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Abstract: Food-borne pathogens are a serious challenge in food handling, processing, and packag-
ing systems. The growth of microbial biofilms on food handling surfaces further complicates the
management of the microbial contamination of food. Microorganisms within biofilms are difficult to
eradicate with chemical disinfectants, with an increased likelihood of survival and the subsequent
contamination of food. Therefore, a biofilm approach is needed in food safety and hygiene studies.
Since many factors, such as strain, cell density, surface type and texture, environmental stress, and so
forth, can affect biofilm formation and disinfectant efficacy, we evaluated the responses of biofilms
formed by three food-borne bacterial pathogens on eight hard surfaces to seven chemical disinfec-
tants. The three bacteria showed different capacities to colonize the surfaces. Similarly, chemical
disinfectants also varied in efficacy, on surfaces and with pathogen species. One-, two-, and three-way
interactions of strain, surface, and disinfectant were observed. The results generated demonstrate
that the fine-tuning of sanitization strategies along the food production, processing, and packaging
chain can be achieved in specific scenarios by accounting for two- and three-way interactions among
bacteria, surface, and disinfectant.

Keywords: disinfection; surface-associated; Escherichia coli serotype O157:H7; Listeria monocytogenes;
Salmonella choleraesuis

1. Introduction

Food-borne pathogens are a constant threat to human health [1–3]. Just one exam-
ple of the global threat to human health is Escherichia coli serotype O157:H7 that affects
hundreds of thousands of patients every year, many of which are hospitalized and may
have life-threatening complications [4]. Listeria monocytogenes and Salmonella choleraesuis are
also commonly occurring food-borne pathogens that threaten human health [5,6]. When
these pathogens contaminate or colonize hard surfaces of food handling, preparation or
processing facilities, they can become widely distributed in food products and lead to
expensive recalls, or worse, serious food-borne illness and in some cases even death.

The main strategy to prevent the spread of food-borne pathogens is to remove or
eradicate microbial contamination that may have been introduced [7,8] and to clean and
disinfect regularly to prevent introduced bacteria from becoming problematic and col-
onizing surfaces [9,10]. The major types of disinfectants used in the food industry are
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halogens, peroxides (or other oxidizers), acids, and quaternary ammonium compounds.
These different classes of disinfectants are each limited in efficacy by factors such as the
presence of soil, water hardness, temperature of applications, surface type, and ability
to physically contact the surviving microorganisms [11,12]. The aim of disinfection is
to reduce the surface population of viable cells left after cleaning and prevent microbial
growth on surfaces before production restarts. The disinfectants must be effective, safe,
easy to use, and easily rinsed off from surfaces, leaving no toxic residues that could affect
the health properties and sensory values of the final products.

A complicating factor in food safety and hygiene is the ability of food-borne bacteria
to form biofilms [13–15]. Biofilms are assemblages of microbial cells associated with a
surface and enclosed in a matrix of primarily polysaccharide material of their own mak-
ing [16,17]. More than 60 years after the first report on biofilms [18], they are still a concern
in a broad range of areas, specifically in the food, agricultural, environmental, and biomed-
ical fields [19–29]. Microorganisms colonizing surfaces as biofilms are more resistant to
environmental challenges than are their planktonic counterparts in suspension [17,30–35].
This phenomenon of enhanced survival can also lead to food-borne pathogens remaining
on surfaces after sanitization (cleaning and disinfecting). Biofilms formed by food-borne
pathogens present a unique challenge to food industry sectors such as brewing, dairy
processing, fresh produce, poultry processing, and red meat processing [36–39]. Duguid
et al. [40] reported the adhesion of Salmonella sp. to food surfaces, and since that time,
many reports have described the ability of food-borne pathogens to attach to food and
food-contact surfaces, including L. monocytogenes [41–44], Yersinia enterocolitica [45], Campy-
lobacter jejuni [44,46], Salmonella enteritidis [47], and E. coli O157:H7 [48,49]. As previously
mentioned, E. coli, S. choleraesuis, and L. monocytogenes are food-transmitted pathogens
that are of considerable significance to the food processing industry and cause disease and
sometimes death across the world. The ability of these bacteria to attach tenaciously to
food-contact surfaces and survive sanitization procedures can lead to a reservoir of contam-
ination resulting in food recalls and/or food-borne illness [50]. Additionally, biofilms have
been reported as possessing susceptibilities towards antimicrobials that are 100–1000 times
less than equivalent populations of free-floating planktonic counterparts [51]. This may be
due to the presence of the biofilm matrix [52] or other factors [53], but the increased biofilm
resistance to conventional treatments enhances the need to develop new control strategies
aimed at managing biofilms [54].

Understanding pathogen biology, including life and disease cycles, is an essential
part of developing management and control strategies. Knowledge regarding how mi-
croorganisms survive, grow, and infect is always of benefit when dealing with clinical,
industrial, agricultural or environmental disease issues [55–57]. Furthermore, understand-
ing the stages of biofilm formation and the factors affecting biofilm formation has helped
greatly in our ability to manage biofilm issues [15,58]. We know that growth media, growth
conditions, microbial strain, inoculum level, and the type of surface can all impact biofilm
formation and microbial survival [59,60]. We also know that the dose and surface composi-
tion can affect the disinfectant efficacy [13,61–66]. While a wealth of information has been
reported on how these individual factors affect biofilm formation or disinfectant efficacy on
their own, reports of how multiple factors interact are sorely lacking. This is due, in part,
to the challenges associated with studying biofilms in vitro. Culturing biofilms in labora-
tory settings has been much more difficult than growing planktonic cultures. Specialized
equipment, flow chambers, and the techniques and protocols employed to culture biofilms
in vitro greatly limit the number of laboratories capable of performing these experiments.
Additionally, it is challenging to incorporate adequate replications and repetitions for large,
multi-factor experiments [67–70].

An innovative biofilm reactor that provides solutions to the challenge of the high-
throughput culturing of microbial biofilms, with replication, was developed by Ceri
et al. [71] and called the Calgary Biofilm Device (now called the MBEC Assay®). This
novel plate technology allows for the cultivation of 96 biofilms simultaneously in a single
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reactor that can be readily transferred to serial rinses, challenges, and recovery solutions.
The assay can be used to describe biofilm morphology, growth kinetics, and dose-dependent
responses to chemical treatments in a high-throughput format using common laboratory
instruments and equipment [61,72]. It was the first American Society for Testing and Mate-
rials (ASTM) high-throughput biofilm assay that was verified via collaborative efforts in
multiple laboratories [73] and was the first ASTM-approved standard method for microbial
biofilm growth and disinfectant testing (ASTM standard E2799, 2017). A second-generation
plate, the BEST™ Assay, allows for biofilm cultivation on different hard surface materials
in a multi-well format, facilitating the characterization of the effects of surface material on
microbial growth, biofilm formation, and the response to chemical treatment [61,74]. The
ability of the BEST™ Assay to evaluate the efficacy of antimicrobials on biofilms grown on
different materials is significant for several reasons. Firstly, biofilm grown on the actual
surface materials used operationally in the industry means that the assays better simulate
real-world conditions faced in practice. Secondly, the ability to evaluate biofilms on mul-
tiple surfaces means that one can investigate two- and three-way interactions of factors
affecting biofilm formation and eradication. For example, if knowledge regarding how a
disinfectant performed against specific pathogens on specific surfaces was desired, it can
now be collected using one or a series of plate(s) in a single, rapid, high-throughput experi-
ment. The MBEC Assay® and BEST™ Assay have been used to characterize disinfectant
efficacies for several plant pathogens [61,69,75–77].

The objective of this research was to determine the ability of food borne pathogens
(E. coli O157:H7, S. choleraesius, and L. monocytogenes) to grow as biofilms on eight food
processing and medical device surfaces (stainless steel, mild steel, wood, rubber, concrete,
laminated plastic, ultra-high-molecular-weight plastic and silicon) and evaluate the effi-
cacies of seven disinfectants against biofilms formed by these food-borne pathogens on
these surfaces. Additionally, interactions among the pathogen, surface, and biocide were
evaluated. The end goal was to demonstrate a method by which disinfection protocols
could be refined for maximum efficacy by considering the three factors, i.e., pathogen,
surface, and disinfectant, and their interactions.

2. Materials and Methods
2.1. Bacterial Strains, Surfaces, and Disinfectants

Three bacterial species were used in this study; Escherichia coli 0157:H7 (clinical isolate),
Salmonella choleraesuis (ATCC 10708), and Listeria monocytogenes (ATCC 19114). A cryogenic
stock (at −70 ◦C) was thawed to room temperature and streaked out on Trypticase Soy
Agar (TSA) plates. These sub-culture plates were incubated at 37 ◦C for 24 h and stored
at 4 ◦C after wrapping in Parafilm®. From the first sub-culture, a second sub-culture was
streaked out on TSA and incubated at 37 ◦C for 24 h. The second sub-culture was used
within 24 h.

Food-contact hard surfaces, namely, stainless steel, mild steel, ultra-high-molecular-
weight plastic (UHMWP), rubber, laminated plastic, wood, concrete, and silicon were used
in this study. Coupons of concrete (0.4 × 0.3 × 1.3 cm), mild steel (1.5 × 0.6 cm), stainless
steel (1.5 × 0.6 cm), wood (1.5 × 0.6 cm), rubber (1.5 × 0.6 cm) and UHMWP (1.5 × 0.6 cm),
laminated plastic (1.5 × 0.6 cm), and silicon (0.125 × 3.5 cm) were attached to the lids of
the multi-well plates with a hot glue so they extended vertically down from the lid into
each of the plate wells and could be immersed into the liquid of individual wells (Figure 1).
These assembled BEST Assay™ plates were gas sterilized with ethylene oxide to remove
surface contamination.

Seven disinfectants from five chemical classes were used in this study. The disinfectant
names, active ingredients, classes, and concentrations are shown in Table 1.
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Figure 1. BEST™ Assay plates with coupons made from (A) concrete, (B) wood, (C) steel, (D) rubber, 
(E) UHMWP, (F) stainless steel. 
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Oxonia Active™ Peroxides Hydrogen peroxide 15–40%, acetic acid 7–
13%, peracetic acid 5–10% 

0.6% v/v 0.3% v/v 

Figure 1. BEST™ Assay plates with coupons made from (A) concrete, (B) wood, (C) steel, (D) rubber,
(E) UHMWP, (F) stainless steel.

Table 1. Disinfectant trade names, active ingredients, and concentrations used in this study.

Disinfectant Family Active Ingredients Conc. Used Conc. on Label

Virkon™ Oxidizing agents Potassium peroxymonosulfate 21.4% 1.5% w/v 1.5% w/v

1-Stroke Phenols ortho-phenylphenol 10%, ortho
bezyl-para-cholorophenol 8.5% 0.8% v/v 0.4% v/v

Environ® LpH Phenols

o-Benzyl-p-chlorophenol 6.4%,
p-tertiary-amylphenol 3.0%, o-phenyl

phenol 0.5%, hexylene glycol 4.0%,
glycolic acid (hydroxyacetic) 12.6%,

isopropanol 8.0%

1.56% v/v 0.78% v/v

Vantocil™ PolyHydrochloride Polyhexamethylene biguanide 0.6% v/v 0.3% v/v

Vortexx Peroxides Caprylic acid 3%, hydrogen peroxide
6.9%, peroxyacetic acid 4.4% 0.5% v/v 0.25% v/v

Oxonia Active™ Peroxides Hydrogen peroxide 15–40%, acetic
acid 7–13%, peracetic acid 5–10% 0.6% v/v 0.3% v/v

SterBac® Quaternary ammonium Benzyl-c12-c16-alkyldimethyl,
chlorides 7–13%, ethanol 1–5% 0.4% v/v 0.2% v/v



Appl. Microbiol. 2024, 4 31

2.2. Bacterial Biofilm Formation on Eight Surfaces

Bacterial inoculum was prepared from fresh Tryptic Soy Agar (TSA) plates by trans-
ferring bacteria to a glass test tube containing 3 mL sterile water using a sterile cotton
swab. The final suspension matched a 0.5 McFarland Standard (1.5 × 108 cells per mL).
The inoculum was diluted 88 µL in 22 mL of 10% Cation-Adjusted Mueller Hinton Broth
(CAMHB) in Phosphate-Buffered Saline (PBS). The diluted bacterial suspension was in-
verted 3–5 times to achieve uniform mixing of the inoculum. A 100 µL sample of the
diluted bacterial suspension was used for an inoculum quantification and viability check
by serially diluting and spot plating. Four mL of inoculum was axenically placed in each of
the wells of the BEST™ device. The peg lid with the attached coupons was inserted into
the bottom of the 12-well plate and sealed with parafilm, and the entire device was placed
on a rotary shaker (110 revolutions per minute) and incubated at 37 ± 1 ◦C for 24 and 48 h.
After incubation, the peg lid was rinsed 3 times in sterile water by dipping the lid with
coupons attached into three consecutive 12-well bottom plate devices containing 5 mL of
sterile water in each well to rinse off any recently adhered planktonic organisms. The lid
was then transferred to a fresh plate containing a surfactant-supplemented growth medium
[prepared with 1 L of CAMHB supplemented with 20.0 g per litre of saponin and 10.0 g per
litre of Tween-80. This solution was adjusted with diluted sodium hydroxide to the correct
pH (7.0 ± 0.2 at 20 ◦C), and 500 µL of Universal Neutralizer was added to each 20 mL of
the surfactant-supplemented growth medium]. Universal Neutralizer consisted of 1.0 g
L-histidine, 1.0 g L-cysteine, and 2.0 g reduced glutathione in 20 mL double distilled water
(filter sterilized through 0.22 µm diameter pore size filter and stored at −20 ◦C). The device,
with pegs in 4.5 mL of the surfactant-supplemented growth medium, was dry sonicated
for 30 min in a Model 250T ultrasonic chamber (VWR, Westchester, PA, USA) to remove
adhered biofilm mass from the coupons. Following sonication, 100 µL from each well was
placed into the 12 wells of the top row of a 96-well micro titer plate and 180 µL of 0.9%
sterile saline was placed in all wells of the remaining rows. A serial dilution (100–107)
was prepared by serially mixing and moving 20 µL down each of the 8 rows. For each
series, 20 µL from each well was removed and spot plated on a TSA plate and incubated
at 37 ± 1 ◦C for 24 h. The colony forming units (CFU)/mL for each well were calculated.
Biofilms for each bacterium were evaluated in triplicate on each of the eight surfaces, and
each experiment was repeated once.

For the evaluation of disinfectant efficacy, 48 h biofilms of the three bacteria were
formed as previously described. The 48 h biofilms were selected for testing disinfectant
efficacy due to evidence that older biofilms may be more challenging to disinfect or erad-
icate [78]. Prior to enumeration, the BEST™ lid was inserted into a 12-well challenge
plate containing 4 mL of disinfectant at the prescribed concentration (Table 1). Exposure
to disinfectant was done at room temperature, without shaking, for two exposure times,
10 and 60 min. After the disinfectant challenge, the lid was transferred to a fresh plate
containing 4.5 mL of Universal Neutralizer in each well. After neutralizing, the lid was
rinsed for 2 min in a plate containing 5 mL of sterile water in each well and transferred to a
fresh plate containing a surfactant-supplemented growth medium [prepared with 1 L of
CAMHB, supplemented with 20.0 g per litre of saponin and 10.0 g per litre of Tween-80.
This solution was adjusted with diluted sodium hydroxide to the correct pH (7.0 ± 0.2 at
20 ◦C), and 500 µL of the universal neutralizer was added to each 20 mL of the surfactant
supplemented growth medium]. The device, with pegs in the surfactant-supplemented
growth medium, was dry sonicated for 30 min to re-suspend and separate the individual
cells within the biofilm matrix. Following sonication, 100 µL from each well was placed into
the 12 wells of the top row of a 96-well micro titer plate, and 180 µL of 0.9% sterile saline
was placed in all wells of the remaining rows. A serial dilution (100–107) was prepared by
serially mixing and moving 20 µL down each of the 8 rows. For each series, 20 µL from each
well was removed and spot plated on a prepared TSA plate and incubated at 37 ± 1 ◦C for
24 h. The colony forming units (CFU)/mL for each well were calculated. Each disinfectant
challenge was done in triplicate, and each experiment was repeated once.
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Log reductions were calculated as the log10 CFU/mL in the growth control (no dis-
infectant added) minus the log10 CFU/mL resulting after exposure to the disinfectant.
A log10 reduction of ≥3, (≥99.9% reduction), was considered functional disinfection.

2.3. Statistical Analyses

Statistical analyses were performed using Minitab 15.0 Statistical Software (Minitab
Inc., State College, PA, USA). A test for equal variances was performed on each data set
using either Bartlett’s test for normally distributed data sets or Levene’s test for non-normal,
continuous distributions. Mixed-model Analyses of Variance (ANOVAs) were performed
using a General Linear Model (GLM) to determine significant differences for main factors
and for interactions between factors.

3. Results
3.1. Biofilm Formation of E. coli, S. choleraesuis, and L. monocytogenes

The population density was measured as CFU/mL recovered from a biofilm. When
averaged across all surfaces, the population density after 24 h of growth was highest in S.
cholerasius biofilms and was significantly higher (p < 0.001) than that of the other species
tested (E. coli and L. monocytogenes), which were statistically comparable to one another
(Table 2; Figure 2). After 48 h of growth, the population density was significantly higher in
L. monocytogenes biofilms than in those of the other species tested (E. coli and S. cholerasius),
which were statistically comparable to one another (Table 2; Figure 2).

Table 2. Population densities (log10 CFU mL−1) of three bacterial species after 48 h on eight hard
surfaces.

Surface
Bacteria Species

Mean
E. coli 0157H7 S. cholerasius L. monocytogenes

Stainless steel 4.85 5.01 4.96 4.94

Mild steel 5.76 6.03 4.93 5.58

Wood 5.40 5.92 6.28 5.87

Laminated plastic 5.01 3.86 6.87 5.25

UHMWP 4.23 4.65 5.49 4.79

Rubber 5.21 5.20 6.56 5.66

Concrete 4.90 5.26 6.75 5.64

Silicon 4.07 4.01 6.59 4.89

Mean 4.93 4.99 6.05 5.32

p value LSD (p = 0.05)

Surface 0.000 *** 0.14

Bacteria 0.000 *** 0.08

Surface × Bacterial species interaction 0.000 *** 0.24

CV% = 2.7
*** Significant at p = 0.001.



Appl. Microbiol. 2024, 4 33Appl. Microbiol. 2024, 4, FOR PEER REVIEW  7 
 

 

 
Figure 2. Average population densities (log10 CFU/mL) of three food-borne bacterial pathogens. 
Each bar represents the mean cell density within biofilms averaged across growth on eight surface 
materials. Error bars represent the standard error of the mean. 

3.2. Effect of the Surface on Biofilm Population Density 
When averaged across all three bacteria, the smallest populations after 24 h of growth 

were observed on laminated plastic (3.03 log10 CFU/mL), high-molecular-weight plastic 
(3.19 log10 CFU/mL), and stainless steel (3.35 log10 CFU/mL) (Figure 3). The largest popu-
lations were observed on wood (4.03 log10 CFU/mL), rubber (3.72 log10 CFU/mL), and 
concrete (3.65 log10 CFU/mL) (Figure 3). However, after 48 h of growth, the smallest pop-
ulations were observed on high-molecular-weight plastic (4.81 log10 CFU/mL), silicon (4.89 
log10 CFU/mL), and stainless steel (4.95 log10 CFU/mL), and the largest populations were 
observed on wood (5.89 log10 CFU/mL), concrete (5.66 log 10 CFU/mL), and mild steel (5.51 
log10 CFU/mL) (Figure 3). The surface by bacterial species interaction was significant at p 
< 0.001 (Table 2), suggesting that biofilm formation by the three bacteria used in this study 
varied significantly between at least two of the surfaces. Some surfaces, such as wood and 
concrete, had high cell densities for all three bacteria. However, other surfaces such as 
silicon, rubber, and plastic had significant variation between bacteria. For example, S. chol-
erasuis had high cell densities on mild steel and rubber but low cell density on silicon 
(Figure 4). Alternatively, L. monocytogenes had high cell densities on silicon and rubber but 
low cell density on mild steel. Finally, E. coli had a high population density on mild steel 
but significantly lower densities on rubber and silicon. 

0

2

4

6

8

E. coli S. cholerasius L. monocytogenes

Lo
g 1

0
C

FU
/m

L

24 hours
48 hours

Figure 2. Average population densities (log10 CFU/mL) of three food-borne bacterial pathogens.
Each bar represents the mean cell density within biofilms averaged across growth on eight surface
materials. Error bars represent the standard error of the mean.

3.2. Effect of the Surface on Biofilm Population Density

When averaged across all three bacteria, the smallest populations after 24 h of growth
were observed on laminated plastic (3.03 log10 CFU/mL), high-molecular-weight plastic
(3.19 log10 CFU/mL), and stainless steel (3.35 log10 CFU/mL) (Figure 3). The largest
populations were observed on wood (4.03 log10 CFU/mL), rubber (3.72 log10 CFU/mL),
and concrete (3.65 log10 CFU/mL) (Figure 3). However, after 48 h of growth, the smallest
populations were observed on high-molecular-weight plastic (4.81 log10 CFU/mL), silicon
(4.89 log10 CFU/mL), and stainless steel (4.95 log10 CFU/mL), and the largest populations
were observed on wood (5.89 log10 CFU/mL), concrete (5.66 log10 CFU/mL), and mild steel
(5.51 log10 CFU/mL) (Figure 3). The surface by bacterial species interaction was significant
at p < 0.001 (Table 2), suggesting that biofilm formation by the three bacteria used in this
study varied significantly between at least two of the surfaces. Some surfaces, such as
wood and concrete, had high cell densities for all three bacteria. However, other surfaces
such as silicon, rubber, and plastic had significant variation between bacteria. For example,
S. cholerasuis had high cell densities on mild steel and rubber but low cell density on silicon
(Figure 4). Alternatively, L. monocytogenes had high cell densities on silicon and rubber but
low cell density on mild steel. Finally, E. coli had a high population density on mild steel
but significantly lower densities on rubber and silicon.

Appl. Microbiol. 2024, 4, FOR PEER REVIEW  8 
 

 

 
Figure 3. Average population densities (log10 CFU/mL) on eight surfaces. Each bar represents the 
mean cell density within biofilms on eight surface materials averaged across the growth results of 
three food-borne pathogens. Error bars represent the standard error of the mean. 

 
Figure 4. Differences in the biofilm population densities (log10 CFU/mL) of three food-borne patho-
gens on three surfaces. Error bars represent the standard error of the mean. 

3.3. Log Reductions of Food-Borne Pathogen Biofilms by Disinfectant: Single Factors 
The log reductions achieved by disinfectants showed statistically significant differ-

ences for all three main factors (bacteria, surface, and disinfectant), as well as for all two-
way and three-way interactions (Table 3). When averaged across all seven disinfectants 
and all eight surfaces S. cholerasius formed the most difficult biofilms to disinfect as it had 
the lowest overall log10 reduction (3.27 CFU/mL) followed by E. coli O157:H7 and L. mon-
ocytogenes with log10 reductions of 3.55 and 4.72, respectively (Figure 5). When averaged 
across all seven disinfectants for all three bacteria, the most difficult surfaces to disinfect 
were wood and rubber with log reductions of 2.80 and 3.37 log10 CFU/mL (Figure 6). Wood 

0

1

2

3

4

5

6

7

Lo
g 1

0
C

FU
/m

L

24 hours
48 hours

0

1

2

3

4

5

6

7

8

Mild Steel Rubber Silicon

Lo
g 1

0
C

FU
/m

L

E. coli

L. monocytogenes

S. cholerasius

Figure 3. Average population densities (log10 CFU/mL) on eight surfaces. Each bar represents the
mean cell density within biofilms on eight surface materials averaged across the growth results of
three food-borne pathogens. Error bars represent the standard error of the mean.



Appl. Microbiol. 2024, 4 34

Appl. Microbiol. 2024, 4, FOR PEER REVIEW  8 
 

 

 
Figure 3. Average population densities (log10 CFU/mL) on eight surfaces. Each bar represents the 
mean cell density within biofilms on eight surface materials averaged across the growth results of 
three food-borne pathogens. Error bars represent the standard error of the mean. 

 
Figure 4. Differences in the biofilm population densities (log10 CFU/mL) of three food-borne patho-
gens on three surfaces. Error bars represent the standard error of the mean. 

3.3. Log Reductions of Food-Borne Pathogen Biofilms by Disinfectant: Single Factors 
The log reductions achieved by disinfectants showed statistically significant differ-

ences for all three main factors (bacteria, surface, and disinfectant), as well as for all two-
way and three-way interactions (Table 3). When averaged across all seven disinfectants 
and all eight surfaces S. cholerasius formed the most difficult biofilms to disinfect as it had 
the lowest overall log10 reduction (3.27 CFU/mL) followed by E. coli O157:H7 and L. mon-
ocytogenes with log10 reductions of 3.55 and 4.72, respectively (Figure 5). When averaged 
across all seven disinfectants for all three bacteria, the most difficult surfaces to disinfect 
were wood and rubber with log reductions of 2.80 and 3.37 log10 CFU/mL (Figure 6). Wood 

0

1

2

3

4

5

6

7

Lo
g 1

0
C

FU
/m

L

24 hours
48 hours

0

1

2

3

4

5

6

7

8

Mild Steel Rubber Silicon

Lo
g 1

0
C

FU
/m

L

E. coli

L. monocytogenes

S. cholerasius

Figure 4. Differences in the biofilm population densities (log10 CFU/mL) of three food-borne
pathogens on three surfaces. Error bars represent the standard error of the mean.

3.3. Log Reductions of Food-Borne Pathogen Biofilms by Disinfectant: Single Factors

The log reductions achieved by disinfectants showed statistically significant differences
for all three main factors (bacteria, surface, and disinfectant), as well as for all two-way and
three-way interactions (Table 3). When averaged across all seven disinfectants and all eight
surfaces S. cholerasius formed the most difficult biofilms to disinfect as it had the lowest
overall log10 reduction (3.27 CFU/mL) followed by E. coli O157:H7 and L. monocytogenes
with log10 reductions of 3.55 and 4.72, respectively (Figure 5). When averaged across all
seven disinfectants for all three bacteria, the most difficult surfaces to disinfect were wood
and rubber with log reductions of 2.80 and 3.37 log10 CFU/mL (Figure 6). Wood surfaces
proved to be the most challenging to disinfect as only two of the disinfectants were capable
of 3-log reductions for all three pathogens on wood (Supplementary Figures S1–S3), and
the average log10 reduction for wood was less than 3, indicating that, on average, the
functional disinfection of wood was not achieved. The easiest surfaces to disinfect were
concrete and stainless steel, with log reductions of 4.25 and 4.19 log10 CFU/mL (Figure 6).
Finally, when averaged across all eight surfaces for all three bacteria, the seven disinfectants
each showed log10 CFU/mL reductions of at least 3, indicating that, on average, they
were all capable of functional disinfection. However, some disinfectants displayed higher
average log reductions than others. The disinfectants with the greatest log reductions
were Virkon and Oxonia Active, with average log10 CFU/mL reductions of 4.48 and 4.13,
respectively (Figure 7). The smallest reductions were observed for 1-Stroke and Vantocil,
with log10 CFU/mL reductions of 3.01 and 3.26, respectively (Figure 7).

Table 3. Log reductions (log10 CFU/mL) of biofilms formed by three bacteria after exposure
(10 min) to each of seven disinfectants on eight food-contact surfaces. For reference, control re-
covery (log10 CFU/mL) is presented for each species and surface type. Log reductions equal to the
control recovery indicate that no organisms were recovered after treatment with the various biocides.

Surface Biocide
Bacteria Species

Mean
E. coli 0157:H7 S. cholerasius L. monocytogenes

Stainless steel

Control
Recovery ** (4.47) (3.59) (4.51) (4.19)

Virkon 4.47 3.59 4.51 4.19

1-Stroke 4.47 3.59 4.51 4.19

SterBac 4.47 3.59 4.51 4.19

Vortexx 4.47 3.59 4.51 4.19

Environ LpH 4.47 3.59 4.51 4.19

Vantocil 4.47 3.59 4.51 4.19

Oxonia Active 4.47 3.59 4.51 4.19

Mean 4.47 3.59 4.51 4.19
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Table 3. Cont.

Surface Biocide
Bacteria Species

Mean
E. coli 0157:H7 S. cholerasius L. monocytogenes

Mild steel

Control
Recovery ** (4.60) (5.07) (4.57) (4.75)

Virkon 4.60 5.07 4.57 4.75

1-Stroke 1.35 * 0.34 * 4.57 2.09 *

SterBac 1.32 * 2.64 * 4.57 2.84 *

Vortexx 4.60 4.40 4.57 4.52

Environ LpH 4.60 3.93 4.57 4.37

Vantocil 4.60 4.34 4.57 4.50

Oxonia Active 4.60 5.07 4.57 4.75

Mean 3.67 3.69 4.57 3.97

Rubber

Control
Recovery ** (4.65) (5.15) (4.70) (4.83)

Virkon 4.08 5.15 4.70 4.64

1-Stroke 2.55 * 0.14 * 1.95 * 1.55 *

SterBac 2.18 * 1.05 * 4.70 2.64 *

Vortexx 4.65 2.32 * 4.70 3.89

Environ LpH 4.08 1.23 * 4.70 3.34

Vantocil 2.95 * 1.60 * 4.70 3.08

Oxonia Active 4.65 4.58 4.03 4.42

Mean 3.59 2.29 * 4.21 3.37

Concrete

Control
Recovery ** (5.45) (6.29) (4.55) (5.43)

Virkon 5.45 4.87 2.97 4.43

1-Stroke 5.45 2.99 4.55 4.33

SterBac 5.45 3.15 3.31 3.97

Vortexx 5.45 6.29 4.55 5.43

Environ LpH 5.45 2.79 * 2.41 * 3.55

Vantocil 5.45 2.83 * 0.93 * 3.07

Oxonia Active 5.45 6.29 3.16 4.97

Mean 5.45 4.17 3.13 4.25

Wood

Control
Recovery ** (5.35) (5.90) (5.21) (5.49)

Virkon 5.35 5.90 5.21 5.49

1-Stroke 1.43 * 0.34 * 5.21 2.33 *

SterBac 0.12 * 0.62 * 5.21 1.98 *

Vortexx 0.29 * 1.73 * 2.18 * 1.40 *

Environ LpH 2.15 * 1.60 * 5.21 2.99

Vantocil 0.02 * 0.90 * 5.21 2.05 *

Oxonia Active 2.86 * 2.12 * 5.21 3.40

Mean 1.75 * 1.89 * 4.78 2.84 *
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Table 3. Cont.

Surface Biocide
Bacteria Species

Mean
E. coli 0157:H7 S. cholerasius L. monocytogenes

Laminated plastic

Control
Recovery ** (4.73) (4.61) (4.47) (4.60)

Virkon 4.73 4.61 4.47 4.60

1-Stroke 1.42 * 1.55 * 3.62 2.20 *

SterBac 1.80 * 1.79 * 2.67 * 2.09 *

Vortexx 4.16 4.61 4.47 4.41

Environ LpH 2.61 * 4.61 4.47 3.90

Vantocil 4.06 2.35 * 4.47 3.63

Oxonia Active 4.73 1.96 * 4.47 3.72

Mean 3.36 3.07 4.09 3.50

UHMWP

Control
Recovery ** (3.89) (4.15) (4.66) (4.23)

Virkon 3.89 4.15 4.66 4.23

1-Stroke 3.89 4.15 4.66 4.23

SterBac 3.32 4.15 4.66 4.04

Vortexx 3.89 4.15 4.66 4.23

Environ LpH 3.89 4.15 4.66 4.23

Vantocil 0.26 * 4.15 4.66 3.02

Oxonia Active 3.89 4.15 4.66 4.23

Mean 3.29 4.15 4.66 4.03

Silicon

Control
Recovery ** (4.78) (3.39) (5.06) (4.41)

Virkon 3.41 3.39 3.76 3.52

1-Stroke 4.78 2.82 * 2.15 * 3.25

SterBac 4.78 3.39 5.06 4.41

Vortexx 1.05 * 3.39 5.06 3.17

Environ LpH 3.44 3.39 5.06 3.96

Vantocil 0.93 * 3.39 3.23 2.52 *

Oxonia Active 1.58 * 3.39 5.06 3.34

Mean 2.85 * 3.31 4.20 3.45

p value LSD p = 0.05

Surface 0.000 *** 0.18

Bacterial species 0.000 *** 0.11

Biocide 0.000 *** 0.17

Surface × Biocide interaction 0.000 *** 0.31

Bacterial species × Biocide interaction 0.000 *** 0.47

Surface × Bacterial species interaction 0.000 *** 0.29

Surface × Bacterial species × Biocide interaction 0.000 *** 0.81

CV% = 13.7%

*** Significant at p = 0.001. ** No antimicrobial present: (control recovery) for log reduction calculations. * Values
in red font < 3 log reduction.
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Figure 5. Log reductions in biofilm population densities (log10 CFU/mL) for three food-borne
pathogens. The means are averaged across results from seven disinfectants on eight surfaces for three
food-borne pathogens. Error bars represent the standard error of the mean.
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Figure 6. Log reductions in biofilm population densities (log10 CFU/mL) on eight surfaces. The
means are averaged across results from all seven disinfectants versus three food-borne pathogens.
The solid horizontal line shows the threshold for functional disinfection (3-log reduction). Error bars
represent the standard error of the mean.
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Figure 7. Log reductions in biofilm population densities (log10 CFU/mL) for seven disinfectants. The
means are averaged across the results for three food-borne pathogens on eight surfaces. The solid
horizontal line shows the threshold for functional disinfection (3-log reduction). Error bars represent
the standard error of the mean.

3.4. Log Reductions of Food-Borne Pathogen Biofilms: Two-Way Interactions

The interaction between surfaces and bacterial species was statistically significant
for log reduction (Table 3). While some surfaces such as stainless steel experienced 3-log
reductions for all bacteria, this was not the case for all surfaces. Three examples of this
were seen for rubber, concrete, and wood where 4-log reductions were achieved for E.
coli and S. cholerasius on concrete, but L. monocytogenes barely achieved a 3-log reduction
(Figure 8). Conversely, 4-log reductions of L. monocytogenes were observed for biofilms on
rubber and wood, but functional disinfection was not achieved for E. coli and S. cholerasius
biofilms on these surfaces (Figure 8). Note the standard error of the mean was highest
for the wood surface, which highlights the challenges associated with this highly porous
surface, presumably both in the recovery of biofilm organisms for evaluation and the
penetration/interaction of the biocides within the matrix of the wood surface.

The surface by disinfectant interaction was significant at p < 0.001 (Table 3), suggesting
that log reductions by the seven disinfectants varied significantly between at least two of
the surfaces. Two disinfectants, Virkon and Oxonia Active, achieved a 3-log reduction on
all surfaces, but the efficacies of the remaining five disinfectants were significantly affected
by the surface. Three of the most obvious examples of this were seen for 1-Stroke, SterBac,
and Vantocil; they achieved a 3-log reduction, or even functional eradication, on one or
more surfaces but failed to achieve 3-log reduction on other surfaces (Figure 9).

When averaged across all eight surfaces, the species by disinfectant interaction was
significant at p < 0.001 (Table 3), suggesting that log reductions by the seven disinfectants
varied significantly between at least two of the bacterial species. There were four disinfec-
tants (Virkon, Vortexx, Eviron LpH, Oxonia Active) that achieved ≥3-log reduction for all
three bacteria on all eight surfaces, one (1-Stroke) that achieved a 3-log reduction of E. coli
and L. monocytogenes biofilms, but could not quite reach a 2-log reduction of S. cholerasius
biofilm, and two (SterBac and Vantocil) that achieved a ≥3-log reduction for only one
species (Figure 10).
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Figure 8. Log reductions in biofilm population densities (log10 CFU/mL) for three food-borne
pathogens on three surfaces. The means are averaged across the results from seven disinfectants.
The solid horizontal line shows the threshold for functional disinfection (3-log reduction). Error bars
represent the standard error of the mean.
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Figure 9. Log reductions in biofilm population densities (log10 CFU/mL) for three disinfectants on
eight surfaces. The means are averaged across the results for three food-borne pathogens. The solid
horizontal line shows the threshold for functional disinfection (3-log reduction). Error bars represent
the standard error of the mean.
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Figure 10. Log reductions in biofilm population densities (log10 CFU/mL) for seven disinfectants
versus three food-borne pathogens. The means are averaged across the results from eight surfaces.
The solid horizontal line shows the threshold for functional disinfection (3-log reduction). Error bars
represent the standard error of the mean.

3.5. Three-Way Interactions of Bacterial Species × Surfaces × Disinfectants

When log reductions for all seven disinfectants, averaged across all eight surfaces,
and all three species, the three-way interaction was significant at p < 0.001 (Table 3). These
complex relationships are presented graphically in Supplementary Figures S1–S3. One ex-
ample of this three-way interaction is the log reductions observed for all seven disinfectants
versus the biofilms of all three pathogens on rubber. When biofilms were grown on rubber
surfaces, only two disinfectants failed to achieve a 3-log reduction for L. monocytogenes,
whereas three disinfectants failed to achieve a 3-log reduction for E. coli O157:H7, and five
disinfectants failed to functionally disinfect S. cholerasius (Figure 10). The disinfectants that
failed to achieve a 3-log reduction on rubber were not always ineffective on rubber nor
were they always ineffective against a specific bacterium. It was the interactions of the
three factors that determined the outcomes.

4. Discussion

Biofilm formation is affected by factors such as bacterial species, the characteristics of
the surfaces, and the surrounding medium/environment [79,80]. In the food-processing
industry, surface features are also very important for biofilm formation because they
influence initial cell attachment [81]. Additionally, it has been observed that a critical
surface tension value promotes bacterial adhesion [82,83]. Further, Bendinger et al. [82]
reported that more cells attach to hydrophilic surfaces (stainless steel, glass, etc.) than
hydrophobic surfaces (Buna-N rubber and other plastics). Other work has shown that
bacteria tend to attach to glass (a hydrophilic surface) uniformly in a monolayer, while on
hydrophobic surfaces such as nylon and tin, they tend to adhere in clumps [84]. In contrast,
Baker [85] found no difference between hydrophilic glass slides and polystyrene Petri plates
in the cellular adhesion of freshwater bacteria while Bos et al. [86] found that bacterial
colonization happened at the hydrophilic region of the hydrophilic–hydrophobic interface
of the stainless-steel surface. We found that, in general, larger populations developed on
hydrophilic surfaces such as wood, concrete, and mild steel while smaller populations
resulted on hydrophobic surfaces such as plastic and silicon (Figure 2). Interestingly, rubber
was an exception to this observation, as it is a hydrophobic surface and yet had the third
highest CFU/mL value in the 24 h biofilms. One interpretation of this observation is that,
while surface hydrophilicity plays an important role in attachment and biofilm formation,
it is not the only factor affecting the final cell population within the biofilm. For example,
Characklis et al. [87] observed that surface roughness affected the extent of microbial
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attachment. Additional studies by Jones et al. [88] also demonstrated that surface defects
were associated with a significant increase in bacterial adhesion. In our study, the surfaces
with the highest populations in 24 h biofilms were wood, concrete, and rubber, which
represent the most porous surfaces tested. Thus, both hydrophilicity and porosity could
be important factors in cell attachment and biofilm growth. Another explanation is that
even though bacteria attach more to hydrophilic than hydrophobic surfaces, the differences
in attachment are not necessarily of practical significance when high growth rates on the
surface can make attachment differences a minor factor in the development of the microbial
load. This may also partially explain why the surfaces with the highest populations were
not the same for the 24 h and 48 h biofilms.

With respect to species-specific differences in biofilm populations, we observed that
all bacteria formed >3 log10 CFU/mL biofilms on all eight of the surfaces tested, but
significant differences in biofilm populations existed. For example, S. cholerasius had the
highest population after 24 h, but L. monocytogenes had the highest population after 48 h
(Figure 2). In addition, some surfaces hosted significantly higher populations than others
in a species-specific manner as seen in Figure 4. This result is similar to those obtained by
Mafu et al. [43] and Sasahara and Zottola [89]; they observed strain-specific variability in
the ability to attach to and colonize surfaces.

Functional disinfection is widely described as ≥3-log reduction (99.9% kill) of the
viable cell population [90–92]. Our results showed that all disinfectants were capable
of the functional disinfection of the bacterial biofilms when log reduction values were
averaged across all eight different food-contact surfaces (Figure 7). However, while some
surfaces such as concrete and stainless steel were easy to disinfect, others such as wood and
rubber were significantly more difficult to disinfect (Figure 6). This result confirms what
many others have reported that wood can be a very challenging surface to disinfect [93].
Additionally, some results were specific to one bacterium on one or two surfaces for a
specific disinfectant (Figures 8 and 9), hinting that interactions among species, surface, and
disinfectant can be complicated. In this study, we have confirmed that the interactions
among species, surface, and disinfectant were all statistically significant (Table 3), and
Figure 10 highlights the significantly varied outcomes due to some of these complex inter-
actions. Very few studies have evaluated two- and three-way interactions of species and
surface materials with disinfectant efficacies. For example, Howard et al. [75] demonstrated
two-way interactions between disinfectants and surfaces in the context of managing bacte-
rial ring rot disease in potato but did not look at multiple strains or isolates. While these
studies can be challenging, the refinement of surface disinfection strategies to maximize
efficacy and reduce gaps in food safety will require these types of multifactorial evaluations.
The results will provide evidence regarding what disinfectant(s) may be best suited for
specific situations. For example, our results support the use of Virkon and Oxonia Active
as efficacious, broad-spectrum disinfectants for multiple surfaces, but 1-Stroke, SterBac,
and Vantocil are recommended only for the disinfection of L. monocytogenes on stainless
steel, concrete, and high-molecular-weight plastic (Figures 8 and 10).

This evaluation of the growth of microbial biofilms on various surfaces and the
disinfectant efficacy in specific situations has revealed interactions among bacterial species,
surface type, and active ingredient. Despite the challenges of investigating biofilms’ two-
and three-way interactions with surfaces and disinfectants, the BEST™ Assay provided
an effective platform for evaluating these influences and interactions. In situations where
disinfection or eradication is foundational for safe food and the prevention of human illness,
the results of this work suggest that fine tuning disinfection protocols based on key factors,
and interactions among them, may be a very useful endeavor.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/applmicrobiol4010003/s1, Figure S1: Log reductions of Listeria
monocytogenes biofilms on eight hard surfaces exposed to seven disinfectants for 10 min. Biofilms
were also exposed to disinfectants for 1 h (not shown). Black bars achieved at least a 3-log reduction
at 10 min. Yellow bars achieved a 3-log reduction after 1 h, but not at 10 min. Error bars represent

https://www.mdpi.com/article/10.3390/applmicrobiol4010003/s1
https://www.mdpi.com/article/10.3390/applmicrobiol4010003/s1
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the standard error of the mean; Figure S2: Log reductions of E. coli 0157:H7 biofilms on eight hard
surfaces exposed to seven disinfectants for 10 min. Biofilms were also exposed to disinfectants for 1 h
(not shown). Black bars achieved at least a 3-log reduction. Yellow bars achieved a 3-log reduction
after 1 h, but not at 10 min. Red bars did not achieve a 3-log reduction after 10 min or 1 h exposures.
Error bars represent the standard error of the mean; Figure S3: Log reductions of S. cholerasuis biofilms
on eight hard surfaces exposed to seven disinfectants for 10 min. Biofilms were also exposed to
disinfectants for 1 h (not shown). Black bars achieved at least a 3-log reduction. Yellow bars achieved
a 3-log reduction after 1 h, but not at 10 min. Red bars did not achieve a 3-log reduction after 10 min
or 1 h exposures. Error bars represent the standard error of the mean.
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