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Abstract: Alocasia macrorrhiza and Cyrtosperma merkusii are root crops in the family Araceae that have
the potential to be grown as fodder plants in Hawai‘i. This research focused on growing C. merkusii
and two varieties (Laufola and Faitama) of A. macrorrhiza to evaluate their growth and yield. A
randomized complete block design was used to set up two growth trials in 2018 and 2019. Varieties
were grown in pots in the first trial and directly on the ground in the second trial. Plant growth was
measured weekly by the plant height and leaf area of the main plants. The weights of the leaf blades,
petioles, and stems were taken as the yield. Lateral plants and their weights were also measured.
The yield data at harvest were statistically analyzed with a one-way ANOVA in PROC GLM, and
means were separated using a Post-hoc test, Least Significant Difference, at 5%. The influence of plant
height, leaf area, number of leaves produced by main plants, number of lateral plants, and their total
weight on yield were analyzed by Pearson’s correlation coefficient. The growth and yield of plants in
the second trial were generally superior to those in the first trial, in which the Laufola variety had the
highest growth increase in height and leaf area, followed by Faitama. Those varieties of A. macrorrhiza
also had the highest yields. The Laufola variety had the greatest average yield, in kg/ha estimates
of the stem (54,896 kg/ha), petiole (99,647 kg/ha), and leaf blades (25,563 kg/ha). Plant height, leaf
area, and the number of leaves produced by the main plants had a strong positive influence on the
yields. Laufola and Faitama varieties have better potential to be grown in Hilo, Hawai‘i.
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1. Introduction

The livestock production in Hawai‘i has significantly declined due to the production
costs associated with animal feed. Most animal feed in Hawai‘i is imported from the
mainland and other foreign countries, such as Australia and New Zealand. The cost
of imported feeders is recorded at more than $150 per ton [1,2], where the selling price
nearly doubles at the local markets. Feed costs have continued to be a main hindrance
since the beginning of the livestock industry [3]. Even the farm animals raised for dairy
production are heavily dependent on imported feeds such as cereal grains, protein, and
mineral supplements from outside of the state, and the prices of the grains are nearly $60
to $90 (per ton) higher than what is paid on the mainland [3]. It has been recorded that 70%
of the production cost is derived from feeders and nutrient supplements in the livestock
industry [1]. Therefore, the state of Hawai‘i is in a difficult position to compete with
livestock production on the mainland and other countries due to the high-cost resources [4]
that have increased the cost of production [5]. Hence, recent attempts have focused on
exploring alternative crops grown within the island that can be used as livestock feeders to
reduce the industry’s expense.

Since the early 1970s, multiple attempts have been made to find alternative crops
that can be given directly or as a byproduct for livestock. Research was conducted on the
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nutritional value and digestibility of several grass species, such as sorghum, sudax, alfalfa,
and corn [1]. Sorghum was a potential feeder in the Cattle industry back then. Sudax is a
hybrid grass that grows simultaneously and has a high fiber content for the feeder. It has
been recorded that potential grasses, such as alfalfa, and different varieties of corn have
given promising harvests. Much research has been conducted on the nutritional profile of
pasture grass and the yield increase with the increased application of nitrogen fertilizers,
such as kikuyu grass (Pennisetum clandestinum), paragrass (Panicum purpurascens), and
napiergrass (Pennisetum purpureum) [6]. However, the limitations in the full utilization of
these crops as sources of feed include high production inputs, a lack of suitable varieties
that are resistant to pests and diseases, and lower digestible nutrients [6]. The production
of Pigeon pea (Cajanus cajan) and its nutritional value as a forage crop were stated in
Whiteman et al. [7]. The by-products of sugarcane and pineapple (pineapple bran) had
the highest demand in the livestock industry. Since the 1980s, the cultivation of these
crops solely as feeders has decreased remarkably, and production has been only for human
consumption in recent years [1]. In addition to these crops, most of the by-products in
recent days have been derived from commercial-scale crops such as bananas (banana silage),
cassava (root chips and silage), macadamia nuts, papaya, sugarcane, sweet potatoes, and
taro [8–11], where the availability of the crop is seasonal.

Recent studies focus on the nutritional value of plant species that grow naturally
or with cultivation efforts. The nutritional values and certain feed ingredients derived
from naturally growing plants in Hawai‘i have been stated by Stevens et al. [9], such as
Albizia (fodder), Avocado (leaves), Bamboo (leaves), Breadfruit (fruit), Cecropia (Cecropia
obtusifolia), Ginger, Gorse (Ulex europaeus), Guava, Gunpowder Tree (Trema orientalis), Hau
(Hibiscus tiliaceus), Honohono grass (Commelina diffusa), Kalo, Kukui (Aleurites moluccana),
Leucaena (Leucaena leucocephala leaves), Melochia (Melochia umbellata), Moringa, Mulberry,
Noni (Morinda citrifolia fruits and leaves), and Ti plant (Cordyline fruticose leaves). The
mineral composition of the bark, fruit, leaves, and shoots of two guava species (Psidium
guajava L. and Psidium cattleianum var. lucidum) and their potential to be given as animal
feeders were assessed by Adrian et al. [12]. However, there remains a need for additional
crops that can be continuously grown as alternative animal feeders in Hawai‘i.

Geographically located within an isolated island range with a volcanic origin, Hawai‘i
Island has wide variability in the existing soils and climatic conditions that influence the
cultivation of crops. The existing 1.3 million acres used for pasture and rangeland are
marginal lands receiving low rainfall, and the existing soil characteristics are inferior for
any crop production, making it difficult to grow high-quality forage for livestock [3]. Even
conventional crops grown for human and animal consumption require thorough land
preparation for commercial-scale production. The limitations in crop cultivation are due
to the island’s volcanic origin. Certain physical and chemical properties of soil, such as
lower water holding capacity associated with the unweathered volcanic glass, impenetrable
horizons within soil profiles, low pH values, and a lack of readily available nitrogen, are
some of them [13]. For instance, a potential feed source like alfalfa has limited growth and
reduced yield in the acidic soils in Hawai‘i, which are often low in calcium and phosphorus
and may also have very high levels of aluminum and manganese. In addition, insufficient
soil thickness restricts crop cultivation directly in the soil and affects yield formation [13].
Therefore, it is common practice among locals to grow plants in pots or lay soil media on the
top of the volcanic substrate prior to plant establishment. Only a few commercially grown
crops are known to survive and grow in places where the soil is minimal with inhospitable
climates, and varieties of the family Araceae have been identified among those few crops.
Elephant ear taro (Alocasia macrorrhiza) and giant swamp taro (Cyrtosperma merkusii) are
plants that have the potential to fill this gap because of their known tolerance to adverse
volcanic soil and climatic conditions.

Alocasia macrorrhiza and C. merkusii are grown as stem crops around the world, includ-
ing the Pacific Islands. These plants hold economic value for the Federations of Micronesia,
Samoa, South Asia, Tonga, and Vanuatu, providing a vital supply of carbohydrates [14–17].
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Unlike traditional Taro (Colocasia esculenta), these species exhibit resistance to pests and
diseases, such as Dasheen mosaic virus and taro leaf blight, making them an important
food source in the Pacific Islands [15]. The edible portions of A. macrorrhiza and C. merkusii
are produced above the ground. The stems are harvested as a staple food that supplies
energy [14,18], primarily as digestible starch for human consumption. Additionally, the
leaves are an important source of protein, fiber, and minerals, making them an alternate
food in the Asian region during famine [18,19]. The perennial growth of A. macrorrhiza
and C. merkusii allows them to be harvested during off-seasons for other common tropical
crops such as C. esculenta and breadfruit (Artocarpus altilis) [18]. The crops have other
desirable advantages in growth compared to the common varieties of C. esculenta and
Xanthosoma, including disease resistance, potential tolerance to pests, and fast recovery
from environmental stress. In addition, A. macrorrhiza and C. merkusii are commonly grown
as intercrops with yams, cassava, and coconuts.

Grown as ornamental plants, the cultivars of Alocasia and Cyrtosperma are not popular
food crops or animal feed in the commercial market in Hawai‘i [15,18]. Consequently, the
growth and uses of these taro varieties, including the commonly grown varieties in the
other Pacific islands, have not been extensively explored. Nevertheless, these underutilized
stem crops hold significant potential to sustain food security in island nations facing climate
change and land scarcity. Adaptation to different growing conditions, flexible crop growth
cycles, and resistance to diseases make Alocasia and Crytosperma suitable to grow under
minimum resources [18,20]. A. macrorrhiza and C. merkusii are promising varieties for use
as robust food crops in an uncertain future. Here we evaluate the potential of A. macrorrhiza
and C. merkusii to be cultivated as alternative livestock feed crops on the island of Hawai‘i.
Specifically, we (1) evaluate the growth and yield of A. macrorrhiza and C. merkusii under
the same environmental variables and (2) identify the yield-influencing growth parameters.

2. Materials and Methods
2.1. Study Site and Varieties

The experiment was set up at the University of Hawai‘i at Hilo Agricultural Farm
Laboratory (location—19.653◦ N; 155.050◦ W). The area is characterized by minerals that
consist of lava settlements and a lack of mature soil profiles with several inches of depth. It
was prepared by laying soils from the Hamakua coast in the northern part of Hawai‘i Island
to improve their physical and chemical characteristics. The commercially available soil from
Hamakua Coast was developed from weathered volcanic ash, and it contains significantly
higher organic matter content. The pH ranges from 5.8 to 6.5 and is characterized by
a high surface area with a lower bulk density. In addition, it also has derivatives of
aluminum in crystal form. Therefore, composite soil sample tests were conducted prior to
the experimental set-up to detect the presence of heavy metals or elevated soil pH levels.
There were no heavy metals detected, and pH levels were normal (pH 6–6.5) in the results.
The area is subjected to two seasonal variations: the summer season (average rainfall—
1651 mm; [21]) from May to October and the winter season (rainfall—2278 mm; [21]) from
October to April [22]. The prevailing average annual air temperature is 22–24 ◦C [23]. Four
taro varieties, Cyrtosperma merkusii (Pula‘a), Colocasia esculenta (Control), and two varieties
of A. macrorrhiza: Laufola and Faitama, were obtained from the Pacific Basin Agricultural
Research Center (PBARC), United States Department of Agriculture (USDA) center at Hilo,
Hawai‘i in August 2018. These two varieties are commonly grown in the Pacific Islands
and are recorded to have significantly higher stem yields with lower acidity [17,18]. These
plants were grown in pots under greenhouse conditions before conducting the growth trials
(GTs). Colocasia esculenta, which was grown as the Control, is a common crop in wetland
agriculture systems in Hawai‘i.

• Alocasia macrorrhiza (L.) G. Don

Alocasia macrorrhiza is commonly known as giant taro as well as elephant ear taro
due to the sagittate-shaped leaves. The classification of the varieties is based on the
origin: A. macrorrhiza (L.) G. Don. var. macrorrhiza (Malaysia to Pacific regions) and
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A. macrorrhiza (L.) G. Don. Var. violacea (India to Malaysia; [18]). These varieties are further
categorized by the degree of acridity and coloration. For example, the Malaysian-Pacific
region’s commonly eaten varieties have reduced acridity compared to the other varieties of
Asia [24,25]. The wild types are recorded to have higher acrid levels; hence, they are only
harvested during famine and require thorough cooking [18].

These crops are best cultivated in well-drained soils where the precipitation is more
than 200 mm/year, as is common in upland areas and higher elevations of the islands. They
also grow in soils that are too wet for other crops and in dry conditions that C. esculenta
cannot withstand. The growth rate is reduced in temperatures below 10 ◦C and in prolonged
waterlogged conditions. However, A. macrorrhiza can withstand water stress and shade
and can grow as an intercrop under the canopy layer [18]. The lateral plants that develop
through cormels are separated for cultivation practices, but seed production via sexual
reproduction is also possible. The crop cycle varies widely from 9 to 48 months with
delayed harvesting [15]. The plants grow more than 2 m in height at maturity, and the stem
grows up to 1 m in length, ultimately weighing more than 20 kg [15].

The varieties are identified in the indigenous language where they originated. Laufola
and Faitama are two existing varieties that have high stem production and are cultivated for
commercial-scale markets in other Pacific islands, such as Samoa [15]. These two varieties
of A. macrorrhiza have significantly different morphological variations. The Faitama variety
develops more veins than the Laufola variety, giving a characteristic wavy nature to the
margins of its leaf blade. The Faitama variety produces a greater number of leaves [15] and
plantlets [17] than the Laufola variety at maturity.

• Cyrtosperma merkusii (Hassk.) Schott

Cyrtosperma merkusii is commonly known as giant swamp taro, as its cultivation
practices are based on freshwater swamps [14,18]. There are more than 100 cultivars spread
within the Pacific region, with high diversity within islands [26,27]. The identification of
these cultivars requires expert skills due to the wide variation in plant size, leaf shape, and
size, time taken for maturity, petiole spininess, and the color of the leaves and stems [20].

The native region for these plants is in the tropics, where plant heights can reach
6 m at harvest time [14,18]. They can be grown in rainfed areas up to elevations of 150 m,
where prolonged soil moisture is maintained [17,20]. It is one of the most common staple
food crops thriving in the harsh environments of Pacific atolls, where low rainfall and
high salinity in sandy soils are prevalent and agricultural resources are limited [14,16].
Cyrtosperma merkusii contains a higher fiber content than C. esculenta and other antioxidants
such as carotenoids [14,20]. Lateral plants (cormels) produced by the main stem as well
as fertile seeds are used for propagation [16]. The crop cycle can vary from 1 to 4 years in
different cultivars, and the length of a single stem can grow more than 1 m, weighing 22 kg
or more [14,18,20].

2.2. Experimental Design, Growth Trials, and Agronomic Practices

Young cormel shoots (suckers) were separated from the main plants and established
on the field. The tops of the plants (leaf blades) were removed to reduce evapotranspiration.
The experiment was laid out in a randomized block design with four blocks, and each
single block (7.5 m × 4.5 m) consisted of four replications with four plants per replication.
The taro varieties were considered treatments. The spacing between the plants varies in
each region. The commonly used spacing ranges from region to region, from 0.6 m × 0.6 m,
1.5 m × 1.5 m, 1.5 m × 0.9 m, and 1.8 m × 1.2 m when cultivated as a monocrop [17,18]. The
allocated space for one plant in this study was 1.5 m × 0.9 m [17–19]. The experimental area
(16.8 m × 10.6 m) was covered by a black weed mat to suppress weed growth, leaving holes
for transplants. The experimental area was surrounded by the C. merkusii (Pula‘a) variety.

Two growth trials were conducted in the adjacent fields (Figure 1). Each field of growth
trials had soil from the Hamakua coast. The plants were transplanted in polystyrene pots
(3.8 L capacity) and established on the ground in the first growth trial (GT 1) in October
2018 by digging holes 40 cm in diameter and 30 cm deep (Figure 1a). The pot size was
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selected based on the diameter (<20 cm) and length (<1 m) of the stem [15,18]. Each
pot’s bottom portion was removed, allowing the roots to extend to the ground as the
plants developed. The growth media for the plants consisted of Hawai‘ian black cinder
and Pro-Mix BX substrate mixed in a 1:1 ratio. Pro-Mix BX was an all-purpose growing
medium with the composition of 77–85% Canadian sphagnum peat moss, dolomite, and
calcite limestone with adjusted pH, arbuscular mycorrhizal fungi (Rhizophagus irregularis),
perlite, vermiculite, and a wetting agent. A slow-release fertilizer (NPK 16-16-16) used
in the experiment was applied at a rate of 89.6 kg/ha per month [28]. The study site was
manually irrigated once every two days in the winter and the summer.
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Figure 1. The two growth trials in the research field (10 months). (a) Fully grown Laufola, Colocasia
esculenta (Control), and Faitama at the front row in GT 1. The plants in the second row are Pula’a and
Laufola (from left to right). (b) Fully grown Colocasia esculenta (Control), Pula‘a, Laufola, and Faitama
(from left to right; in the second row behind the Pula’a border row) in GT 2. The plants in the front
row are all Pula‘a.

The plants were established directly in the ground in the second growth trial (GT 2)
in August 2019 on a site with cane-washed soil from the Hamakua Coast (Figure 1b). A
soil analysis was conducted prior to the establishment of plants to determine the soil
characteristics, including the nutrients. All the varieties were provided with the same
conditions of nutrients and irrigation. The plants were positioned in the same-sized holes
as in the first trial, with a diameter of 40 cm and a depth of 30 cm. The fertilizer [NPK
16-16-16] recommendation for the experimental design was 280 kg/ha for each nitrogen,
phosphorus, and potassium, applied 3, 5, and 7 months after planting [17]. The irrigation
system for the study site was an automated drip irrigation system. The irrigation frequency
was set up based on the winter and summer seasons on the island. The field was irrigated
three days per week during the winter and four days per week during the summer, twice a
day for 15 min per application.

2.3. Weather

The precipitation and the temperature were obtained from the National Oceanic and
Atmospheric Administration (NOAA). The closest weather station (GHCND: USW00021515)
is located 3.5 km away from the experimental site. The total rainfall received during the
GT 2 (3392 mm) was greater than that of the GT 1 (2694 mm; Table 1). The highest
rainfall received was during January and March 2020. There is no significant difference
in the average maximum and minimum temperatures (Maximum temperature—25 ◦C;



Crops 2024, 4 60

Minimum temperature—18 ◦C). However, the average temperature during each growth
season remained the same (22 ◦C).

Table 1. Average monthly temperature (Figure S1) and total monthly precipitation for the experimen-
tal site (Figure S2).

Month
Temperature/Month (◦C) Precipitation/

Month (mm)Max Min Average

November 2018 25.83 18.11 21.97 349.20
December 2018 24.42 17.47 20.94 306.80
January 2019 24.72 15.85 20.29 48.30
February 2019 24.14 15.38 19.76 321.20
March 2019 23.37 15.69 19.53 150.00
April 2019 24.98 17.57 21.28 413.00
May 2019 26.73 18.20 22.47 103.50
June 2019 26.92 19.02 22.97 146.00
July 2019 27.45 19.44 23.45 333.90
August 2019 28.08 20.26 24.17 279.50
September 2019 27.89 20.06 23.97 242.80
October 2019 27.22 19.20 23.21 307.10
November 2019 27.06 18.49 22.78 284.40
December 2019 25.00 18.12 21.56 303.40
January 2020 24.38 17.31 20.85 687.70
February 2020 24.40 15.85 20.13 192.00
March 2020 23.44 17.06 20.25 704.10
April 2020 25.56 17.35 21.46 253.10
May 2020 25.69 17.87 21.78 147.90
June 2020 26.24 18.50 22.37 106.70
July 2020 26.79 19.41 23.10 163.00

The temperature and precipitation data were obtained from the closest weather station (GHCND: USW00021515)
of the National Oceanic and Atmospheric Administration (NOAA) [29].

2.4. Growth

The population recovered from the top-cutting approximately in a month, and the
observations were taken starting 30 Days After Planting (DAP). Plant height and the leaf
area of the tallest expanded leaf [17,30] were taken from 16 replicates of each variety of
A. macrorrhiza and C. merkusii and the Control every 7 days for 37 days until the harvest. The
plant height is measured from the ground level of the stem of the plant to the tip of the tallest
leaf [31]. The length of the leaf blade was determined by measuring the distance between
the tip of the leaf blade and the petiole attachment point [30]. In addition, the widest
width (breadth) above the petiole attachment point of the leaf blade was also measured [30].
The leaf area was calculated using these measurements (length × width × ¾ of length-
breadth ratio; [31,32]). Moreover, other growth characteristics such as the number of leaves
produced by main plants, the number of lateral plants, and their total weight were also
measured at the end of the harvest.

2.5. The Total Yields of the Varieties

The plants were harvested 11 months after planting (Figure 2). There were 16 replicates
per variety, and the spacing for each individual plant was 1.5 m × 0.9 m. The yield given
in this space was used to calculate the yield per hectare. The average fresh weights of the
main plants’ stems, petioles, and leaf blades were taken as yield components expressed as
weight (kg) per hectare at harvest.
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Figure 2. The two growth trials at harvest (11 months). (a) Preparation of the uprooted plants of GT 1
to measure the final yield (leaf blade, petiole, and stem). (b) Measuring the height of fully grown
Laufola in GT 2 prior to the harvest.

2.6. Statistical Analysis

The yield (leaf and stem) of the varieties in GT 1 and GT 2 were examined using
Analysis of Variance (ANOVA—Proc GLM) separately, and the mean differences were
tested using Fisher’s Least Significant Difference (LSD) at 5% probability level in SAS
(Version 9.2) [33]. The correlation coefficient of five growth components (average leaf
area, average plant height, number of leaves produced by main plants, number of lateral
plants, and the total weight of the lateral plants) of GT 2 was analyzed utilizing RStudio
(Version 1.2.5033) [34] to find the influence on the yield.

3. Results
3.1. Average Plant Height

There was a significant difference between the growth (height) of the GT 2 and GT 1
varieties. GT 2 exhibited significantly higher growth in all the varieties compared to GT 1
(Figure 3). The average height of the Laufola showed a rapid increase, with a greatest
recorded height of 238.9 cm (Figure 3), followed by Faitama with the second-largest growth
(205 cm) in comparison to equivalent varieties (Laufola and Faitama) in GT 1. However,
the growth of the Pula‘a variety was significantly inferior to the A. macrorrhiza varieties
(Figure 3), with the highest average values (79 cm) shown in GT 1. The average height
of the Control (C. esculenta) decreased significantly at the end of the crop time in GT 1.
Nonetheless, there was a gradual increase in height in Control (C. esculenta), which was
greater than the Pula‘a variety in GT 2 (Figure 3).

3.2. Average Leaf Area

There was a significant difference between the growth of leaf area (LA) of the varieties
in GT 2 and GT 1. In GT 2, all the varieties showed greater average LA values than their
equivalent varieties in GT 1 (Figure 4). The Laufola had the greatest average leaf area
(GT 2—0.59 m2) followed by Faitama (GT 2—0.32 m2) (Figure 4). The Laufola in GT 1
(0.22 m2; Figure 4) and Control (0.11 m2; Figure 4) in GT 2 had the second and third highest
values, respectively, after the Alocasia varieties grown in GT 2. The Pula‘a showed inferior
growth in comparison to the Alocasia varieties in both GT 1 and GT 2, where its highest
recorded value (0.07 m2 at 289 DAP) is shown in GT 2 (Figure 4). The Control in GT 1 had
the lowest growth that gradually declined at 177 DAP (Figure 4).
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3.3. Statistical Analysis of Yields

There was a highly significant difference in the stem (GT 1—F3,60 = 63.5; p < 0.05;
GT 2—F3,60 = 68.1; p < 0.05; Figure 5), petiole (GT 1—F3,60 = 83.8; p < 0.05; GT 2—F3,60 = 86;
p < 0.05; Figure 6), and leaf blade (GT 1—F3,60 = 11.6; p < 0.05; GT 2—F3,60 = 114.3; p < 0.05;
Figure 7) yields of the growth trials. The average stem and petiole yields of Laufola and the
Faitama varieties were significantly different from the Pula‘a and Control of GT 1 and GT 2
(Figures 5 and 6). There was no significant difference among the average yields of stem
and petioles of Pula‘a and Control in both GT 1 and GT 2 (Figures 5 and 6). The Laufola
variety showed the greatest average yield in stem (GT 1 = 2 kg, GT 2 = 7.7 kg), petiole
(GT 1 = 3.5 kg; GT 2 = 13.9 kg), and leaf blades (GT 1 = 0.8 kg; GT 2 = 3.6 kg). The average
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leaf blade yield of Laufola and the Faitama varieties significantly differs from Pula‘a and
Control in GT 2, similar to the stem and petiole yields (Figure 7). However, there was no
significant difference in the average leaf blade yield of the Laufola and Faitama varieties in
GT 1 (Figure 7a).
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Figure 5. Average weights of stem yields of the varieties in (a) growth trial 1 and (b) growth trial 2 at
95% CI [35]. Error bars represent ± SE. LSD at 95% CI. n = 16 per variety. These letters represent the
varieties with significant differences in the yield (stem) based on the one-way ANOVA Proc-GLM.
Varieties that have a significant difference are represented by a and b. Varieties that do not have
significant differences are represented by c.
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Figure 6. Average weights of petiole yield of the varieties in (a) growth trial 1 and (b) growth trial 2 at
95% CI [35]. Error bars represent ± SE. LSD at 95% CI. n = 16 per variety. These letters represent the
varieties with significant differences in the yield (petiole) based on the one-way ANOVA Proc-GLM.
Varieties that have a significant difference are represented by a and b. Varieties that do not have
significant differences are represented by c.
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3.4. The Total Yields of the Varieties

The greatest yield estimated per hectare was GT 1 and GT 2 petioles. The yields of
stem, petiole, and leaf blade in GT 2 were significantly larger than those in GT 1. The
Laufola variety in GT 2 had a significantly higher yield in each stem (54,896 kg/ha), petiole
(99,647 kg/ha), and leaf weights (25,563 kg/ha; Table 2) than the Faitama variety in GT 2
(Table 2). In addition, the Pula‘a variety grown in GT 2 had lower yields than GT 1.
Furthermore, the average weights of Control were relatively lower in GT 1 than in GT 2
(Table 2).
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Table 2. Fresh yield of the varieties grown for 11 months.

Variety
Average Weight (kg/ha) Total Weight

(kg/ha)Stem Petiole Leaf Blade

Trial 1
Laufola 14,033.9 a 24,908.5 a 6061.2 a 45,003.6
Faitama 10,507.4 b 10,796.5 b 3635.4 ab 24,939.3
Pula’a 3370.0 c 3462.1 c 3180.4 b 10,012.5
Control 702.8 c 1240.5 c 327.4 c 2270.8

Trial 2
Laufola 54,895.9 a 99,646.9 a 25,563.3 a 180,106.2
Faitama 33,022.8 b 51,527.7 b 11,098.6 b 95,649.1
Control 3638.4 c 3316.5 c 774.3 c 7729.2
Pula’a 1555.7 c 2683.8 c 1096.8 c 5336.4

Average weights of yield of the varieties in GT 1 and GT 2 at 95% CI. These letters represent the varieties with
significant differences in the yield (stem, petiole, and leaf blade) based on the one-way ANOVA Proc-GLM.
Varieties that have a significant difference are represented by a, b, and ab. Varieties that do not have significant
differences are represented by c.

3.5. Correlation Analysis

The correlation analyses between yield and the five other growth characteristics are
shown in Table 3. The number of leaves produced by the main plant had a significantly
positive correlation with the stem, petiole, and leaf blade weights. The leaf area of the
varieties had a strong positive correlation with the stem, petiole, and leaf blade weights.
Moreover, the average plant height had a notable positive correlation with the weights of
the stem, petiole, and leaf blade. Additionally, it had a strong positive correlation with other
growth components, such as the number of leaves produced and leaf area. The average
plant height was highly correlated with the lateral plants’ total weights and negatively
correlated with the number of lateral plants produced. There was a significantly negative
correlation between the number of lateral plants produced and the production of the stem,
petiole, and the number of leaves generated by the main plant (Table 3). In addition, the
number of lateral plants produced by the main plant had a strong negative correlation with
the leaf blade weight and the leaf area.

Table 3. Pearson correlation coefficient among the growth characteristics and yield of the varieties.

Characters F1 F2 F3 F4 F5 F6 F7 F8

F1 0.85
***

0.93
***

0.67
***

−0.35
**

0.93
***

0.88
***

0.33
**

F2 0.96
***

0.68
***

−0.37
**

0.96
***

0.88
***

0.28
*

F3 0.70
**

−0.42
***

0.98
***

0.88
*** 0.21

F4 −0.40
**

0.72
***

0.71
***

0.38
**

F5 −0.41
***

−0.34
**

0.28
*

F6 0.92
***

0.27
*

F7 0.49
***

F8
Numbers designated by asterisk (s) and their level of significance: *** p < 0.001, ** p < 0.01, * p < 0.05. F1 = Stem
Weight (kg); F2 = Petiole weight (kg); F3 = Leaf blade weight (kg); F4 = Number of leaves per main plant;
F5 = Number of plantlets; F6 = Average leaf area (m2); F7 = Average plant height (cm); and F8 = Total weight (leaf
blades, petioles, and stems) of the lateral plants (kg).
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4. Discussion

The varieties of Alocasia generated the greatest yields per hectare in both growth
trials. The Laufola variety produced 54,896 kg/ha (Table 2) of stem yield within the
11-month crop time, and the amounts were more than twice those of the previous study
given in Foliaki et al. [17] (Laufola—24,900 kg/ha per year). The stem yield of Faitama
(33,023 kg/ha) in this study was also higher than in Foliaki et al. (Faitama—20,506 kg/ha
per year [17]). However, prolonging the crop time and delaying the harvest can also
increase the stem yield production [15]. The varieties of Alocasia grown for more than
18 months could produce 201,752 kg/ha of stem yield [25], which was higher than the stem
yield production of Laufola in this study. However, no records were available to compare
the leaf production (leaf blades and petioles) harvested as yield. The yield of Pula‘a was
significantly lower than the yield of the other varieties. Moreover, the stem yields of Pula‘a
(GT 1—1556 kg/ha; GT 2—3370 kg/ha) were extremely low in comparison to the lowest
average values from Micronesia (10,000 kg/ha per year; [18]) when grown in waterlogged
conditions. Consequently, there was a highly significant difference in the yields (stem,
petioles, and leaf blades; Figures 3–5) of the varieties grown in GT 1 and GT 2 at the end of
the 11 months.

The prevailing weather conditions also influence both growth and yield. Most vari-
eties thrive naturally in habitats receiving at least 1700 mm of rainfall annually [15], but
the corresponding irrigation requirements for cultivating these varieties have not been
rigorously recorded. In addition, low temperature may have adversely impacted growth.
Stem size and yield formation are optimal at temperatures between of 25 ◦C and 30 ◦C [15],
whereas the monthly average minimum and maximum temperature ranged from 18C to
25 ◦C in both growth trials of this study. Temperatures out of the preferred range may have
lowered the stem yield production [15]

The growth parameters, such as plant height and LA, were relatively high in all the
varieties grown in GT 2 compared to GT 1, except the Pula’a variety. In addition to the
changes in experimental plots of GT 1 and GT 2 within the farm, there were also changes in
the fertilizer application rate (GT 1—89.6 kg/ha per month; GT 2—280 kg/ha in 3; 5; and
7 months after planting) and frequency of irrigation. However, the total amount of fertilizer
(GT 1—985.6 kg/ha and GT 2—840 kg/ha) applied in each growth trial within 11 months
of crop time is marginal when considering the amount received by individual plants. The
irrigation frequency is higher in GT 2 compared to GT 1. The fresh weights of the corms and
their dry matter content could have decreased when reducing the irrigation water levels as
a result of water stress, especially in crops such as C. esculenta [36]. However, the difference
in the irrigation frequency and the amount of water received could have influenced the
soil’s absorption of the applied nutrients in each GT. Wang et al. [37] showed that the
application of agronomic practices such as irrigation and fertilization led to enhanced
nutrient uptake with increased soil moisture levels. The potted plants in GT 1 had limited
space to develop roots and utilize the resources from the surrounding soil. Evolving as
understory perennial shrubs, the varieties of Faitama and Laufola require large spaces.
Several studies have shown that an increase in container volume can enhance biomass
production [38] and the yield of tuber crops [39]. Therefore, cultivating in pots should
only be conducted when the soil profile is absolutely limited. The two Alocasia varieties
Laufola (height—230 cm; LA—0.6 m2) and Faitama (height—205 cm; LA—0.3 m2) in GT 2
had the highest growth, followed by C. esculenta (GT 2—125 cm; LA—0.11 m2) among
the two trials. The Laufola (height—99 cm; LA—0.2 m2) and Faitama (height—78 cm;
LA—0.1 m2) grown in GT 1 had average growth lower than C. esculenta grown in GT 2.
The height of the Laufola can reach more than 240 cm, while Faitama can reach more than
150 cm within a year [17] and up to 500 cm within 18 to 24 months in forests [18]. The
average height of Pula‘a varieties in GT 1 was relatively higher than that of GT 2. During
the harvest, it was observed that roots of the Faitama and Laufola extended underneath
the weed mat, invading the spaces given to Pula‘a varieties in GT 2. However, the Pula’a
variety in GT 1 and 2 showed significantly lower growth than the Laufola and Faitama
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varieties. Certain cultivars of C. merkusii from the island nations can have a short crop time,
from 6 to 12 months after the initial planting [18]. However, the majority of the varieties
in the Pacific region require 2 years of growth to reach more than 2 m of height in wet
marshes that provide optimal waterlogged conditions [20]. In the C. esculenta variety, the
growth (height—31.3 cm; LA—0.02 m2) was the lowest in GT 1. One of the possible reasons
for the lower growth was the susceptibility to taro leaf blight in the field. Nearly 50% of
the C. esculenta plant population had shown the symptoms of taro leaf blight in 205 DAP.
The leaves of C. esculenta usually live for more than a month but could get destroyed after
infection [40]. The highest average growth of C. esculenta was observed in GT 2, where the
root growth was not limited. However, the growth increment was lower in comparison to
wetland cultivation. A similar trend of taro leaf blight infestation was observed in GT 2 in
107 DAP (Figure 1). Therefore, each growth trial was occasionally treated with a fungicide
to prevent further spread within the field. All the varieties grown in GT 2 had a relatively
higher LA increase than their equivalent varieties grown in GT 1. Plant height increase was
correlated to leaf area, and the increase in height was directly proportional to the increase
in leaf area [41].

This work analyzed the five growth characteristics of average plant height, average leaf
area, number of leaves produced by main plants, number of lateral plants, and their total
weight for correlation coefficient to investigate their influence on yields. Characteristics
such as the number of leaves of the main plant, leaf area, and plant height had significant
positive correlations with the yields of stem, petiole, and leaf blade weights (Table 3). The
same trend was reported by Harrington et al. [41], who showed that height was highly
correlated to the increase in the number of leaves and leaf area. The increase in plant height
resulted in the expansion and development of the canopy, which facilitates solar radiation
reception, energy production, and food partitioning. Paul et al. [32] also reported that
characteristics of the leaf, such as leaf area, were highly correlated with the above-ground
yield (stem, petiole, and leaf blade weight), which was considered biomass. Harrington
et al. [41] showed similar trends in the growth trial reported here. In addition, the number
of lateral plants produced correlated negatively with the main plants’ yields, leaf sizes, and
number of leaves. The varieties Faitama [17] and C. esculenta naturally produce many lateral
plants. The lateral plants could negatively influence the yield due to nutrient partitioning,
as evidenced by the low number of lateral plants produced by high-yielding varieties of
C. esculenta [42]. Therefore, maintaining fewer lateral plants in an area could improve yield
for the main plants.

Since the livestock industry revolves around the availability of animal feed, it is vital
to assess the ability of potential crops to reduce dependence on imported feeds. The grass
species dominating tropical pastures lack nutrients due to the short life span associated
with their maturity [5]. Conventional crops such as alfalfa and field corn require plentiful
water and nitrogen for optimal production [1], and applying high-cost fertilizers is a must
for maintaining these fields. In contrast, Alcocasia and Crytosperma are recorded to have
sufficient growth with minimal resources, with or without inorganic fertilizers [18]. In
addition, the leaves and stems of these varieties supply adequate amounts of dietary
fibers, minerals, and other dietary components essential for human consumption [14,18,20].
The stems of Alocasia varieties have 16–21% starch and nearly 4.5% protein available [17].
Therefore, it is apparent that these varieties have the potential to fulfill the dietary demands
of livestock and can be developed as forage feed. In the state of Hawai‘i, the prevailing
climate with uniform day lengths and abundant rainfall [22] would be highly favorable to
the growth of these varieties. In addition, these crops can be intercropped with other crops
and grown in agroforestry systems as understory crops, providing a solution to the limited
availability of agricultural land in the state. These promising crops could minimize the
grain dependency of livestock production while resolving the conflict between agronomy
and conservation.
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5. Conclusions

Faitama and Laufola varieties have a reassuring potential for agricultural systems
with lower requirements for fertilizers and water. Increasing the duration of the crop (up
to 18 months) could result in significantly higher stem production. However, the stem
production reached amounts of marketable yields at 11 months that have comparable
marketable yield values to those grown at 12 months. In addition, the leaf yield (petiole
and leaf blades) individually provides sufficient growth with the same crop time to be
cultivated as an alternative feed crop for livestock. However, it is best to practice the
cultivation of these varieties directly on the ground with increased spacing and frequent
irrigation. Given adequate irrigation and fertilizer, most varieties can yield better than
when these inputs are limited. The growth parameters (plant height, leaf area, and number
of lateral plants) play an important role in determining the yield. The Pula‘a variety did
not perform well in each growth trial. Further research is required to evaluate the nutrient
content of Faitama and Laufola varieties upon growth and palatability as animal feed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/crops4010005/s1, Figure S1: Average monthly temperature of the
experimental site. 2024; Figure S2: Total monthly precipitation of the experimental site. (2024).
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