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Abstract: Mammogram exam images are useful in identifying diseases, such as breast cancer, which is
one of the deadliest cancers, affecting adult women around the world. Computational image analysis
and machine learning techniques can help experts identify abnormalities in these images. In this
work we present a new system to help diagnose and analyze breast mammogram images. To do this,
the system a method the Selection of the Most Discriminant Attributes of the images preprocessed by
BEMD “SMDA-BEMD”, this entails picking the most pertinent traits from the collection of variables
that characterize the state under study. A reduction of attribute based on a transformation of the
data also called an extraction of characteristics by extracting the Haralick attributes from the Co-
occurrence Matrices Methods “GLCM” this reduction which consists of replacing the initial set
of data by a new reduced set, constructed at from the initial set of features extracted by images
decomposed using Bidimensional Empirical Multimodal Decomposition “BEMD”, for discrimination
of breast mammogram images (healthy and pathology) using BEMD. This decomposition makes
it possible to decompose an image into several Bidimensional Intrinsic Mode Functions “BIMFs”
modes and a residue. The results obtained show that mammographic images can be represented in a
relatively short space by selecting the most discriminating features based on a supervised method
where they can be differentiated with high reliability between healthy mammographic images
and pathologies, However, certain aspects and findings demonstrate how successful the suggested
strategy is to detect the tumor. A BEMD technique is used as preprocessing on mammographic
images. This suggested methodology makes it possible to obtain consistent results and establishes
the discrimination threshold for mammography images (healthy and pathological), the classification
rate is improved (98.6%) compared to existing cutting-edge techniques in the field. This approach
is tested and validated on mammographic medical images from the Kenitra-Morocco reproductive
health reference center (CRSRKM) which contains breast mammographic images of normal and
pathological cases.

Keywords: bidimensional empirical multimodal decomposition “BEMD”; breast cancer; CT-Scan;
the gray level co-occurrence matrix “GLCM”; Haralick characteristics; medical mammography image
classification; supervised iterative selection; computer-aided diagnosis; artificial intelligence

1. Introduction

The most common cancer among women worldwide is breast cancer. Different organi-
zations publish a number of reports on the epidemiology and degree of breast cancer [1]. As
of December 2020, data from the International Agency for Research on Cancer, or “IARC”,
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indicated that breast cancer had eclipsed lung cancer as the most prevalent disease diag-
nosed worldwide. The total number of cancers diagnoses over the last 20 years has nearly
doubled, from about 10 million in 2000 to 19.3 million in 2020. In the modern world, one in
five people will experience cancer at some point in their lives. According to projections,
there will be a notable rise in the number of cancers diagnoses in the upcoming years,
with estimates indicating a nearly 50% increase from 2020 to 2040 [2]. Mammography is
the most popular modality among them all for screening for various breast abnormalities.
Mammography, however, has a number of flaws that make it a less accurate or conclusive
test. This method sometimes produces unclear images, which causes radiologists to make
diagnostic mistakes that fall into two categories: false positives and false negatives.

Artificial intelligence “AI”, whose first concepts for many years, many scientists
have tried to help radiologists detect and diagnose these anomalies in the medical field.
The use of natural language data entry. This enables the development of algorithms for
the automatic processing of medical pictures from enormous volumes of radiological
data, Computer-aided diagnosis, (CAD), systems and mammography image processing
techniques are created for this purpose.

According to the American Cancer Society, radiologists miss about 20% of breast
cancers during mammograms, and half of women who undergo screening tests over a ten-
year period receive a false-positive result. The integration of medical imaging diagnostics
with clinical, biological, and genetic data creates a true “integrated medicine,” and artificial
intelligence, machine learning algorithms in the areas of breast cancer diagnosis of the
breast opening the way to personalized, predictive medicine. The great difficulty of medical
data is the multiplicity of their sources and their mode of expression (coding).

The future of AI in breast cancer screening is bright, as it is increasingly being used to
analyze mammograms and tomosyntheses. Research is being conducted to expand its use
to MRI, particularly for high-risk women. In the long run, AI could also help determine
which patients need chemotherapy; the rapid development and implementation of AI has
the potential to revolutionize healthcare.

Several studies are conducted in the medical field:
Co-learning and the integration of features from clinical texts and medical imaging

are made possible by medical vision language models. Nevertheless, this technique,
called Medical Vision Language Pretraining with Frozen Language Models and Latent
Space Geometry Optimization (M-FLAG), enhances the pre-trained model’s potential
for medical image classification, segmentation, and object detection by utilizing a frozen
language model for stability and training efficiency in addition to a new orthogonality
loss to harmonize the latent space geometry [3]. English and Spanish are the two most
often used languages. Medical Vision-Language Pre-Training (Med-UniC) aims to combine
multimodal medical data from both of these languages. Specifically, multilingual semantic
representations of medical reports from different language communities are explicitly
unified using multilingual text alignment regularization (CTR) [4]

Textural analysis is part of these computer operations, such as: regularity, homogeneity,
contrast, etc. In the context of medical images, this type of analysis can be used for various
reasons for distinguishing between healthy and pathological areas [5,6]. Many feature
extraction techniques based on texture, shape, and gray level features have been presented
recently for mass classification of mammography images. In order to differentiate between
benign and malignant tumors in mammography images, grayscale features—first-order
statistics including mean, standard deviation, and variance—are used to evaluate intensity
variation [7–9]. Using pixel layouts in space, shape parameters including circumference,
area, compactness, and circularity are retrieved to differentiate between breast tissue that
is mass and that which is normal [10–13]. Texture is a key feature for mass classification
in mammography images since it explains how pixel brightness vary spatially [13]. This
determines whether the image’s features are soft or coarse. Well-defined primitives are
used in structural approaches to represent the texture and yield an accurate symbolic
representation of the image [14,15]. The distribution and connections of gray levels in
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an image are determined by features that are the basis of statistical techniques. GLCM
and GLRLM calculations are used for the most popular statistical techniques [16–18].
Transformation methods rely on image processing in the transformation domain. The most
common methods for extracting texture features in various orientations are Gabor wavelets
and the Contourlet transform [15,19,20]. Once the features from the mammography mass
ROI have been extracted, To categorize the mass as benign or malignant, classifiers are
employed. Researchers most frequently utilize LDA, K-closer neighbors, decision trees,
and SVM as classifiers for mass mammography categorization. Using Gabor filters, S.
Khan et al. suggested texture features [15]. SVM was utilized for classification, and the
accuracy on average was 93.95%. Based on neighborhood structural similarity, R. Rabidas
et al. [14] proposed a technique for extracting texture information. Using LDA, 94.57%
accuracy in classification was attained.

X. Liu et al. [16] present a method that incorporates geometric and textural features into
the SVM classifier for mammography mass classification. This method yielded an accuracy
of 94%. Ioan B et al. [19] characteristics that were extracted with direction from Gabor
wavelets and classified the data using proximal SVM. The classification of masses into
benign or malignant mammograms BEMD and MBEMD, two feature extraction techniques,
are used [21], with accuracy respectively 90%, 92.59%.

We present a novel approach in this work to automate the assessment of breast cancer
using mammographic medical images called the selection of the most discriminative
attributes (SMDA-BEMD). Existing feature extraction methods have resulted in a large set
of features and hence dimensionality reduction of the feature set or feature selection needs
to be done.

We present a novel approach in this work to automate breast cancer assessment using
mammographic medical images. The configuration of the proposed method is as follows:
The image is decomposed into its constituent elements using the BEMD algorithm “BIMF
+ residual levels” [22,23], Then, the extraction of descriptors using the fourteen Haralick
attributes of the co-occurrence matrix [24] of the BIMF, Residue and image components
constructed after decomposition and also for the original images. the total number of
features is very high, the determination of a subspace of the most discriminating features
of these descriptors, where the one-dimensional observations associated with each medical
mammography image—both abnormal and healthy—are decomposed into discrete compo-
nents. The subspace is selected by an iterative procedure based on a supervised learning
program [25,26].Our project will be validated by a review of the healthy and pathological
medical photos that were chosen from the Kenitra Morocco Reference (CRSRKM) database
and the Reproductive Health Center.

This article is structured as follows: The theoretical framework is presented in the
Section 2 where we present the two-dimensional empirical modal decomposition (BEMD),
Firstly, and an overview of texture analysis methods, particularly analysis methods based
on co-occurrence matrices is presented in a second step. Section 3 presents the overall
functional architecture on the Selection of the most discriminating attributes. Section 4
presents the general architecture of the model. The results, along with their explanations
and a discussion, are shown in Section 5. Concluded in the final Section 6.

2. The Theoretical Farmwork
2.1. Bidimensional Empirique Multimodal Decomposition Algorithm

Empirical Mode Decomposition or EMD is a flexible signal decomposition technique.
Its principle is based on an adapted decomposition by locally describing the signal as
a succession of contributions from fast oscillations to slower oscillations. Because of its
self-adaptive nature, it can recognize variations in the signal’s amplitude or frequency. It
has become one of the most well-known decomposition filters due to its ability to analyze
non-stationary and non-linear signals on multiple scales with great power, EMD was in-
troduced in image analysis and processing (BEMD). It consists of decomposing the image
into different modes called BIMFs (Bidimensional Intrinsic Multimodal Functions), which
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have a good physical meaning. Knowledge of these modes makes it possible to intuitively
understand the frequency content of the image and therefore a better description of the
image. This technique has been successfully applied to real data such as oceanography
and the study of climatic phenomena [27], seismology [28], non-destructive testing [29],
underwater acoustics [30], biology [31], image denoising [32], image compression [33], im-
age feature extraction [34,35], texture synthesis [36], to image texture classification [37] and
watermarked images [38].The BEMD is defined by a process called “sifting” to decompose
the image into basic contributions (BIMF) which are of the AM-FM type, each with zero
a mean [39].

2.1.1. BEMD Algorithm

The EBMD algorithm is described as follows:

Step 1. Initialization: r0(t) = x(t), k = 1 (x(t) is the original signal and r0(t) is the residual).
Step 2. Extraction of the kth BIMF noted dk(t) (the sifting process)

(a) Initialization: h0(t) = rk−1(t), j = 1
(b) Extract the local maxima and minima of hj−1(t)
(c) Let us calculate the upper and lower envelope by interpolating the maxima

and minima of hj−1(t) ((EnvMaxj−1(t), EnvMinj−1(t))
(d) Determine the average envelope of the two envelopes.

mj(t) = 1
2 (EnvMaxj−1(t) + EnvMinj−1(t)) = (EnvMoyj(t))

(e) hj(t) = hj−1(t)− mj(t)
(f) If the stopping criterion is satisfied then dk(t) = hj(t) otherwise return to

(b) with j = j + 1.su

Step 3. rk(t) = rkj−1(t)− dk(t)
Step 4. If rk(t) has at least 2 extrema, return to (2) with k = k + 1 otherwise the decompo-

sition is finished; rk(t) consists of the residue r(t) of this decomposition.

The flowchart below illustrates the BEMD decomposition algorithm (Figure 1):

Figure 1. The flowchart of the Bidimensional Empirique Multimodal Decomposition BEMD algorithm.

The flowchart described below has two nested loops. The main loop corresponds
to the same concept as the sifting loop which It stops when it is no longer possible to
extract an oscillating component. This makes it possible to define the level of depth of the
decomposition The sifting loop which corresponds to the sifting process described below
to obtain a BIMF.
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Thus, the reconstruction of image I is carried out by summing all the components
(BIMFk)k=1....n−1 and the residual Ir (1)

I =
n−1

∑
k=1

BIMFk + Ir, n ∈ N (1)

where BIMFk is the kth oscillation, Ir is the residue of the decomposition and n − 1 is the
number of BIMFs (Bidimensional Intrinsic Multimodal Functions).

2.1.2. Sifting (SD)

This is the most important step in the algorithm. BIMF is extracted at this stage. This
process, known in the literature as “sifting” or “sifting process”, is iterative. Formally,
we define this process as an iteration of the elementary sieve operator S. The oscillatory
components are then defined by iterations of this operator (2):

xk(t) = dk(t) = Sj(rk−1(t)) (2)

where j is the number of iterations determined according to certain criteria to obtain the
kth BIMF. It is worth noting that a stop condition is required to stop the screening process.
This condition is associated with the criteria defined in the next paragraph.

2.1.3. Criteria for Stopping The Decomposition

The criteria for stopping the screening process are based on the properties of the
BIMF. Furthermore, the quality of BIMF extraction depends on the quality of the previous
BIMF. Therefore, the choice of criteria for stopping the screening process is very important.
Against this background, several recommendations were made:

• Convergence of the screening process is assumed. Second bullet;
• Perform a certain number of iterations without verification testing of the extracted

BIMF (not recommended).
• Define a stopping criterion during sifting.

Cauchy Criterion in L2 Standard

In the work [40], the authors propose a stopping criterion SD (j) based on the standard
deviation (Standard Deviation SD) defined by (3)

SD(j) =
T

∑
t=0

[(
dj−1(m, n)− dj(m, n)

)2

d2
j−1(m, n) + ξ

]
(3)

where j is the index of the jth BIMF, dj−1(m, n) and dj(m, n) are the results of two consecu-
tive siftings and ξ is a (weak) term intended to eliminate possible divisions by zero.

The Double Stopping Step

As an improvement on the termination criterion proposed in [40], article [41] proposes
a more subtle criterion. To do this, two steps must be defined θ1 and θ2 : the first to limit
small amplitudes and the second to limit large amplitudes. We use the upper and lower
envelopes to define the mean and amplitude of a given signal (4), (5):

m(t) =
UpperEnv(t) + LowerEnv(t)

2
(4)

a(t) =
UpperEnv(t)− LowerEnv(t)

2
(5)

where UpperEnv and LowerEnv are the upper and lower envelopes respectively
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The evaluation function is (6):

σ(t) =
∣∣∣∣m(t)

a(t)

∣∣∣∣ (6)

We then iterate the sifting process until
σ(t) < θ1 for (1 − α) the duration of the signal.
σ(t) < θ2 for α the duration of the remaining signal.
Usually, we choose α = 0.05, θ1 = 0.05 and θ2 = 10θ1.
When the number of extrema is less than two [23], which is typically when the

decomposition ends, there are no more oscillations to extract. The number of BIMFs
selected is influenced by the application details. For example, when denoising images, we
only need the first BIMF [42].

2.1.4. Determination of Extrema in 2D Signal

Morphological reconstruction is one of the alternative methods used in the search
for extrema points. This method is based on geodesic operators, namely erosion and
dilation [43,44]. The following definition applies to an image’s morphological dilation with
the structuring element (7):

δB(I) = I ⊕ B = sup{ I(x − q)|x ∈ I, q ∈ B} (7)

The same goes for the morphological erosion of the image with the structuring element.
It is defined as follows (8):

δB(I) = IΘB = inf{ I(x − q)|x ∈ I, q ∈ B} (8)

2.1.5. Interpolation

One of the most important processes in the estimation and extraction of BIMFs from
extrema is interpolation. The two upper and lower envelopes can only be obtained by
interpolating the extrema after they have been extracted. The points that need to be
interpolated in the two-dimensional case are scattered, or “scattered data”, rather than
arranged on a regular grid. As such, a more complex method tailored to this kind of
problem is needed. Radial basis functions, also known as RBFs or Radial Basis Functions,
are typically used [45]. A radial basis function has the form (9):

∀x ∈ Rd; S(x) = pm(x) +
n
∑

k=1
λkϕ(||x−xk||)

with xk ∈ Rd et λk ∈ R
(9)

where pm is a low degree polynomial, xk with 0 ≤ k ≤ n are the interpolation centers; ||.||
is the Euclidean norm in R2, ϕ is the basis function for functions with an assumed fixed
radial basis and λk are the RBF coefficients to be determined.

The equation S(x) resulting from an RBF interpolation is defined by the coefficients
of the polynomial P and the weights λk. Given f = ( f1, f2, . . . . . . . fN), we look λk for the
weights for the RBF to check (10):

s(Xi) = fii = 1, . . . . . . .., N
with Xi = (xi, yi)

(10)

By doing this, we are able to reduce our problem from one in an infinite dimensional
space to one in a finite dimensional space (the set of coefficients that determine s) and to a
linear system that can be solved using standard linear algebra techniques.
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2.1.6. Application Example

In this part, we will present an example of the application of BEMD that illustrates
the principle of BEMD decomposition, that is, a multi-scale decomposition from high
frequencies to low frequencies.

We illustrate in the figures below the result of a BEMD decomposition of a synthetic
2D signal (11).

S(x, y) = exp(− (x2 + y2)) + cos(2y) + sin(3x) + bruit_blanc(x, y) (11)

The decomposition is carried out without any prior knowledge of the characteristics
of the signal S. It makes it possible to extract, initially, the high frequency components like
BIMFs 1 and 2 in Figure 2. The low frequency components begin to appear in the 3rd BIMF.
We can say that the BEMD behaves like a self-adapting filter bank. The BEMD makes it
possible to select, on a local scale the oscillations corresponding to high frequencies, to and
gradually tend towards those corresponding to the lowest frequencies Figure 2.

Figure 2. Bidimensional Empirique Multimodal Decomposition BEMD of the signal S(x,y).

2.2. Texture Analyze Methods
2.2.1. GLMC Co-Occurrence Matrices Methods

To the extent that we seek certain forms of regularity within images made up of a very
large number of pixels, the statistical analysis seems a priori interesting. Indeed, the use
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of gray level co-occurrence matrices of pixels of an image are the most popular statistical
technique [46–50] for extracting texture descriptors for different types images, as well as
for the analysis, segmentation and classification of images of types varied [51].

A co-occurrence matrix is used to characterize the local distribution of gray levels in a
spatial neighborhood of each image pixel [52].

In the classical framework of image processing, an element M (d, i, j) of a co-occurrence
matrix is determined by counting the number of times a pixel P = [x1′, x2′] T with a gray level
i is positioned with respect to a pixel pixel P = [x1, x2 ] with a level of gray j knowing that

Pr′ = Pr

(
dcos θ

dsin θ

)
(12)

where d is the distance in the θ direction between the two pixels. Consider an image to
be analyzed I rectangular. Its size in x is Nx and that in y is Ny. Suppose the gray level is
quantized over a set of Ng discrete values. Let Lx = {0, 1, 2, . . ., Nx − 1}, Ly = {0, 1, 2, . . .,
Ny − 1} the horizontal and vertical spatial domains, and G = {0, 1, 2, . . ., Ng − 1} all the
quantized Ng gray levels. The set Lx × Ly is the set of pixels in the image. The image I can
be represented as a function which assigns a value from the set G to each pixel from the set
Lx × Ly.

I: Lx × Ly → G

Therefore, the formula defining the non-normalized co-occurrence matrix element, M
(d, θ, i, j) of I is as follows

M(d, θ, i, j) = card
{

(n, m)ϵ
(

Lx × Ly
)
/

I(n, m) = i, I(n ± d cosθ, m ± d sinθ = j

}
(13)

This matrix is then normalized:

m(d, θ, i, j) =
M(d, θ, i, j)

∑
Ng−1
i=0 ∑

Ng−1
j=0 M(d, θ, i, j)

(14)

θ is the particular direction in which the relationships between pixels go be analyzed
(θ = 0◦, 45◦, 90◦ or 135◦). Figure 3 illustrates the different directions considered is the
distance at which the neighbors of the pixel to be analyzed are located (d) (see Figure 3)
or an image having Ng distinct gray levels, the co-occurrence matrix admits Ng × Ng
elements for each direction θ. Even if we see that this matrix is symmetrical (the number
of transitions from gray level i to level j is equal to the number transitions from level j to
level i), the number of elements is generally far too important for the matrix to be directly
used to characterize the texture in question. A first reduction of this number consists, for
example, of reducing the number of gray levels of the image by histogram equalization. In
practice, this general formulation is particularized for the main directions of θ.

Figure 3. Co-occurrence matrix directions.
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2.2.2. Statistical Attributes

The co-occurrence matrices are full of information, but because they are difficult to
alter and include a lot of data, they are nevertheless difficult to use in their totality. One
method of using the co-occurrence matrix elements as texture properties is to decrease the
number of gray levels; this is why there are fourteen in the table. The elements that I have
chosen, as defined by Haralick [53,54], can be computed from these matrices in various
directions to represent the descriptive characters of the textures and provide an overview
of all the information that the co-occurrence matrix offers, such as homogeneity, contrast,
energy, entropy, correlation, and so forth Table 1.

Table 1. Texture attributers proposed bay haralick.

Haralick Attributes

f1 Second moment angular f8 Entropy of sums
f2 Contrast f9 Entropy
f3 Correlation f10 Variance of differences
f4 Variance f11 Entropy of differences

f5 Moment differential
inverse (or homogeneity) f12 Correlation Information −1

f6 Average sums f13 Correlation Information −2
f7 Variance of sums f14 Maximum correlation coefficient

3. Selection of the Most Discrimling Attributes
3.1. Slection of the Most Discrimling Attributes of Decomposed Images

Amount Considering every pixel in the 14-dimensional attribute space displayed in
Table 1. The vector I has 14 attributes linked to it. The total number of qualities (Nf = 14) is
usually too high in dimension. It is interesting to determine which one-dimensional data
analysis techniques are the most discriminant. Based on the calculation of their discrimi-
nating ability, we assume that the clusters associated with the classes of mammography
images are the best capable of differentiating between the two classes (healthy and patho-
logical). Finding an attribute space where the one-dimensional observations (healthy and
diseased) associated with each preprocessed mammography medical image are sufficiently
separated to form readily distinguishable categories is the goal. This will assist in locating
the area with the greatest discriminating qualities. By considering an increasing number of
distinctive qualities, we consider subspaces R1, . . ., Rn . . ., R14 connected with 14 attributes
of increasing dimensions. The 14 two-dimensional subspaces R1 are connected to the
14 table. At each stage of this process, an informational criterion J is calculated to assess
the discriminative power of each candidate feature space and to gauge the compactness
and separability of the groups of observations linked to the various breast mammogra-
phy images under consideration. The 14 two-dimensional subspaces R1 connected to the
14 table are the attributes where the algorithm begins [55]. The attribute space that maxi-
mizes the informational criterion J, like in (15), is the most discriminating:

J f = trace
∑

f
B

∑
f
W +∑

f
B

(15)

With (∑
f
w) The intra-cluster dispersion value defines how compact the texture classes are (16):

∑ f
W =

1
n∑Nc

k=1 ∑m2εck
(Xm − Xk)

2 (16)

(∑
f
B) The inter-cluster dispersion value defines the separability of classes (17).

∑ f
B =

1
n∑Nc

i=1 ni(Xi − X)2 (17)
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With (Card Q = f ) represents the set of characteristics, (card C = Nc) represents the set
of classes, and E represents the set of individuals.

Xi = (X j
i)1≤j≤q, vector of its f attributes. The values of the jth attribute are stored in

the vector X j = (X j
i)1≤i≤n, and each individual belongs to a class Ck, k = 1, . . ., Nc.

We notice: X j
= ∑n

i=1 X j
i the mean of attribute j, X the vector of means of each

attribute, Xk the vector of means of each attribute of the individuals of Ck, and nk the
cardinality of Ck.

The feature that maximizes J is the best option for distinguishing between texture
classes. In the first phase, C is selected, and in the second step (s = 2), it is linked to each of
the remaining (Nf − 1), After analyzing the trace criterion in the 14 spaces R2, the pair of
attributes with the highest discriminating power is retained. After that, each of the other
attributes in the sub-spaces R3 is linked to this pair of attributes in order to determine
which of the mammography images’ qualities is the best. The pair of attributes that is the
most discriminating is retained by evaluating the trace criterion in the 14 spaces R2, in
order to choose the mammography images’ best feature. Next, every other attribute in the
sub-spaces R3 is linked to this pair of attributes.

For images decomposed using BEMD decomposition which decompose an image
into several BIMFs (s = 1, . . ., 5) and residual modes, we have 6 co-occurrence matrices
and therefore 6 × 14 Haralick characteristics aken out of these matrices We examine that
Nf = 6 × 14 = 84 texture characteristics of images broken down (see the Figure 4).

Figure 4. Haralick features for decomposing images by Bidimensional Empirique Multimodal
Decomposition BMED.

Given that the total number of candidates, Nf, Nf decomposed texture features is
particularly high, it can deteriorate the quality of the discrimination because the risk of con-
sidering correlated attributes is then significant. Finally, the time required for classification
depends on the number of attributes considered.
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Processing each training image’s Nf characteristics is what this stage entails. The
following iterative selection technique then enables the process by which choose the best
features, i.e., those that are the most discriminative for the texture of NC classes: The
discriminative strength of every potential feature space is determined at each stage of this
process by computing an informative criteria J.

At the start of this technique (n = 1), The candidate feature in one-dimension Nf, the
spaces formed by each of the Nf features of the available BIMFs, are taken into consideration.
The best candidate characteristic for texture class classification is the one that maximizes J.
To produce (Nf − 1) candidate feature spaces in two dimensions, it is chosen as the first step
and linked to each of the (Nf − 1) remaining mode characteristics in the second stage of the
technique (n = 2). We believe that the ideal two-dimensional space for discriminating is the
one that maximizes J between the classes of healthy and pathological mammographic images.

Certain criteria must be defined to stop the search process on the most discriminating
subsets of characteristics. For our method, the commonly used stopping criterion is based
on the order of features, ranked according to certain relevance scores (generally statistical
measures). Once the features are ordered, those with the highest scores will be chosen and
used by a classifier.

The search process can stop when there is no longer any improvement in precision
when the selection of strongly discriminating attributes, In other words, when there is no
longer the possibility of finding a subset better than the current subset. See (Section 3.2
Stopping Criteria).

3.2. Stoping Criteria

Most writers favor using criteria that are based on assessments [56]:
In our study, the halting criteria determine a threshold by comparing the evaluation

value at stage m with the evaluation value at stage m + 1, which, when altering an attribute’s
value doesn’t sufficiently boost discrimination, terminates the search. The method looks
at the subspaces Rm + 1 of dimension (m + 1) when n attributes are kept out of the
14 available. Next, it chooses the (m + 1)th feature that maximizes the trac’ criterion when
paired with the n qualities that were previously chosed his procedure is then repeated with
the 14 qualities in descending order of relevance. The final features selected correspond to
the evaluation rate growth of the criterion’s initial stage in the sequence Jm [57], where Jm
is the trace J’s criterion value at that particular iteration. This assessment A rate is provided
by the following relationship, (18).

TV =

∣∣∣∣ Jm+1 − Jm
Jm+1

∣∣∣∣ (18)

Any qualities in the sequence Jm that are lower than the greatest value of this eval-
uation rate are not appropriate. This iterative selection procedure can effectively and
simply retain subsets of strongly discriminating attributes, but it does not ensure that the
optimal subset of attributes is obtained in terms of the separability and compactness of the
groupings of observations associated with the different types of mammogram images.

4. General Architecture of the Model (SMDA-BEMD)

This methodology consists of the global analysis of breast cancer mammography
images using gray level co-occurrence matrix methods. The proposed methodology consists
of the estimation of the properties of images relating to second-order statistics for a more
precise analysis in the calculation of the parameters, the statistical analysis gives the
relationships between a pixel and its neighbors and defines discriminant parameters of
the texture, using co-occurrence matrices which consists of calculating the repetitions of
gray levels in the image, it gives the differential characteristics of the local variation of
gray levels, to assign to each pixel a set of texture properties known as Haralick attributes
(14 attributes), these attributes are called local attributes, making it possible to summarize
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the textural information contained in the GLCM, the proposed Methodology is divided
into three stages:

The first stage: This methodology consists of calculating its haralick attributes on the
original images:

The second stage of this process involves calculating these attributes on images after
decomposing the mammographic images using BEMD decomposition which decomposes
an image into several BIMF modes “BIMF + residual levels”.

The third stage: This methodology consists of calculating the haralick attributes on
the reconstructed images.

The goal is to extract the database containing the attributes that are required to classify
images as either healthy or pathological, as well as to identify the range of the most
distinctive features for BIMFs and both the original and reconstructed images.

The proposed approach algorithm is described as follows:
Phase 1:

(i) Determine the 14 haralick attributes of all original Images healthy s in the studied database.
(ii) Determining the most reduced fat using the iterative selection method
(iii) Mammography image classification based on the best discriminating space for both

healthy and diseased classes.
(iv) Determination of the classification rate (%)

Phase 2:

(i) For each k = 1 to 5

- Extract from kth BIMF of all healthy people and pathology people with cancer
images in the database studied by the BEMD application.

- Determine the 14 haralick attributes of all each BIMF and the Residue.

(ii) Determining the most reduced fat using the iterative selection method with
NT = 84 attributes.

(iii) Classification of classes of healthy and pathological mammographic images according
to the most discriminating space.

(iv) Determination of the classification rate (%).

Phase 3:

(i) Determine the 14 haralick attributes of all healthy and cancerous Reconstructed
Images in the database studied.

Images Reconstructed = ∑5
k=1 BIMFk + The RESIDU (19)

(ii) Determining the most reduced fat using the iterative selection method
(iii) Using the most discriminating space, classes of normal and abnormal mammography

images are classified.
(iv) Determination of the classification rate (%)

Phase 4:
Comparison of the classification rates of the proposed methods and other methods.
The choice of these attributes is delicate and achieving efficient discrimination of the

classes involved leads us to consider an important set, an iterative selection procedure
based on a supervised learning program is used to determine this space [58] to form easily
identifiable groupings that are well separated based on which level of BIMFs. The method
of iterative selection is described in Section 3. Figure 5 presents the diagram of the Selection
the Most Discriminant Attributes of the images preprocessed by BEMD “SMDA-BEMD”.
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Figure 5. The architecture of the methods suggested for the diagnosis of breast cancer through
the identification of the most distinctive features of the images broken down using Bidimensional
Empirique Multimodal Decomposition (BMED).

5. Experimental Results and Discussion
5.1. Data Set

Mammography is the main diagnostic and screening method for breast cancer. It is a
radiographic (X-ray) examination of both breasts, and studies have demonstrated that early
detection of breast abnormalities considerably increases the chance of survival. For the
application of our method, we have a data set of medical images of the that was collected
from the reference center for reproductive health in Kenitra-Morocco “CRSRKM” This
data set contains 150 mammography images in their normal and cancerous cases, Figure 6
shows some examples.

Figure 6. Examples breast mammogram images: healthy (c,d) pathological (a,b). from the reference
center for reproductive health in Kenitra-Morocco (CRSRKM).

5.2. Experimental Results and Discussion

Figure 7 illustrates pathological and healthy images decomposed by the bidimensional
empirical multimodal decomposition “BEMD” method, they also to present the BIMFs
level, residue, and reconstructed images.
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Figure 7. The decomposition of pathology and healthy images decomposed by the bidimensional
empirical multimodal decomposition “BEMD” method.
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We carried out the 14 characteristics’ computation of Haralick from the table taken
from GLCM on mammography images of the original images (Figure 6) and of each BIMFs
and also of the reconstructed images of his (healthy and cancerous) Figure 7. It is therefore
necessary to choose a subset of these 14 texture attributes at each pixel of these images in
the attribute space of dimension 14, as this dimension is too high. This will enable the two
healthy and pathological observation classes to be easily separated by the reduction of the
representation space’s dimension, Table 2 compiles the most effective and discriminating
selections for traits of both healthy and pathological breast mammography images of each
BIMFs, residue and the reconstructed and original image, we employed the Section 3
iterative selection process.

Table 2. The Most Discrimling Attributes the for each BIMFs level, residue, reconstructed images and
originals images.

Type of Image Haralick Attributes The Most Discriminating Power
Jf for Healthy Images

The Most Discriminating Power
Jf for Pathological Images

BIMF1 f5 0.668 0.672
BIMF2 f4 0.777 0.403
BIMF3 f8 0.982 0.645
BIMF4 f10 0.582 0.423
BIMF5 f1 0.442 0.552

Residue f3 0.222 0.422
Reconstructed Image f11 0.868 0.724

Original image f6 0.862 0.771

The most discriminating features listed in the Table 2 are represented in the related
space by the observations taken from the two series of healthy images and pathologies
from our data set that were taken into consideration, are shown as point clouds, with one
representing a disease and the others representing a healthy one. Figure 7 illustrates the
results obtained from the most discriminating BIMFs level, the reconstructed images and
the original images.

Table 2 illustrates the most discriminative feature characteristics which are maximized the
discriminative power of the decomposed healthy and pathological breast mammogram images
for each BIMFs, the residuals and the reconstructed and original images. The most discriminative
The following is the Haralick feature that was taken out of the co-occurrence matrix:

For the original images: the most discriminating attribute selected for the normal
and pathological images is f11, their maximum discriminating power Jf is and 0.868 and
0.771 respectively.

For the reconstructive images: the most discriminating attribute selected is for the
normal and pathological images is, f6, their maximum discriminating power Jf respectively
is 0.862 and 0.724.

For the decomposed images: the most discriminating attribute selected for the healthy
and pathological decomposed images at the BIMF3 level is f8, their most discriminating
power Jf is respectively 0.982 and 0.645.

The results in Table 2 show that f8, extracted from the BIMF3 image co-occurrence
matrix, is the most discriminating in the cases mentioned above. In addition, we observe
that there is a difference in its ability to distinguish healthy populations from pathological
populations. The results obtained from the duration of the interval [Jfp max, Jfsmin] are
given in Table 3 and calculated using the following equation:

L =|Jfs min − Jfp max| such as:
Jfs min is the minimum value of Jf healthy images
Jfp max is the maximum value of Jf des pathology images.
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Table 3. Values obtained from the interval between the Jfs min and the JfP max.

Type of Images The Interval
L = |Jfs min − JfP max|

BIMF1 L = |0.752 − 0.672| = 0.08
BIMF2 L = |0.318 − 0.403| = 0.085
BIMF3 L = |0.875 − 0.645| = 0.23
BIMF4 L = |0.467 − 0.423| = 0.044
BIMF5 L = |0.591 − 0.552| = 0.039

RSIDUE L = |0.441 − 0.422| = 0.019
Reconstructed Image L = |0.612 − 0.724| = 0.112

Original Image L = | 0.602 − 0.771| = 0.169

The observations taken from the two series of healthy and pathological mammograms
that were taken into consideration are represented in space of reduced attributes associated
with the most discriminating, as shown by an analysis of the results shown in Figures 8
and 9 and Table 3, and to provide a visual overview of the discriminatory power of this
subset of attributes, we note that:

Figure 8. Projection of observations extracted from healthy and pathological mammography images
obtained from the most discriminating BIMFs level and reconstructed and original images: (a) the
categorization results obtained for healthy and cancerous images for the images reconstructed after
decomposition. (b) the categorization results obtained for healthy and cancerous images for the
originals images; (c) the categorization results obtained for healthy and cancerous images the images
decomposed by the BEMD.

Figure 9. The interval between the minimum value of Jf healthy images (Jfs min) and the maximum
value of Jf des pathology images (Jfp max).
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For images decomposed by BEMD, the interval L = |Jfs min − Jfp max| is larger
than that of the original images and the reconstructed images, according to Figure 8c
The point clouds associated with each class of images, both pathological and healthy, are
projected into the reduced attribute space and are thought of as form sets that are well
separated from one another. The inter-class inertia maximum, and the trace J criterion is to
be maximized with respect to the other levels. These point clouds are then divided into two
subgroups: one for the pathological images and the other for the healthy images. Since this
instance allows for the differentiation of these two groups, a discriminating threshold for
mammography pictures may be established. In the reconstructed images and the original
images Figure 6, The images that are classified as pathological and healthy overlap, the
measure of intra-class inertia is minimal, the point clouds corresponding to each class are
close together, and the variation intervals of this parameter for all the images (pathological
and healthy) overlap. These two examples demonstrate that it is not possible to distinguish
between the populations of cancer patients and healthy.

We use our database as our learning base, then, the non-linear SVM classifier is
trained on our learning base. The evaluation is done through a ROC analysis. Another
parameter from this curve provides a quantifiable value, this is the area under the ROC
curve (AUROC). It is between 0 and 1 and a value close to 1 implies better precisionhe
classification’s performance is assessed on the basis of prediction in terms of sensitivity
and specificity defined by:

sensibility =
VP

VP + FN
specificality =

VN
VN + FP

(20)

Alongside: FP stands for “false positives”, VP represents “true negatives”, FN stands
“false negatives”, and VN represents “true negatives”.

By observing Figure 10 representing the ROC curves and the corresponding Table 4 of
the AUROC values, we find that the most discriminating attribute that we defined by our
method (SMDA-BEMD), is the most discriminating one (AUROC = 0.991) is higher com-
pared to other attribute extraction based on SMDA- Original Image, (SMDA-Reconstructed
Image after decomposition by BEMD, their AUROC = 0.83, AUROC = 0.942 respectively.

Figure 10. ROC curve comparison using SVM between the SMDA-BEMD, SMDA-Reconstructed
Image, and the SMDA-Original.

Table 4. AUROC values for SMDA-BEMD, SMDA-Reconstructed Image and SMDA- Original Image.

Method SMDA-BEMD SMDA-Reconstructed Image SMDA-Original Image

AUROC 0.991 0.942 0.83
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According to the Figure 11 by observing that the classification results obtained are
given in the form of point clouds one for the healthy and the other for the pathologies.
For Figure 11c we observe that there is a difference in its ability to distinguish healthy
populations from cancerous populations, these point clouds are then divided into two
subgroups.: one for pathological images and the other for healthy images, In the recon-
structed images and the original images Figure 11a,b, the images classified as pathological
and healthy overlap, The point clouds that belong to every class are near each other, and
the parameter’s variation intervals overlap for all photos, whether diseased and healthy.
These two methods demonstrate that the distinction between cancer and healthy patient
populations is poor compared to the SMDA-BEMD method.

Figure 11. The results obtained from the classifications of mammographic images of the breast
in the form of point clouds: one for healthy (blue) and the other for cancerous (red): (a) SMDA-
Reconstructed Image, (b) SMDA- Original Images, (c) proposed methodology (SMDA-BEMD).
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From Figure 11c, we notice that for the SMDA-BEMD method, we can define a dis-
crimination threshold which can help detect pathological images, it could be integrated
into diagnostic workflows, and it is defined by:

threshold =
(MAXJfp + MINJfs)

2
(21)

with:

• MINJfs is the minimum value of Jfs min healthy BIMFs and residue
• MAXJfp is the maximum value of Jfp max des pathology BIMFs and residue.

If the discriminating power Jf of one of the BIMFS of the processed mammography
image is lower than the threshold then we have a malignant mammogram.

This threshold can help radiologists evaluate breast images, by providing a percentage
risk of malignancy of a lesion. It can also reduce reading time and improve detection.

Following these comparisons, we will now see the advantage of the proposed method-
ology compared to other methods defined in existence, by observing the Figure 12 repre-
senting the ROC curves and Table 5 corresponding to the AUROC values for the proposed
methodologies is also for the other exictance methods in the literature.

Figure 12. Quantifying the effectiveness of classification by measuring the value of the area under
the ROC curve (AUC) of the existing method with the proposed methodology.

Table 5. Comparison between the different existing methods and the most discriminative feature
extraction provided.

Feature Extraction Methods The Classification Rate (%) AUC

Contourlet transform [20] 87 -
Gabor wavelets [19] 78 0.78

Geometry and texture features (G&TF) [16] 94 0.9615
Gabor filters [15] 93.95 0.948

tructural similarity mapping (TSM) [14] 94.57 0.98
BMED [21] 90 0.90

MBEMD [21] 96.2 0.966
Proposed (SMDA-BEMD) 98.6 0.991

SMDA- Original Image (SMDA-OI) 82.3 0.83
SMDA-Reconstructed Image after

decomposition by BEMD(SMDA-RI) 92.8 0.942
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Table 5 and Figure 12 comparative results show that the following are the primary
issues with the feature extraction techniques that are available in the literature:

- In terms of mass classification accuracy, methods utilizing gray level characteristics
performed poorly.

- The mass cannot be categorized as cancerous or benign based just on its morphology.
Its sole purpose is to differentiate the bulk area from healthy breast tissue.

- Because they rely on filtering schemes or basis functions, the majority of texture feature
extraction approaches are non-adaptive and based on transformation methods.

- The vast set of features produced by previous feature extraction methods necessitates
feature selection or dimensionality reduction in our approach.

In our methodology the Selection of the Most Discriming Attributes the images pre-
processed by BEMD (SMDA-BEMD).

We are based on the iterative selection process to determine the most discriminating
characteristics is a strong point of study, because it allows to determine the essential char-
acteristics that contribute significantly to the classification of mammography images by
dimensionality reduction of the set of features and the selection of the most discriminating
characteristics of these descriptors which must be carried out on multiresolution decom-
position techniques called BEMD for texture extraction of these characteristics, Unlike the
Fourier and wavelet transforms, which employ fundamental functions, BEMD is a decom-
position technique that breaks down an image into a collection of two-dimensional intrinsic
mode functions, or modes (BIMF). these extracted BIMF are the strongest Characteristics of
mammography images elements.

The iterative selection method to determine the most discriminating features is a
strong point of the study, as it allows the identification of key attributes that contribute
significantly to the classification of mammography images and adds a valuable dimension.
This involves choosing the most pertinent characteristics from the original dataset using a
new Reduced set.

The results obtained are robust and very encouraging, this indicates that the system
operates generally and consistently when the use of mammographic images is broken
down and also the use of a set of data from the Reference Center for Reproductive Health of
Kenitra -Morocco (CRSRKM), which includes normal and abnormal mammo-grams, adds
credibility to the study results and ensures their relevance to real-world clinical applications,
The experiments of our method are rapid.

6. Conclusions and Outlook

Breast cancer is becoming the most deadly illness for women, it is well-known. This
has led researchers to develop various computer-aided diagnosis techniques to identify
breast lumps before they develop into life-threatening malignancies and to identify breast
tumors before they develop into lethal cancer since breast cancer is becoming the most
serious cancer in women. In this paper, we suggest a novel strategy. for characterizing
and differentiating medical breast mammogram images decomposed by bidimensional
empirical multimodal decomposition “BEMD” according to the use of co-occurring GLCM
matrices from which sets of attributes are extracted, especially assessment because of a
process of iterative selection. These characteristics enable the distinction between patho-
logical breast cancer and healthy breast mammography images. The advantage of BEMD
decomposition is its intrinsic adaptability to the image. By iterating the process on BIMFs
at each level of decomposition, we obtain multi-scale information, and hidden textures are
better identified. To show the performance of our method, we made use of a database of
medical mammograms from the Kenitra-Morocco Reproductive Health Reference Center
(CRSRKM), which includes both abnormal and normal breast mammograms cases. With
the perspective of establishing a certain number of studies to further refine this methodol-
ogy in the future, this proposal calls for the utilization of alternative, more effective analytic
methods. Furthermore, we suggest enhancing the characterization stage by incorporating
other descriptors that can enhance the accuracy of the breast mass classification.
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