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Abstract: Background: Epilepsy, a prevalent neurological disorder characterized by recurrent seizures
affecting an estimated 70 million people worldwide, poses a significant diagnostic challenge. EEG
serves as an important tool in identifying these seizures, but the manual examination of EEGs by
experts is time-consuming. To expedite this process, automated seizure detection methods have
emerged as powerful aids for expert EEG analysis. It is worth noting that while such methods are
well-established for adult EEGs, they have been underdeveloped for pediatric and adolescent EEGs.
This study sought to address this gap by devising an automatic seizure detection system tailored
for pediatric and adolescent EEG data. Methods: Leveraging publicly available datasets, the TUH
pediatric and adolescent EEG and CHB-MIT EEG datasets, the machine learning-based models were
constructed. The TUH pediatric and adolescent EEG dataset was divided into training (n = 118),
validation (n = 19), and testing (n = 37) subsets, with special attention to ensure a clear demarcation
between the individuals in the training and test sets to preserve the test set’s independence. The
CHB-MIT EEG dataset was used as an external test set. Age and sex were incorporated as features
in the models to investigate their potential influence on seizure detection. Results: By leveraging
20 features extracted from both time and frequency domains, along with age as an additional feature,
the method achieved an accuracy of 98.95% on the TUH test set and 64.82% on the CHB-MIT external
test set. Our investigation revealed that age is a crucial factor for accurate seizure detection in
pediatric and adolescent EEGs. Conclusion: The outcomes of this study hold substantial promise in
supporting researchers and clinicians engaged in the automated analysis of seizures in pediatric and
adolescent EEGs.

Keywords: EEG; epilepsy; age; sex; children; pediatric and adolescent; seizures; seizure detection

1. Introduction

Epilepsy, a prevalent neurological disorder characterized by recurrent seizures that affect
an estimated 70 million people worldwide, presents a substantial diagnostic challenge [1].
It is characterized by a persistent propensity to experience spontaneous epileptic seizures,
resulting in diverse neurobiological, cognitive, and psychosocial consequences. In children,
the causes and clinical manifestations of epilepsy encompass a wide spectrum [2].

The electroencephalogram (EEG) is an important clinical tool for diagnosing seizures
and epilepsy [3]. Nonetheless, the manual identification of seizure events in EEG record-
ings is a labor-intensive process. Automatic seizure detection methods have emerged as
powerful tools that can aid researchers in the analysis of seizures, garnering increasing
attention in recent times.
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There is considerable optimism surrounding the integration of artificial intelligence
(AI) into healthcare, with the potential to significantly enhance various facets of the field,
spanning from diagnosis to treatment. Rather than displacing healthcare professionals, AI
is viewed as a complementary tool to augment and streamline their efforts. It can aid in a
wide array of tasks, including administrative processes, clinical documentation, patient
engagement, and specialized assistance [4]. The use of machine learning techniques [5–7]
has facilitated advancements in medical diagnosis, prediction of future ailments or events,
and enhancements in preventive care and treatment methodologies.

Several studies have introduced deep-learning-based seizure detection methods tai-
lored for TUH EEGs. Golmohammadi et al. [8] employed Convolutional Neural Networks
(CNN) and Long Short-Term Memory Networks (LSTM), achieving a sensitivity of 30% on
the test set. Shah et al. [9] used a three-layer 2D CNN, achieving a sensitivity of 39.15%.
Ziyabari et al. [10] combined CNN and Multilayer Perceptron techniques, resulting in
a sensitivity of 31.58%. Additionally, Albaqami et al. [11] proposed a WaveNet–Long
Short-Term Memory (LSTM) approach for the automatic detection of abnormal raw EEG
data, achieving a classification accuracy of 88.76%. Although there has been substan-
tial research in the development of seizure detection methods for adult EEGs [10,12,13],
the field of pediatric and adolescent-based seizure detection methods remains relatively
underdeveloped. Notably, EEG patterns have been observed to undergo changes with
aging [14]. It is well-established that attempting to adapt adult-centric methodologies
for use in pediatric and adolescent cases is not a viable approach [15]. Thus, there is an
urgent demand for the development of seizure detection methods tailored specifically to
the pediatric and adolescent population [15]. Furthermore, it is essential to investigate
potential variations in age-related patterns in pediatric and adolescent EEG activity and
determine how these variances might impact the ability to detect seizures in pediatric and
adolescent EEG recordings.

Numerous studies have investigated age-related differences in EEG patterns [15–17].
Some researchers have observed that older adults exhibit greater activity in the higher
frequency beta band compared to younger adults, particularly in baseline conditions that
require no mental effort [18,19]. Additionally, certain studies [20] have indicated that older
adults demonstrate lower percentages of theta and alpha activity and higher percentages
of beta activity when performing mental arithmetic tasks, in contrast to their younger coun-
terparts. However, conflicting findings have emerged from other investigations, with some
reporting shifts in EEG frequency spectra toward lower frequencies with advancing age [21],
while others have found no significant age-related differences at all [22]. Gasser et al. [23]
analyzed typically developing children aged 6 to 17, revealing only a modest increase in
EEG coherence with age.

In our earlier investigation [15], models were trained on adult EEG data from the
TUH dataset and evaluated on the CHB-MIT EEG dataset. Unfortunately, this strategy
yielded limited success, achieving only 10.5% accuracy and balanced accuracy of 50.8%
on the CHB-MIT EEG dataset. Consequently, employing an adult-based seizure detection
method proves unsuitable for children and adolescents. To address this limitation, there is
a necessity to formulate a seizure detection method specifically tailored for pediatric and
adolescent cases. Additionally, age should be considered as a feature in the development of
automated seizure detection algorithms.

Reports on sex differences in the normal maturation of the EEG have yielded mixed
results [24]. Previous research has identified EEG disparities between boys and girls that
suggest earlier maturation in girls [25,26]. However, some studies have failed to detect
EEG distinctions between male and female children [23,27]. In contrast, Matthis et al. [28]
found that, at the age of six, girls exhibit relatively more theta and less alpha activity.

Previous research [16] also demonstrated statistically significant differences in relative
theta and alpha activity between male and female children in EEGs. Therefore, it is pertinent
to explore potential dissimilarities in EEG patterns between male and female children and
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to investigate whether these disparities influence the detection of seizures in pediatric and
adolescent EEGs.

Light Gradient Boosting Machine (LightGBM) represents a gradient boosting frame-
work leveraging tree-based learning algorithms tailored for distributed and efficient train-
ing of extensive datasets. Recognized for its exceptional speed, efficiency, and scalability,
LightGBM stands as a preferred solution for EEG analysis tasks [29–31]. In this study,
LightGBM-based automatic seizure detection methods using the TUH pediatric and adoles-
cent EEG recordings were developed. The patient data were meticulously partitioned into
distinct training and testing sets to ensure no overlap, and the CHB-MIT EEG data were
used as an external test set to assess the performance of the developed method. The method
achieved 98.95% cross-subject accuracy (training and testing on different subjects) for the
TUH pediatric and adolescent EEG dataset and 64.82% cross-database accuracy (training
and testing on different databases) for the CHB-MIT EEGs. Furthermore, an investigation
was conducted to determine whether age and sex influence the detection of seizures in
pediatric and adolescent EEG data. The findings hold significant promise in providing valu-
able support to researchers and clinicians involved in the automated analysis of pediatric
and adolescent EEGs for seizure detection.

2. Data
2.1. TUH EEG Dataset

The Department of Neurology at Temple University Hospital (TUH) hosts the largest
accessible clinical EEG data repository globally [32]. The TUH EEG dataset includes focal
non-specific seizures, generalized seizures, tonic–clonic seizures, and tonic seizures [33].
In this research, the TUH seizure corpus version 1.5.1 was employed to explore how age
and sex impact seizure detection in pediatric and adolescent EEGs. EEG recordings from
children and adolescents aged 1 to 20 (comprising 192 recordings) were specifically selected.
EEG recordings that lacked age and sex information were excluded, resulting in the removal
of eight recordings. Thus, the training dataset comprised 118 EEG recordings, the validation
dataset included 29 EEG recordings, and an additional set of 37 pediatric and adolescent
EEGs was reserved for independent testing.

2.2. CHB-MIT EEG Dataset

The CHB-MIT Scalp EEG Database is a publicly accessible EEG database that was
compiled at the Children’s Hospital Boston (CHB) [34]. It encompasses data from 22 sub-
jects, whose ages range from 1 to 22 years, primarily consisting of clonic, tonic, and atonic
seizures. The pediatric and adolescent EEG recordings from the CHB-MIT database were
used as an external, independent test set. Table 1 provides a comprehensive overview of
the dataset used. Figure 1 presents the examples of seizure events in channel C3-P3 for
both the TUH children and CHB-MIT datasets.

Figure 1. The figure illustrates examples of seizure events in channel C3-P3 for both the TUH
children and CHB-MIT datasets. Each example consists of 24 s of EEG recordings along with their
corresponding spectrograms. The signal in the red block indicates the occurrence of a seizure.
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The flowchart presented in Figure 2 outlines the models developed within this study.
The TUH pediatric and adolescent EEG dataset was partitioned, allocating 60% for training
the model and 20% for validation. The remaining 20% of the TUH pediatric and adolescent
EEG dataset, combined with the CHB-MIT EEG data, formed the independent test dataset
to demonstrate the method’s stability. Within the training set, there were 58 female and
60 male subjects. Additionally, among these subjects, 56 had pediatric and adolescent
EEG recordings for ages equal to or younger than 10 years old, while 62 subjects had
pediatric and adolescent EEG recordings for ages older than 10 years old. The validation
set comprised 12 females and 17 males. In total, 11 were children aged equal to or younger
than 10 years old, and 18 were children older than 10 years old. The remaining 37 TUH
pediatric EEGs were used for independent testing. This set included 21 females and
16 males, with 11 children aged equal to or younger than 10 years old and 26 children older
than 10 years old. All available CHB-MIT EEG data were used for the external test dataset,
totaling five males and 17 females. A total of 12 were children aged equal to or younger
than 10 years old, and 10 were children older than 10 years old.

Figure 2. Overview of the seizure detection methods employing LightGBM. The algorithm was
trained using TUH pediatric and adolescent EEGs. Subsequently, TUH pediatric and adolescent
EEGs and CHB-MIT pediatric and adolescent EEGs were employed for the independent testing of
these methods.

Table 1. Table displaying the duration of seizures and non-seizures within the EEG recordings from
TUH and CHB-MIT used in this research.

TUH EEG Files CHB-MIT EEG Files

Total file number 184 127
Total seizure duration(s) 7602.0 11,117
Total non-seizure duration(s) 68,069.5 624,279.5
Patient number 184 22
Age range 1–20 1–22

3. Methodology
3.1. Channel Selection

Recording EEG signals is a highly intricate procedure that demands adaptation to the
distinctive channel layouts associated with various EEG or clinical sites [35]. To ensure the
applicability of this method to the CHB-MIT EEG dataset, a set of overlapping channels
was opted for shared between the TUH EEG recordings and the CHB-MIT EEG dataset.
The TUH EEG recordings lack temporal lines, and as a result, they do not include the FZ-CZ
and CZ-PZ channels. As a result, the use of signals from the temporal lines to develop
the model proved to be ineffective. Furthermore, to mitigate the risk of overfitting and to
retain essential information, five channels from different brain regions were selected. These
channels include FP1-F7, FP1-F3, P3-O1, C3-P3, and F3-C3.

3.2. Data Pre-Processing

The CHB-MIT EEG dataset was initially recorded at a sampling rate of 256 Hz, while
the TUH EEG data encompassed various sampling frequencies—250 Hz, 256 Hz, 400 Hz,
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and 1000 Hz. To maintain uniformity, the TUH EEG signals underwent consistent resam-
pling to a rate of 256Hz. Moreover, a notch filter (60 Hz) was applied to eliminate powerline
interference, and the DC offset was removed from the EEG data in both datasets. Further-
more, the EEG signals were segmented into 1 s epochs, each containing 256 data points,
with a 0.5 s overlap. Each epoch corresponds to either a seizure event or a non-seizure event.

3.3. Feature Estimation

Features from both the time and frequency domains were calculated. Butterworth
filters with a sixth order were employed to filter the signals within specific frequency bands
of interest, including theta (4–8 Hz), alpha (8–13 Hz), beta (13–32 Hz), and gamma (>32 Hz).
For the feature extraction process, 1 s epochs with a 0.5 s overlap were used, resulting in
the estimation of 20 features for each channel. In the training set, data from five channels
were used, leading to a total of 100 features. The features extracted from each channel are
as follows:

Time domain features:

1. Mean value of the pre-processed absolute amplitude of EEG recordings;
2. Standard deviation of the pre-processed absolute amplitude of EEG recordings;
3. Skewness of the pre-processed absolute amplitude of EEG recordings;
4. Signal envelope of the pre-processed absolute amplitude of EEG recordings;
5. Kurtosis of the pre-processed absolute amplitude of EEG recordings;
6. Complexity of the pre-processed absolute amplitude of EEG recordings;
7. Mobility of the pre-processed absolute amplitude of EEG recordings;
8. Teager–Kaiser energy operator (TKEO) of the pre-processed absolute amplitude of

EEG recordings;
9. Variance of the pre-processed absolute amplitude of EEG recordings;
10. Fractal dimension (FD) of the pre-processed absolute amplitude of EEG recordings.

Frequency domain features: Ten features were estimated as follows:

1. Relative band power of theta;
2. Absolute band power of theta;
3. Relative band power of alpha;
4. Absolute band power of alpha;
5. Relative band power of beta;
6. Absolute band power of beta;
7. Relative band power of gamma;
8. Absolute band power of gamma;
9. Absolute band power of the EEG amplitude;
10. Sum of relative band power of beta and gamma.

TKEO[n] = x[n]2 − x[n − 1]x[n + 1] (1)

FD =
logn

10

logn
10 + logn/(n+0.4δ)

10

(2)

Mobility =

√
Var(ẋ)
Var(x)

(3)

where

• n represents the number of samples within each epoch;
• δ signifies the number of sign changes in the signal derivative in that epoch;
• ẋ denotes the time derivative of the pre-processed EEG signal x;
• x[n] stands for the nth sample, x[n − 1] refers to the (n − 1)th sample and x[n + 1]

indicates the (n + 1)th sample of the pre-processed EEG signal within the epoch;
• Var (x) represents the variance of x estimated for that epoch.
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To explore the influence of age and sex on seizure detection in pediatric and adolescent
EEG data, sex (male and female) and age group were introduced as additional features.
Children were categorized into age groups, with one group comprising those older than
10 years and the other including those aged 10 years or younger.

3.4. Data Balancing

The total duration of seizure events is notably shorter in comparison to non-seizure
events, as indicated in Table 1. This inherent class imbalance poses challenges for train-
ing machine learning algorithms. Consequently, the Synthetic Minority Over-sampling
Technique (SMOTE) [36] was employed to rebalance the data within the training set.

3.5. Classification Algorithms

LightGBM [37] has been used in diverse data mining tasks, encompassing classifi-
cation, regression, and ranking [37]. The LightGBM algorithm leverages two innovative
techniques: gradient-based one-sided sampling and exclusive feature bundling. Light-
GBM’s superiority lies in its efficient handling of large-scale datasets, optimized training
speed, and exceptional predictive accuracy [37]. The algorithm’s optimization objectives
and tree-based learning architecture enabled it to capture intricate patterns within the EEG
data, resulting in heightened performance in seizure detection tasks. The interpretability
of feature importance provided by LightGBM facilitated a deeper understanding of the
significance of different features, guiding the development of more refined and effective
seizure detection models [38].

To explore the influence of age and sex on seizure detection in pediatric and adolescent
EEG, four distinct models were built using LightGBM. We experimented with a random
forest algorithm, decision tree and Extreme Gradient Boosting (XGBoost); however, the per-
formance did not match the GBM (results not shown). All models used LightGBM with the
same parameters. two parameters were optimized: n-estimators (representing the number
of boosted trees to fit) and learning rate (pertaining to the boosting learning rate). This
optimization process relied on the performance assessment of the validation set aimed at
enhancing the method’s efficacy in detecting seizures in the TUH pediatric EEG recordings.
Tests across a range of values were conducted, examining n-estimators from 10 to 500 and
learning rates from 0.001 to 0.1. The optimal performance on the validation set was attained
when n-estimators equaled 50 and the learning rate was set to 0.1.

The distinction among models lies in the variation of input features, enabling a compre-
hensive evaluation of the impact of different features on seizure detection efficacy. Model
1 used 20 features sourced from both time and frequency domains as the input for the
LightGBM algorithm. In Model 2, the inclusion of sex as an additional feature augmented
Model 1. Similarly, Model 3 expanded upon Model 1 by integrating age as an additional fea-
ture. Lastly, Model 4 enhanced the feature set of Model 1 by incorporating both sex and age
as supplementary features. The methods employed for model development are elaborated
below. The illustration in Figure 3 depicts the intricacies of the developed models.

• Model 1 was trained and evaluated using the 20 features derived from both time and
frequency domains as described in Section 3.3.

• Model 2 was trained and tested on the same 20 features (Section 3.3). However, it
incorporated an additional feature, namely sex (male and female, where 0 denotes
female and 1 denotes male), resulting in a total of 21 features.

• Model 3 was trained and tested using the original 20 features (Section 3.3) and added
age group (where 0 represents children aged 10 or younger, and 1 represents children
older than 10) as an additional feature, this totaled 21 features in the model.

• Model 4 was trained and tested on the same 20 features (Section 3.3), but integrated
both sex and age group as additional features, thus employing a total of 22 features in
its development.
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Figure 3. The techniques used in model development encompass various approaches. Model 1
utilizes features from both time and frequency domains. Model 2 incorporates gender as a feature
(where 0 denotes female and 1 denotes male). Model 3 includes age groups as a feature (where
0 represents children aged 10 or younger, and 1 represents children older than 10). Model 4 integrates
both gender and age groups as features.

3.6. Performance Evaluation

As seizure detection involves binary classification, the methods’ performance was as-
sessed using sensitivity (Sens), specificity (Spec), accuracy (Acc) and balanced accuracy (BAcc).

Sens =
TP

TP + FN

Spec =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

BAcc =
Sens + Spec

2

(4)

where:

• True Positives (TP): the number of seizures correctly predicted as seizures.
• False Positives (FP): the number of non-seizures incorrectly predicted as seizures.
• True Negatives (TN): the number of non-seizures correctly predicted as non-seizures.
• False Negatives (FN): the number of seizures incorrectly predicted as non-seizures.

4. Results
4.1. Feature Importance

Figure 4 shows the LightGBM-based feature importance plot (top 10) in the training set.
These top 10 features are (1) C3−P3 TKEO, (2) FP1−F3 TKEO, (3) FP1−F7 TKEO, (4) P3−O1
TKEO, (5) FP1−F7 FD, (6) age group, (7) FP1−F3 variance (var), (8) F3−C3 signal envelop,
(9) FP1−F7 signal envelop, and (10) FP1−F3 TKEO. It is clear to see that the TKEO is an
important feature in identifying seizure and non-seizure events.

4.2. Feature Analysis

Figure 5 and Table 2 illustrate a comparison of TKEO between seizure events and
non-seizure events across five selected channels on TUH pediatric and adolescent EEG
and CHB-MIT pediatric and adolescent EEG. Notably, significant distinctions in TKEO are
evident between seizure and non-seizure events across various channels.

Figure 6 presents a comparison of the mean amplitude between seizure events and
non-seizure events, with a focus on males and females, across five specific channels in the
TUH pediatric and adolescent EEG and CHB-MIT pediatric and adolescent EEG datasets.
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Figure 4. The ten most significant features within the training set.

Figure 5. Comparison of TKEO between seizure events and non-seizure events across five selected
channels on TUH pediatric and adolescent EEG and CHB-MIT pediatric and adolescent EEG.

Table 2. Comparison of TKEO between seizure events and non-seizure events across five selected
channels on TUH pediatric and adolescent EEG and CHB-MIT pediatric and adolescent EEG.

(µV2) F3-C3 P3-O1 FP1-F7 FP1-F3 C3-P3

TUH Seizure 325,324.41 14,638.42 10,969.92 292,015.61 26,648.72
Non-seizure 125,824.93 183,742.85 31,594.45 102,562.60 45,582.13

CHB-MIT Seizure 1255.52 1422.89 2180.98 2209.52 1004.26
Non-seizure 1991.31 1707.90 3242.40 3021.55 657.07

Figure 6. Comparison of mean amplitude between seizure events and non-seizure events for males
and females across five selected channels on the TUH pediatric and adolescent EEG and CHB-MIT
pediatric and adolescent EEG.

Figure 7 displays a comparison of mean amplitude between seizure events and
non-seizure events in children aged over 10 and those aged 10 or younger, considering
five selected channels in the TUH pediatric and adolescent EEG and CHB-MIT pediatric
and adolescent EEG datasets.
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Figure 7. Comparison of mean amplitude between seizure events and non-seizure events for children
with age > 10 and age ≤ 10 across five selected channels on the TUH pediatric and adolescent EEG
and CHB-MIT pediatric and adolescent EEG.

4.3. Previous Work on Seizure Detection Using TUH and CHB-MIT EEGs

Research on automatic seizure detection, particularly when trained and tested on
different databases, has been limited. However, several studies have explored the applica-
tion of various algorithms for automated seizure detection in TUH EEG or CHB-MIT EEG
datasets. Table 3 summarizes previous seizure detection methods applied to the TUH EEG
and CHB-MIT EEG datasets.

Table 3. Seizure detection methods for TUH and CHB-MIT EEGs.

Reference Method Sensitivity Specificity Accuracy

[8] CNN + LSTM 30% - -
[13] Convolutional LSTM 30% - -
[9] 2D CNN 39.2% 90.4% -

TUH [10] CNN + MLP 31.58%
[11] WaveNet + LSTM 88.76%
[39] CNN - - 86.59%
[15] Random forest 67.5% 71.1% -
[40] XGBoost 20% - -

[41] KNN 88% 88% 93%
[42] VGG16 85.94% - 85.41%

CHB-MIT [43] SVM 90.62% 99.32% -
[44] Bi-LSTM 93.61% 91.85% -
[45] Random forest 93.60% 93.37% -

4.4. Performance on TUH and CHB-MIT EEG

Table 4 presents the outcomes of the four seizure detection models based on LightGBM,
evaluated on the training set, validation set, and independent test set. Notably, Model 2
exhibits the worst performance on the independent test set in comparison to the other
models. Model 4 excels in performance on the validation set, while Model 3 demonstrates
the best performance on the independent test set.

Table 4. Performance of the LightGBM-based seizure detection methods on the training, validation
and independent test set (TUH children and CHB-MIT pediatric and adolescent EEG).

Dataset Database Sensitivity (%) Specificity (%) Accuracy (%) Balanced Accuracy (%)

Model 1

Train TUH Children 95.18 96.85 96.68 96.01
Validation TUH Children 94.97 96.47 96.32 95.72
Test TUH Children 73.15 95.72 98.68 86.15
Test CHB-MIT 58.82 62.15 62.09 60.48

Model 2

Train TUH Children 95.55 96.93 96.79 96.24
Validation TUH Children 94.89 96.53 96.37 95.71
Test TUH Children 75.07 99.25 98.82 87.16
Test CHB-MIT 62.31 57.56 57.65 59.93
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Table 4. Cont.

Dataset Database Sensitivity (%) Specificity (%) Accuracy (%) Balanced Accuracy (%)

Model 3

Train TUH Children 95.51 96.91 96.77 96.21
Validation TUH Children 95.23 96.57 96.44 95.90
Test TUH Children 74.28 99.40 98.95 86.84
Test CHB-MIT 59.08 64.92 64.82 62.00

Model 4

Train TUH Children 95.57 97.05 96.90 96.31
Validation TUH Children 95.20 96.69 96.54 95.95
Test TUH Children 73.50 99.39 98.93 86.45
Test CHB-MIT 59.58 62.81 62.76 61.20

5. Discussion

Many existing seizure detection methods have been primarily tailored to adult EEG
data [10,12,13]. However, the application of these methods to pediatric and adolescent EEG
data are considerably limited. Research has unequivocally demonstrated that the adapta-
tion of adult-based methodologies to children is not a viable solution [15]. Consequently,
there exists a pressing need for the development of seizure detection methods specifically
designed for the pediatric and adolescent population [15]. Moreover, research into au-
tomated seizure detection, especially when trained and tested on diverse databases, has
been relatively restricted. Several studies have investigated the use of different algorithms
for automated seizure detection in TUH EEG or CHB-MIT EEG datasets (refer to Table 3).
However, these studies primarily focused on training and testing on the same database,
leaving the performance of external databases largely unexplored.

These gaps were addressed by introducing novel automatic seizure detection methods
explicitly tailored to pediatric and adolescent EEG data. To ensure the robustness of the
method, a five-fold cross-validation approach was employed. Our method achieved an
average sensitivity of 97.52%, average specificity of 96.76%, average accuracy of 97.14%,
and average balanced accuracy of 97.14% on the training set. Moreover, the pediatric and
adolescent datasets were partitioned into distinct training and testing sets, guaranteeing
the independence of the test data. The method achieved an accuracy rate of 98.95% on the
TUH test set. Additionally, the method was subjected to rigorous evaluation on an external
test set, the CHB-MIT EEGs, where it exhibited an accuracy of 64.82%.

Furthermore, it is well-established that brain events in EEG data evolve with age [14].
Previous research has illuminated disparities in rhythm activities between male and female
children [16]. Thus, the potential impacts of age and sex were explored on the detection
of seizures in pediatric and adolescent EEG. Four distinct models were crafted for seizure
detection in pediatric and adolescent EEG.

Four distinct LightGBM-based models were developed for seizure detection in pedi-
atric and adolescent EEG data. The baseline model (Model 1) using 20 features from time
and frequency domains served as the initial benchmark. These 20 features have been com-
monly employed in previous studies focusing on EEG analysis [46,47]. Model 2’s addition
of sex as a feature to assess the importance of sex in pediatric seizure detection, exhibited a
slight improvement of 0.14% in accuracy on the TUH test set. However, its adverse impact
on the CHB-MIT EEG data, resulting in a decrease of approximately 5%, prompts scrutiny
into the complex interplay of sex as a predictive feature in different datasets. Model 3,
integrating age group as a feature, demonstrated improvements in accuracy on both the
TUH test set and the CHB-MIT EEG test set compared to the baseline model. The decision
to categorize age into two groups, 0–10 years and 10–20 years, was based on existing
literature citing distinct neurological developmental stages between pre-adolescents and
adolescents [48,49]. Model 4, extending from Model 3 by incorporating sex as an additional
feature, paradoxically resulted in reduced accuracy on the independent test set. This ob-
servation emphasizes the intricate relationship between demographic variables and EEG
features in seizure detection. The uncertainty surrounding the impact of sex in the models
underscores the necessity for a deeper investigation into its role and potential correlations
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with other variables present in the dataset. Our findings strongly indicate age group as a
key feature in EEG-based seizure detection, superseding other demographic variables in its
influence. Figure 4 illustrates the pronounced significance of age as a contributing factor
in the seizure detection process, showcasing its prominence over sex as observed in the
model outcomes.

Our previous study [15] trained models using the TUH adult EEG data and tested them
on the CHB-MIT EEG data. This approach was not successful, with a sensitivity of 91.2%,
specificity of 10.3%, and an accuracy of only 10.5% and a balanced accuracy of 50.8% on the
CHB-MIT EEG dataset. It is apparent that our previous method achieved a high sensitivity,
but suffered from low specificity and accuracy. This suggests that the previous method
exhibited a high true positive rate (TP), low false negative rate (FN), and true negatives
(TN). Essentially, the method tended to classify nearly every event as a seizure event,
leading to subpar performance. This could be attributed to the resemblance of features
between non-seizure events in pediatrics and seizure events in adults, thereby adversely
impacting performance. Therefore, there is a need to develop a pediatric-specific seizure
detection method. However, in this work, training on TUH pediatric and adolescent EEG
data and testing on CHB-MIT EEG data, yielded significantly improved results, achieving
an accuracy of 64.82% and a balanced accuracy of 62.00% on the CHB-MIT EEG dataset.
These findings strongly indicate that age-related differences play an important role in EEG
patterns and their interpretation.

Due to its simplicity and ease of implementation, the Teager–Kaiser Energy Operator
(TKEO) has proven to be a valuable tool for detecting changes in signal properties in various
applications, as demonstrated in prior research [46]. The investigation has further underscored
the significance of TKEO as a feature for the identification of seizure events, as depicted in
Figure 4. Furthermore, Figure 5 presents a comprehensive comparison of TKEO values
between seizure events and non-seizure events across five specific channels in both the TUH
pediatric and adolescent EEG and CHB-MIT pediatric and adolescent EEG datasets. In the
case of the TUH EEG data, it is evident that most of the TKEO values for seizure events are
significantly lower than those for non-seizure events, particularly on channels P3-O1, FP1-F7,
and C3-P3. A similar trend is observed in the CHB-MIT EEG data, where TKEO values for
seizure events are lower than those for non-seizure events on channels F3-C3, P3-O1, FP1-F7,
and FP1-F3. These findings underscore the marked distinctions in TKEO values between
seizure and non-seizure events across a range of channels.

An analysis of mean amplitude differences between seizure and non-seizure events
was conducted, with a specific focus on sex, across five designated channels within the
TUH pediatric and adolescent EEG and CHB-MIT pediatric and adolescent EEG datasets.
The findings, as depicted in Figure 6, reveal distinct patterns. For the CHB-MIT EEGs, it is
evident that the mean amplitude during seizure events is higher than during non-seizure
events for both males and females across the selected five channels. However, a noteworthy
divergence is observed in the case of TUH male EEGs, where the mean amplitude during
non-seizure events surpasses that of seizure events.

Gender disparities in epilepsy are prevalent and extend across a spectrum of epilepsy
syndromes. The magnitude of these differences fluctuates among distinct seizure disorders,
with notable impacts from age-related factors. Notably, women exhibit a higher prevalence
of diagnoses in idiopathic generalized epilepsies compared to men [50]. Carlson et al. [51]
revealed significant gender disparities in the occurrence of atonic seizures, which were more
prevalent in males with generalized epilepsy, as well as in autonomic, visual, and psychic
symptoms associated with nonacquired focal epilepsy, which were more common in
females. Additionally, research [52] has highlighted distinct studies linking temporal
lobe seizure characteristics with age. Similarly, investigation [53] emphasized the age
dependency of EEG, suggesting the need to examine the impact of age on seizures and
non-seizure events.

Despite the growing interest in sex and age differences in disease presentations and
treatment responses, data are scarce on sex and age analysis in seizures and non-seizures. We
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incorporate age and sex as features to develop the method and analyze the features in seizure
and non-seizure events between age and sex. This study found that among female EEGs,
the mean amplitude during seizure events exceeds that of non-seizure events on specific
channels (F3-C3, P3-O1, and C3-P3), while it is lower on other channels (FP1-F7 and FP1-F3).
Interestingly, Figure 6 reveals that the mean amplitude during seizure events is consistently
higher for females compared to males in both TUH and CHB-MIT EEGs. Additionally,
the mean amplitude during non-seizure events tends to be lower for females compared
to males in both datasets. Nevertheless, the analysis undertaken earlier revealed certain
disparities in the amplitudes observed between males and females during both seizure and
non-seizure events in the five selected channels within the two datasets. As a result, it remains
challenging to conclusively determine the impact of sex on the efficacy of seizure detection.

A comparison of mean amplitude between seizure and non-seizure events in children
aged over 10 and those aged 10 or younger was conducted, considering five specific
channels within the TUH pediatric and adolescent EEG and CHB-MIT pediatric and
adolescent EEG datasets. As illustrated in Figure 7, significant trends emerge. For TUH
EEGs, it is evident that the mean amplitude during non-seizure events surpasses that of
seizure events in both age groups (1. aged over 10, and 2. those aged 10 or younger) across
the selected five channels. Conversely, in CHB-MIT EEGs, an intriguing finding is that the
mean amplitude during non-seizure events is lower than during seizure events for both
age groups (1. aged over 10, and 2. those aged 10 or younger) in the selected five channels.

It is noteworthy that, across both the TUH and CHB-MIT EEG datasets, the mean
amplitude of non-seizure events within the younger age group is consistently higher than
that of the older age group in the selected five channels. Additionally, the mean amplitude
of seizure events within children aged 10 or younger also consistently exceeds that of
children aged over 10 years old in the same channels within both datasets.

To further assess the potential differences in seizure events between children aged
10 or younger and those aged over 10 years, t-tests were conducted on the seizure events
within the selected five channels in pediatric and adolescent EEG data. For the CHB-MIT
EEGs, the results (p-value ≥ 0.05) indicated that there was no significant difference between
the seizure events in the two age groups across various channels. This lack of significance
might be attributed to differences in sample size, as the CHB-MIT EEG dataset had only
22 patients. Consequently, the disparities may not have been readily apparent.

In the case of the TUH EEGs with a larger sample size (N = 184), the results
(p-value < 0.05) demonstrated a significant difference between the seizure events in the
two age groups across different channels. This comprehensive analysis underscores the
evident impact of age on the amplitude differences in epilepsy, particularly within the TUH
pediatric and adolescent dataset, highlighting the evident impact of age on the process of
seizure detection. Consequently, it is highly recommended to include age as a pertinent
feature when devising automated methods for seizure detection.

The limitation of this study lies in its performance on the CHB-MIT EEG dataset, where
the accuracy was 64.82%. This discrepancy may be attributed to the distinct EEG recording
methods employed by the TUH EEG and CHB-MIT EEG datasets, potentially resulting
in differences in EEG patterns that affect the overall performance. Furthermore, the TUH
EEG dataset encompasses Absence Seizures, Complex Partial Seizures, Focal Non-Specific
Seizures, Generalized Seizures, Tonic–Clonic Seizures, Tonic Seizures, Simple Partial Seizures,
and Myoclonic Seizures. In contrast, the CHB-MIT EEG dataset includes clonic Seizures,
atonic Seizures, and tonic Seizures. The varying types of seizures present in each dataset
might contribute to the lower performance observed in the CHB-MIT EEG compared to the
TUH pediatric and adolescent EEG. Another limitation is that the classifier incorporates age
by implementing a threshold on the age range (>10 and ≤10), rather than using the original
age values. Such methodologies might not be effective for datasets with limited age ranges.

The dataset’s size and diversity might not fully represent the complexity and variability of
pediatric and adolescent EEG data in clinical scenarios. This limitation could affect the model’s
generalizability to diverse patient populations or specific clinical conditions not extensively
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covered in the dataset. Additionally, while age and sex were incorporated as features, other
potentially influential factors may exist, such as varying EEG acquisition protocols which
were not comprehensively addressed. The absence of these factors could limit the model’s
robustness and performance in clinical settings where such variations are prevalent.

It is worth noting that the TUH EEG dataset encompasses a broader spectrum of
seizure types, including focal non-specific seizures, generalized seizures, tonic–clonic
seizures, and tonic seizures [33], whereas the CHB-MIT EEG dataset primarily consists
of clonic, tonic, and atonic seizures [54]. Given the variations in seizure patterns and
rhythm activities associated with different seizure types, it is plausible that this diversity
contributed to the lower accuracy observed on the CHB-MIT EEG dataset. Nonetheless, it is
important to highlight that this study was conducted across different subjects and databases,
achieving a respectable level of performance. This study is dedicated to examining the
influence of age and sex on seizure detection in pediatric and adolescent EEG. Consequently,
the specific seizure type was not taken into account. Nevertheless, acknowledging the
significant impact that seizure type may have on seizure detection. Future work will
investigate the impact of seizure type by using uniform seizure types in both the TUH and
CHB-MIT EEG datasets. This approach will allow us to explore whether the specific type
of seizure has a discernible influence on the performance of the models.

6. Conclusions

A seizure detection method was developed using LightGBM applied to pediatric and
adolescent EEG recordings. To ensure the independence of test sets, the children were
partitioned into distinct training and testing sets, resulting in the highest accuracy of 98.95%
on the TUH test set. Furthermore, an evaluation of the method using an external test
set (CHB-MIT EEGs) was conducted, reaching a peak accuracy of 64.82%. Additionally,
the impact of age and sex on seizure detection was explored, revealing that age is a critical
factor in this process. Our findings hold significant promise for enhancing the speed,
reliability, and repeatability of seizure analysis in pediatric and adolescent EEGs, thereby
contributing to advancements in research and clinical applications.
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