPG (0.5%/1%/1% w/w/w) system
could be obtained.
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The high reactivity of the three-component 6HF/Iod3/NPG (0.5%/1%/1% w/w/w)
system was confirmed during the FRP experiments performed on another resin, i.e., a
BisGMA/TEGDMA blend. Surprisingly, if 3-hydroxyflavone 3HF previously studied
proved to be an efficient photoinitiator for promoting the CP of EPOX at 385 nm, only a low
monomer conversion could be obtained with the two-component 6-hydroxyflavone/Iod3
(0.5%/1% w/w) (40% conversion after 800 s of irradiation at 385 nm vs. 55% for the
three-component 3HF/Iod3/EDB (0.5%/1%/1% w/w/w)) system, evidencing the strong
influence of the substitution pattern on the overall reactivity of the photoinitiating system.
In addition, the high monomer conversion obtained during the FRP of BisGMA/TEGDMA
paves the way for dental applications of flavones [286].

2.3. Proanthocyanidins

Proanthocyanidins are flavonoids that can be found in black, red and purple rice, in
other strongly colored fruits and vegetables and also in cereals such as blueberries, grapes,
red cabbages and purple sweet potatoes [287–293]. Due to their high molar extinction coef-
ficients, proanthocyanidins were thus ideal candidates for photopolymerization performed
under visible light. In 2021, Wang and coworkers examined a series of proanthocyanidins
substituted with methacrylate groups (see Figure 30) [294,295].
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By the presence of methacrylate groups, polymerizable crosslinkers could be obtained,
and the resulting polymers could be advantageously used for collagen stabilization in
2-hydroxyethylmethacrylate (HEMA)-based dental adhesive systems. In particular, an
improvement in the longevity of the dental restoration could be evidenced by using these
modified proanthocyanins.

3. Conclusions

Flavonoids are composed of numerous families of dyes, and only a few of them have
been examined to date in photopolymerization. Even if more than 6000 flavonoids have
been identified in nature, the scarcity of these structures renders their uses as photoini-
tiators of polymerization relatively improbable. In addition, for the most abundant ones,
polymerization results obtained with these structures are remarkable, including excellent
biocompatibility, the possibility to perform polymerization experiments at low photoinitia-
tor content and the design of antibacterial coatings. At present, flavonoids could efficiently
promote the FRP of acrylates or the CP of epoxides by the use of two- and three-component
systems. To expend the scope of applications of flavonoids to photopolymerization, several
points can be examined:

• At present, no monocomponent systems have been developed. In addition, by chem-
ical modification, the covalent linkage of hydrogen donors or iodonium salts could
contribute to simplifying the composition of the photocurable resins.

• Polymerization in water has only been scarcely examined.
• The design of Type I photoinitiators with the development of structures such as two

oxime esters or glyoxylates should be explored.

Future works will consist of developing and exemplifying these different research topics.
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