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Abstract: Wastewater-based epidemiology (WBE) is useful for detecting pathogen prevalence and
may serve to effectively monitor diseases across broad scales. WBE has been used throughout the
COVID-19 pandemic to track disease burden through quantifying SARS-CoV-2 RNA present in
wastewater. Aside from case load estimation, WBE is being used to assay viral genomic diversity
and emerging potential SARS-CoV-2 variants. Here, we present a study in which we sequenced
RNA extracted from sewage influent obtained from eight wastewater treatment plants representing
16 million people in Southern California from April 2020 to August 2021. We sequenced SARS-CoV-2
with two methods: Illumina Respiratory Virus-Enriched metatranscriptomic sequencing (N = 269),
and QIAseq SARS-CoV-2-tiled amplicon sequencing (N = 95). We classified SARS-CoV-2 reads into
lineages and sublineages that approximated named variants and identified single nucleotide variants
(SNVs), of which many are putatively novel SNVs and SNVs of unknown potential function and
prevalence. Through our retrospective study, we also show that several SARS-CoV-2 sublineages
were detected in wastewater before clinical detection, which may assist in the prediction of future
variants of concern. Lastly, we show that sublineage diversity was similar across Southern California
and that diversity changed over time, indicating that WBE is effective across megaregions. As the
COVID-19 pandemic moves to new phases, and SARS-CoV-2 variants emerge, monitoring wastewater
is important to understand local- and population-level dynamics of the virus. These results will aid
in our ability to monitor the evolutionary potential of SARS-CoV-2 and help understand circulating
SNVs to further combat COVID-19.
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1. Introduction

The COVID-19 pandemic has had a profound impact on the human population, caus-
ing over 700 million cases of disease and more than 7 million human deaths worldwide [1].
Caused by the emergence of the +ssRNA “severe acute respiratory syndrome coronavirus
2” [2], COVID-19 has caused public health to react and respond in novel ways to track the
spread of the disease [3–5]. One of these unexpected responses has been through the use of
wastewater-based epidemiology (WBE) to monitor SARS-CoV-2 viral loads in wastewater
throughout the COVID-19 pandemic [4,6,7]. Having been used for approximately 80 years
(although only formally adopted by the WHO in 2003) to monitor polio, WBE is known to
be an effective surveillance method for a variety of diseases [8]. As part of a worldwide ef-
fort to combat COVID-19, a massive assemblage of epidemiologists has developed methods
and analyses for the examination of SARS-CoV-2 viral material in wastewater to track the
spread and approximate cases of COVID-19 [4,9–11]. While direct sampling from patients
is the most definitive method of COVID-19 diagnosis [12,13], it has been shown that clinical
testing has probably undercounted the true number of cases [3,14–16]. This inaccuracy in
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case counts is likely due to a combination of supply issues, inability or reluctance to be
tested for COVID-19, asymptomatic disease, and unreported at-home testing [3,14,15]. As
a partner to traditional public health responses, WBE has shown to be a valuable tool in
predicting and assaying case counts across populations both small and large [4,7,17,18].
Though WBE has shown to be a vital component of the world’s fight against COVID-19,
its major method of RT-qPCR on extracted RNA from wastewater samples is only able to
quantify viral loads and cannot monitor the evolution of SARS-CoV-2 and the resulting
viral variants.

The SARS-CoV-2 virus has mutated many times since its original genomic descrip-
tion, representing ongoing evolution as the COVID-19 pandemic progresses [19–22]. The
WHO and PANGO Network monitor these mutations, broadly classifying variants into
variants of concern (i.e., Alpha, Beta, Gamma, Delta, Omicron), variants of interest (i.e.,
Epsilon, Zeta, Eta, Mu), or variants under monitoring, along with lineage designations
based on phylogenetics (i.e., B.1.351, B.1.1.529) [21–24]. In many cases, SARS-CoV-2 vari-
ants may possess mutations that confer phenotypic changes in the COVID-19 disease,
such as increased transmissibility or antibody escape [19,25]. While these variants often
contain numerous mutations, single nucleotide polymorphisms (SNPs) have been shown
to occur across the SARS-CoV-2 genome, (known as single nucleotide variants; SNVs)
representing mutational events that often have unknown functional or evolutionary con-
sequences [18,26–29]. Currently, direct sampling from COVID-19-positive patients is the
gold standard for SARS-CoV-2 sequencing but remains limited by the logistics required to
administer tests and only allows for the sequencing of the virus from one patient at a time.
Likewise, single-isolate patient sequencing likely misses rare SARS-CoV-2 variants [30], or
those infecting non-human hosts, which may serve as undetected reservoirs for SNVs [31].
By sequencing SARS-CoV-2 from wastewater, we can capture circulating variants/SNVs
across wide areas, which provide a composite sample representing large populations and
may detect SNVs before standard medical sampling [18,26,30,32].

There are many challenges to sequencing SARS-CoV-2 from wastewater samples [33–35].
As a matrix of industrial, agricultural, and human-borne wastes, wastewater often contains
a variety of detergents and other compounds that serve as PCR inhibitors and likely de-
grade viral particles [30,33,36,37]. Similarly, SARS-CoV-2 is often at a low viral load, and the
virus detected in wastewater is almost certainly fragmented, making sequencing difficult
due to an inability to cover an entire genome in one assay [18,38–40]. Sequencing methods
have been developed to address these challenges, such as viral enrichment, targeted ampli-
fication of viral regions, and various RNA extraction protocols but many of these methods
are designed for clinical samples, so wastewater analyses remain technically difficult to
accurately conduct [17,18,41,42]. In order to increase our confidence in SARS-CoV-2 variant
analyses, we used two sequencing library preparation methods on wastewater samples:
The Illumina Respiratory Virus Oligonucleotide Panel, which enriches for respiratory virus
nucleic acids before sequencing, and the QIAseq SARS-CoV-2 Primer Panel, which uses
200 PCR primer sets to amplify the entire SARS-CoV-2 genome.

Sequencing SARS-CoV-2 obtained from wastewater is a critical component of moni-
toring the ongoing COVID-19 pandemic [4]. Here, we present a study in which we used
metatranscriptomic sequencing and two methods of library preparation (Illumina Respira-
tory Virus Oligonucleotide Panel or QIAseq SARS-CoV-2 Primer Panel) to identify SNVs,
clades, and sublineages of SARS-CoV-2 on 317 influent wastewater samples. These samples
were obtained from eight WTPs across Southern California from April 2020 to August
2021 and represent the collective wastewater of approximately 16 million residents. We
investigated several lines of inquiry through our study: First, what RNA viruses are repre-
sented in our samples? Second, what clades and sublineages of SARS-CoV-2 were present
in Southern California wastewater, and can we detect variants of concern in wastewater?
Third, what SNVs were present in Southern California wastewater, and can we detect these
variants with both library preparation methods? Lastly, does wastewater sequencing allow
for the early detection of variants before clinical sequencing?
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2. Materials and Methods
2.1. Sample Collection and Handling

We previously reported the sample collection and handling procedure in Rothman
et al., 2021 [18], and Rothman et al., 2022 [43]. Briefly, we collected 317 1-L 24-h composite
influent wastewater samples by autosampler at eight WTPs across Southern California
between April 2020 and August 2021 (Table 1). We aliquoted and stored 50 mL of sample at
4 ◦C until processing.

Table 1. Sample quantities, date spans of collection, and approximate influent flow and served
population. WTP names include the abbreviations used throughout the study, and “IRV” denotes
Illumina Respiratory Virus Enrichment library preparation.

Wastewater
Treatment Plant

Library
Preparation

Method

Number of
Samples Date Span

Approximate
Inflow

(Million
Gallons/Day)

Approximate
Population

Served

Escondido Hale
Avenue Resource
Recovery Facility

(ESC)

IRV 47 20 July 2020–19 July 2021 14 190,000

Hyperion Water
Reclamation
Plant (HTP)

IRV 89 11 August 2020–29 July 2021 275 4,000,000

Tiled amplicon 47 21 April 2020–25 July 2021

Joint Water
Pollution Control

Plant (JWPCP)
IRV 15 11 August 2020–17 November 2020 400 4,800,000

North City Water
Reclamation
Plant (NC)

IRV 5 14 August 2020–23 October 2020 30 1,400,000

Orange County
Reclamation
Plant #1 (OC)

IRV 14 12 August 2020–21 December 2020 140 2,600,000

Point Loma
Water Treatment

Plant (PL)

IRV 77 13 August 2020–3 August 2021 175 2,200,000

Tiled amplicon 48 30 April 2020–18 August 2021

San Jose Creek
Water

Reclamation
Plant (SJ)

IRV 15 12 August 2020–18 November 2020 100 1,000,000

South Bay Water
Reclamation

Plant (SB)
IRV 7 13 August 2020–5 November 2020 15 107,000

2.2. Wastewater Sample RNA Extraction

We used two separate RNA extraction and library preparation protocols for the samples
in this study. For one set (N = 269), we used a protocol based on Crits-Christoph, 2021 [26],
and Rothman, 2021 [18], and we refer to those papers for detailed RNA extraction methods.
Briefly, 50 mL of influent wastewater was pasteurized at 65 ◦C for 90 min in a water bath,
filtered through 0.22-µM sterile filters (VWR, Radnor, PA, USA), then centrifugated at 3000× g
with 10 kDa filters (MilliporeSigma, Burlington, MA, USA) and RNA was extracted with an
Invitrogen PureLink RNA Mini Kit plus DNase (Invitrogen, Waltham, MA, USA). We will
refer to these samples as “Illumina Respiratory Virus-enriched” (IRV) henceforth.

A second set of RNA extractions was carried out (N = 95) with a different extraction
and library preparation protocol based on Steele, 2021 [35]. Briefly, we added 25 mM
MgCl2 to 20 mL of wastewater, then acidified the samples to pH < 3.5 with HCl. We then
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transferred the mixture to a cellulose ester membrane (type HA; Millipore, Bedford, MA,
USA) then bead bashed the filters in preloaded 2 mL ZR BashingBead lysis tubes (Zymo,
Irvine, CA, USA) for 1 min. Lastly, we extracted total nucleic acid with a NucliSENS
extraction kit with magnetic bead capture following the supplied protocol (bioMérieux,
Durham, NC, USA). Libraries for these samples were then prepared as follows and will
be referred to as “tiled amplicons”. Note that some samples were only sequenced with
the IRV method, while others were only sequenced with the tiled amplicon method. A
total of N = 47 samples (N = 18 Hyperion and N = 29 Point Loma) were sequenced with
both methodologies.

2.3. Sequencing Library Preparation

All sample library preparation and sequencing steps were carried out by the Univer-
sity of California Irvine Genomics High-Throughput Facility (GHTF). The GHTF prepared
IRV-enriched libraries with the Illumina Respiratory Virus Oligonucleotide panel paired
with an Illumina RNA prep with enrichment kit (Illumina, San Diego, CA, USA), follow-
ing the manufacturer’s protocol. The tiled amplicon libraries were prepared by using
the QIAseq SARS-CoV-2 Primer Panel paired with a QIAseq FX DNA Library UDI kit
(Qiagen, Germantown, MD, USA) and using the manufacturer’s protocol. The GHTF se-
quenced the resulting paired-end libraries as either 2 × 100 bp or 2 × 150 bp (Supplemental
File SF1) on an Illumina NovaSeq 6000 with an S4 300 cycling kit and sent the data as
demultiplexed FASTQ files.

2.4. Bioinformatics and Sequence Data Processing

All data processing was conducted on the UCI High-Performance Community Com-
puting Cluster (HPC3). We removed sequencing adapter sequences and low-quality bases
with the BBTools software v.38.87 “bbduk” [44]. We subsequently marked sequencing
duplicates with Picard toolkit “MarkDuplicates” [45], removed reads mapping to the HG38
human genome with Bowtie2 [46], then used Kraken2 [47] and Bracken [48] to taxonomi-
cally classify our reads for reporting purposes and plotted those relative abundances as a
stacked bar plot with the R package “ggplot2” [49,50].

Once we had removed the human reads, we aligned the reads to the SARS-CoV-2
Hu-1 reference strain [51] with Bowtie2, then sorted and indexed the resulting bam files
with “samtools” [52]. We used iVar [53] with the default settings to trim off QIAseq primer
sequences and call single nucleotide variants (SNVs) with a Fisher’s exact test of p < 0.05, as
compared to the reference strain (Supplemental File SF1). Subsequently, we used Freyja [30]
to assign SARS-CoV-2 lineage and sublineage identities to the alignments using the UShER
phylogeny [54] and then de-mix the clades and sublineages within each sample to calculate
approximate relative abundances. As we wanted to compare the results from IRV-enriched
libraries to tiled amplicon libraries, we also used the iVar/Freyja pipeline to call SNVs and
assign lineages/sublineages to these libraries, even though there were no true primers
to remove.

To compare our wastewater sequence data to clinical sequencing, we obtained the date
of sublineage detection and reported genomes from PANGO, GISAID, and the California
Health and Human Services Agency [21,22,55,56] and associated these dates with our
wastewater sampling dates. Due to the longitudinal nature of our data, we compared
variant lineage abundances (as counts per million) over time with MaAsLin2 [57] where
we had yearlong data, using WTP and sequencing batch as random effects. Likewise, we
reported SNVs from 68 samples with detectible SARS-CoV-2 in Rothman 2021 [18] but here
we reanalyzed the data and present the new results for consistency with our new methods.

We investigated SARS-CoV-2 sublineage alpha diversity through Kruskal–Wallis test-
ing and beta diversity through Adonis PERMANOVA testing with the R package “ve-
gan” [58] and measured the change in diversity with linear mixed-effects regression models
(LMERs) with the R package “lmerTest” [59] using both WTP and sequencing batch as
random effects. Lastly, we plotted all of the data with the R packages “ggplot2”, “ggre-
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pel” [60], “Rcartocolor” [61], and “Patchwork” [62], and created the graphical abstract with
BioRender.com.

2.5. Data Availability

Representative analyses’ scripts and code are available at https://github.com/jasonarothman/
wastewater_sarscov2_apr20_aug21, and raw sequencing files are deposited at the NCBI Se-
quence Read Archive under accession number PRJNA729801. SARS-CoV-2 lineage assign-
ments and SNV calls are available in Supplemental File SF1, the California Health and
Human Service Agency COVID-19 Variants Dataset [56], and GISAID data are available by
request from GISAID (https://gisaid.org/) [55] per their terms of use.

3. Results
3.1. Library Statistics, Sample Composition, and SARS-CoV-2 Genome Coverage

We used two library preparation techniques on our samples (IRV-enriched and tiled
amplicon), so we report the summary statistics separately below. For IRV-enriched samples,
we sequenced 548,883,572 non-human quality-filtered paired-end reads (average = 1,020,230,
range = 9910–8,243,363) across 269 samples. We taxonomically classified an average of
58.8% of reads (range = 8.9–85.4%), of which an average of 9.4% of overall reads were
viral (range = 0.1–53.7%). Of total viruses, 2,281,212 reads (6.0%) mapped to SARS-CoV-2.
Regarding tiled-amplicon samples, we sequenced 1,074,798,497 non-human quality-filtered
paired-end reads (average = 11,313,668, range = 8,619,210–14,384,197) across 95 samples.
We classified an average of 47.2% of reads (range = 35.9–66.7%), of which an average
of 4.5% were viral (range ≤ 0.01–41.6%). Of the total tiled-amplicon prepared viruses,
47,427,550 reads (99.6%) mapped to SARS-CoV-2 (Figure 1).
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We obtained broad SARS-CoV-2 genome coverage with both sequencing approaches.
When considering all samples together, IRV-prepared libraries covered 99.92% of the
SARS-CoV-2 genome at a mean sequencing depth of only 2× at each base position. Tiled
amplicon library preparation had both wider coverage and higher sequencing depth, with
these libraries covering 99.95% of the genome at a mean depth of 76 reads per base (Figure
S1).

3.2. SARS-CoV-2 Read Classification

Because SARS-CoV-2 was well-represented in our samples, we could classify reads
mapping to SARS-CoV-2 through UShER SARS-CoV-2 barcoding and de-mixing to ap-
proximate relative abundances with Freyja. We were able to classify many of the mapped
reads to specific named variants of interest (VOIs) and variants of concern (VOCs) (both
currently circulating and historically significant) along with other sublineages of SARS-
CoV-2 that do not correspond to a VOI/VOC. Within tiled-amplicon samples that had
classifiable reads (N = 90), these “top 10” most proportionally abundant clades were Al-
pha (x̄ = 3.3%, range = 0–98.8%), Beta (x̄ = 0.23%, range = 0–17.2%), Delta (x̄ = 16.0%,
range 0–100%), Epsilon (x̄ = 4.6%, range = 0–98.9%), Gamma (x̄ = 0.02%, range = 0–14.3%),
Iota (x̄ = 0.02%, range = 0–0.7%), Lambda (x̄ = 1.1%, range = 0–96.8%), Mu (x̄ = 0.1%,
range = 0–8.6%), Zeta (x̄ = 0.01%, range = 0–0.3%), and all other sublineages combined
(x̄ = 67.7%, range = 0–99.9%) (Figure 2 and Figure S2). While individual samples contained
varying proportions of WHO clades, only the relative abundance of the Delta variant was
shown to increase throughout the course of the experiment (β = 2.57, Padj < 0.001)
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and labeled with sampling date. Note that one sample date from the North City Water Reclamation
Plant is not shown.

Within IRV-enriched samples that had classifiable reads (N = 219), the “top 10” most
proportionally abundant SARS-CoV-2 clades were largely similar to tiled-amplicon samples.
These clades were Alpha (x̄ = 0.86%, range = 0–100%), Beta (x̄ = 0.50%, range = 0–100%),
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Delta (x̄ = 15.8%, range = 0–100%), Epsilon (x̄ = 17.8%, range = 0–100%), Gamma (x̄ = 1.0%,
range = 0–92.2%), Iota (x̄ = 0.01%, range = 0–0.30%), Kappa (x̄ = 0.03%, range = 0–2.1%),
Lambda (x̄ = 0.02%, range = 0–0.4%), Mu (x̄ = 0.02%, range = 0–0.7%), Omicron (x̄ = 0.15%,
range = 0–18.9%), and all other sublineages combined (x̄ = 62.2%, range = 0–100%) (Figure 2
and Figure S3). Similar to tiled-amplicon results, only the relative abundance of Delta was
shown to increase throughout the course of the experiment (only samples from ESC, HTP,
and PL WTPs; β = 1.54, Padj = 0.002). As shown above, most of the SARS-CoV-2 reads
obtained from either library preparation method were not part of a named VOI/VOC or
were merely identified as SARS-CoV-2 without a confident lineage classification.

In addition to large, overarching SARS-CoV-2 clades (i.e., VOI/VOCs), we often clas-
sified reads to a named PANGO sublineage, and we detected 1221 unique sublineages at
greater than 0.1% proportional abundance, with substantial detection overlap between
tiled-amplicon and IRV sequencing approaches (1215 and 1221 named sublineages, respec-
tively, Supplemental File SF1). We often detected the presence of SARS-CoV-2 sublineages
in wastewater before clinical sequencing reported detection: tiled-amplicon sequencing
detected 515 (42.7%) in samples before clinical sequencing, in some cases by as much as
several months, and IRV sequencing detected 364 (30%) before clinical reports, again often
with substantial lead-time as above (Figure 3).
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analyzed subclade diversity during months with the broadest WTP coverage (August–
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= 0.09), sequencing batch (R2 = 0.01, p = 0.62), or numerical time (t = −0.8, p = 0.41). 
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Figure 3. SARS-CoV-2 sublineages at greater than 0.2% relative abundance (for plot visibility)
first detected in wastewater samples in (A) respiratory virus-enriched libraries (IRV) and (B) tiled-
amplicon libraries by date; (C) denotes the total number of SARS-CoV-2 sublineages first detected
by our wastewater sequencing or clinical samples by IRV or tiled-amplicon libraries, respectively,
without the relative abundance cutoff.

3.3. Diversity of SARS-CoV-2 Subclades

We examined the diversity of SARS-CoV-2 subclades at greater than 0.01% relative
abundance where we had long-term samples for both IRV-enriched (Escondido, Hyperion,
and Point Loma WTPs, N = 187) and tiled amplicon (Hyperion and Point Loma WTPs,
N = 90). The sublineage alpha diversity of IRV-enriched samples did not differ between
WTPs (H(2) = 2.1, p = 0.34) or month (H(13) = 18.8, p = 0.13), nor did it differ over numerical
time (t = 0.22, p = 0.82). Beta diversity of the sublineages was not different between WTPs
(R2 = 0.01, p = 0.07) but differed between months (R2 = 0.15, p < 0.001) and sequencing
batches (R2 = 0.03, p < 0.001), with no interaction between month and WTP (R2 = 0.10,
p < 0.12), and did not change over numerical time (t = 0.15, p = 0.88) (Figure 4).
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Figure 4. Non-metric multidimensional scaling (NMDS) ordinations of the Bray–Curtis dissimilarities
of SARS-CoV-2 sublineages faceted by water treatment plant for (A) respiratory virus-enriched (IRV)
and (B) tiled-amplicon libraries. SARS-CoV-2 sublineages did not significantly differ between WTPs
(PERMANOVA [IRV: p = 0.07, R2 = 0.01], [tiled-amplicon: p = 0.58, R2 = 0.01]) but differed by calendar
month (PERMANOVA [IRV: p < 0.001, R2 = 0.15], [tiled-amplicon: p < 0.001, R2 = 0.21]). Color and
plot labels denote sampling month, and only WTPs with yearlong data are included.

We analyzed the tiled-amplicon samples in the same fashion as above, and did not find
a difference in sublineage alpha diversity between WTP (H(1) = 0.04, p = 0.84) or calendar
month (H(16) = 11.2, p = 0.80), and diversity remained constant over numerical time (t = 0.41,
p = 0.68). We observed a difference in beta diversity by month (R2 = 0.21, p < 0.001) but
not between WTPs (R2 = 0.01, p = 0.58), sequencing batches (R2 = 0.01, p = 0.20), or an
interaction between WTP and month (R2 = 0.13, p = 0.19), nor by numerical time (t = −1.8,
p = 0.07) (Figure 4).

As we were unable to collect samples from all eight WTPs for the full year, we also analyzed
subclade diversity during months with the broadest WTP coverage (August–November 2020
without WTP “NC” as there was only one sample, N = 61). There was no difference in
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sublineage alpha diversity between WTPs (H(6) = 11.9, p = 0.07), months (H(3) = 2.5, p = 0.47),
or numerical time (t = −1.4, p = 0.17). There was a significant difference in sublineage
beta diversity between WTPs (R2 = 0.15, p < 0.001), and an interaction between WTP and
month (R2 = 0.21, p < 0.027), with no differences by calendar month (R2 = 0.06, p = 0.09),
sequencing batch (R2 = 0.01, p = 0.62), or numerical time (t = −0.8, p = 0.41).

3.4. SARS-CoV-2 Single Nucleotide Variants

At a more granular level, were also tabulated SARS-CoV-2 single nucleotide variants
(SNVs) throughout our samples (Supplemental File SF1). Combined, IRV-enriched and
tiled-amplicon sample preparation methods detected 2871 SARS-CoV-2 SNVs across the
genome, with each approach capturing a different number of SNVs, and in many cases,
different genomic locations (Figure 5). IRV-enriched samples contained 1212 SNVs, most
being found only once (1071) or twice (83); however, we often detected the same SNV
multiple times at several genomic positions in separate samples (Figure 5). For example,
SNVs at nucleotide positions 23403, 241, 14408, 17014, 3037, 28272, 8947, 12878, 2597, 21600,
25563, and 28887 were each detected over 10 times across the samples. Tiled-amplicon
sequencing also detected SNVs well, identifying 1808 SNVs across the SARS-CoV-2 genome.
Similar to IRV-enriched results, most SNVs were found once (1030) or twice (254), although
several SNVs were identified in multiple samples (Figure 5): SNVs located at nucleotide
positions 22796, 28971, 22656, 28982, and 9864 were detected over 40 times across tiled-
amplicon samples.
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Figure 5. (A) Number of single nucleotide variants (SNVs) detected at each sample date and
(B) nucleotide position across the SARS-CoV-2 genome for all samples colored by library preparation
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method (IRV signifies Illumina Respiratory Virus enrichment panel); (C,D) indicate the frequency of
SNVs detected at each position of the SARS-CoV-2 genome across all respiratory virus-enriched and
tiled-amplicon libraries, respectively.

4. Discussion

Our study represents a large-scale effort to employ wastewater-based epidemiol-
ogy (WBE) across a catchment area of 16 million people and supports the monitoring of
SARS-CoV-2 evolution throughout the ongoing COVID-19 pandemic. Through respiratory
virus-enriched and tiled-amplicon RNA sequencing approaches, we classified SARS-CoV-2
lineages and single nucleotide variants (SNVs) and could approximate VOCs/VOIs across
a yearlong study of Southern California wastewater. Like other studies, we captured
SARS-CoV-2 mutations across the genome and show the potential to detect sublineages
and SNVs months before clinical analyses of patient samples [18,26,27,30,39]. While WBE
is a powerful tool—and is not subject to many of clinical sequencing’s drawbacks—we can-
not use these methods to determine the exact source of SARS-CoV-2 variants [18,26,30,38]
and instead propose the use of WBE to monitor populations instead of individuals. Our
results suggest that multi-scale sampling of individual patients, local wastewater catch-
ments (i.e., university campuses), and WTPs can give public health agencies vital informa-
tion to identify novel SARS-CoV-2 variants and predict disease spread to further combat
COVID-19 [4,11,30].

4.1. Classifying SARS-CoV-2 Reads and Comparing Wastewater to Clinical Sequencing

In most samples, we could classify SARS-CoV-2 RNA fragments at multiple levels of
resolution—both at the named variants (i.e., Alpha, Beta, etc.) and sublineage levels (i.e.,
B.1.429, B.1.617.2, P.1, etc.)—and calculate semi-quantitative relative abundances. When
considering the full year of data, sublineage diversity of SARS-CoV-2 was not different
between WTPs, rather it changed monthly probably due to the similarity of proportional
disease burden and proximity of the San Diego and Los Angeles counties [1]. As expected,
our sublineage quantification was not exactly concordant with clinical sequencing data,
probably due to the aggregate nature of wastewater and our composite sampling, along
with the lack of clinical specimens early in the pandemic [4,21,22,30,38]. We do note,
however, that ours and clinical data agree well during the emergence of the Delta variant,
suggesting that wastewater can detect the potential evolutionary replacement of lineages
accurately as has been recently shown with the domination of the Omicron variant [30,63].
Additionally, when comparing our sequencing data specifically to California clinical data,
we observed a higher apparent concordance between named SARS-CoV-2 clades, indicating
that WBE is powerful on smaller scales, which may assist public health agencies with more
targeted responses to disease. Similarly, we detected many SARS-CoV-2 sublineages
earlier in wastewater than clinical sequencing—in some cases by several months—further
supporting work indicating that WBE is useful for predicting disease load and the spread
of novel variants [30,63]. Naturally, we recognize this is a retrospective study, and rely on
clinical sequencing to name and prioritize the variants we sequenced in wastewater, so
we suggest that public health and wastewater sequencing be used in tandem to carefully
monitor the evolutionary potential of SARS-CoV-2 [4].

4.2. Identifying SARS-CoV-2 Single Nucleotide Variants

Similar to previous work, we detected thousands of single nucleotide variants (SNVs)
across samples and sequenced putatively novel or rare SNVs that have an unknown func-
tion or species host [18,26,27,31,63,64]. For example, in many samples (from within or
between WTPs), we detected SNVs at positions 9864, 22796, and 28971, which are exceed-
ingly rare in public sequencing data, along with SNVs at 241, 14408, and 23403, which were
common in 2020 [65,66]. Our ability to detect both low-prevalence and near-ubiquitous
SNVs indicates that WBE is broadly useful for accurate SNV detection and may provide
a reasonable estimate of what SNVs are circulating across populations [26,30,31,63,64].
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Likewise, when comparing our results to other wastewater studies, we detected variants
or sublineages also reported in Nice, New York, Montana, Arizona, Northern California,
Berlin, and across Austria, often at similar sampling dates, which shows that sequencing
wastewater is reproducible and accurate at very large scales [26,31,39,67,68]. Being that
sequencing wastewater is technically challenging, we qualitatively compared two major
methods of SARS-CoV-2 analysis and note that targeted amplification provided better
sequencing depth and resolution, indicating its utility when presented with degraded low-
titer RNA and the detergent/PCR inhibitor content of wastewater along with our harsh
extraction methods [4,18,41]. Nevertheless, there is the possibility that targeted amplifica-
tion may miss novel variants due to mutational differences in SARS-CoV-2 genomes [69,70],
something suggested by our IRV method detecting Omicron where tiled amplicon did not.
We also recognize that extracted RNA with two different methods, which likely confounds
our results but we still suggest the use of targeted amplification approaches for wastewater
samples, which supports previous work and method development [4,18,26,30,41,63,71,72].

5. Conclusions

Wastewater-based epidemiology has exploded into a worldwide endeavor and is
a critical part of humanity’s response to the COVID-19 pandemic [4,6,9,11]. Our study
demonstrates WBE’s effectiveness in monitoring SARS-CoV-2 mutations across megare-
gions [18,26,30,31,39], which continues to be important as novel VOCs emerge and the
popularity of at-home testing reduces public health’s ability to accurately quantify COVID-
19 cases [3,14,15]. As WBE technology matures, future directions for method development
should address the need to simultaneously detect and sequence variants from other circu-
lating diseases—such as influenza, Respiratory Syncytial Virus, and Norovirus—alongside
SARS-CoV-2. COVID-19 has demonstrated the need for scientists, wastewater agencies,
and public health to work together to track the evolution and spread of SARS-CoV-2,
especially in underserved areas, low population coverage, and places where the medical
field is overburdened [4,16]. WBE has the potential to discover emergent diseases and
should be implemented across population centers as a sentinel for the next pandemic.
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libraries prepared for tiled amplicon sequencing. Figure S2: The relative proportional abundance of
the ten most abundant SARS-CoV-2 lineages plus others in (A) tiled-amplicon libraries, (B) weekly
GISAID-reported data for clinical samples from the United States, and (C) California Health and
Human Services (CalHHS)-reported clinical data. Panel (A) is faceted by WTP and labeled with
sampling date and panel B is labeled by the aggregate of GISAID-reported data. Note that one
sample date from the North City Water Reclamation Plant is not shown, and variant data from
CalHHS are not available before 1 January 2021 so those dates are left blank. Figure S3: The relative
proportional abundance of the ten most abundant SARS-CoV-2 lineages plus others in Illumina
Respiratory Virus Panel-enriched libraries for (A) Escondido, (B) Hyperion, and (C) Point Loma
water treatment facilities. Panels (D–F) are weekly GISAID-reported data for clinical samples from
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