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Abstract: This review article is devoted to the colloidal properties of fullerene solutions. According
to generally accepted understandings, all solvents in relations to fullerenes are divided into “good”,
“poor”, and “reactive”. We have consistently considered the state of fullerenes in these systems. In
“good”, predominantly non-polar aromatic solvents and CS2, non-equilibrium dissolution methods
lead to the formation of colloidal aggregates, whereas the utilization of equilibrium methods results
in the formation of molecular solutions. The latter, however, have some unusual properties; new
results considered in this review confirm previously expressed ideas about colloidal properties
of these solutions. In “poor” (polar) solvents, lyophobic colloidal systems appear. Both “bottom-
up” and “top-down” methods of preparation are well documented in the literature. However,
N-methylpyrrolidine-2-one, DMSO, and DMF dissolve fullerenes quite easily and with less energy
consumption. These solvents can be considered a subset of “poor” solvents that have some features of
being “reactive” at the expense of basic properties. New data confirm that hydrosols of fullerenes are
typical hydrophobic colloids that obey the Schulze–Hardy rule and other regularities in the presence
of electrolytes. Organosols in acetonitrile and methanol are much less stable with respect to the effects
of electrolytes. This allows us to assume a non-DLVO stabilizing factor in the hydrosols. Accordingly,
a new estimate of the Hamaker constant of fullerene–fullerene interaction is proposed. In DMSO and
DMF, the coagulation of fullerene sols is hindered due to strong solvation with these basic solvents.

Keywords: fullerenes; “good” and poor solvents; aggregate formations; organosols; hydrosols;
coagulation by electrolytes; overcharging of colloidal particles; Hamaker constant

1. Introduction

At present, fullerenes C60, C70, etc., belong to the most explored chemical compounds,
and their study continues. For example, they are used in solar cells [1–3], in creation of
nanowhiskers for various areas [4], as additives to the working fluids of refrigerators [5],
etc. Their application in various branches of scientific research and technology is often as-
sociated with the use of these compounds in solutions. Water-based systems are examined
in order to reveal the antioxidant properties of fullerenes [6] and biocompatibility [7,8] to
study the environmental impact and related problems [9–11]. Therefore, different modifica-
tions and improvements of the introduction of fullerenes into water were proposed [12–16].
The peculiar properties of fullerene solutions in various liquid media are the subject of
many publications, including reviews [17–21]. There are also several reviews on this topic
by one of the authors of this article [22–25], and therefore we will not repeat much of what
is considered in detail in these articles.

The purpose of this review is, on the one hand, to consider the state of the arts. On the
other hand, we summarize the results of the work carried out in this laboratory from 1997
to 2022. The focus will be on the colloidal aspect, which is a key to understanding fullerene
liquid solutions. We do not consider here either solutions of fullerenes obtained by using
surfactants, calixarens, cyclodextrins, etc., or covalently modified fullerenes. We will only
discuss the binary systems fullerene–solvent.
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2. Solubility of Fullerenes
2.1. “Good”, “Poor”, and “Reactive” Solvents

The first quantitative estimations of C60 solubility in different liquids made by Sivara-
man, Matthews and coworkers [26,27], and Ruoff [28] have already shown that these
values are very low in any solvent. This was confirmed by other authors [29–32]. Soon,
a significant amount of data was accumulated on the solubility on fullerenes in solvents
of various natures, including temperature dependences of solubility [20,33–36]. The solu-
bility even in solvents called “good”, or “strong” ones, such as 1-chloro-; 1-phenyl-; and
1-methylnaphthalene, 1,2-dichlorobenzene; tetraline; xylenes; toluene; benzene; CS2, etc.,
does not reach 0.1 M (hereafter, 1 M = 1 mole dm–3). These solvents may also be referred to
as “high-solubility solvents” [37]. Some authors consider as “good” solvents only those
where the molar fraction of fullerenes reaches x2 = 0.001 [38]. Polar solvents, including
alcohols, belong to the so-called “poor” or “weak” ones. The solubility in such media drops
down to ~10−5 M or even ~10−6 M. Aliphatic hydrocarbons should also be classified as
“poor” solvents.

At the same time, typical colloid solutions, i.e., suspensions and organosols, can
appear in such solvents as acetonitrile, acetone, N-methyl-pyrrolidine-2-one, ethanol,
etc. [17,39–44]. Sun and Bunker, who first revealed the formation of C70 aggregates in
the toluene–acetonitrile solvent system, considered the new species as clusters, quite
different from colloidal ones [45]. However, their next studies [46,47] as well as subsequent
research [39,44], make it possible to classify these systems as colloidal. In water, only
hydrosols and suspensions are formed [17,20,22–25].

Many basic solvents form complexes with fullerenes. They are, for example, 1-
methylpiperazine, 1-methylpyrrolidone, 1-methylpiperidone, trihexylamine, tetrakis
(dimethylamine)ethylene [48]. The interactions can be even stronger and result in the forma-
tion of covalent bonds in cases of piperazine, homopiperazine, N,N′-dimethylethylenediamine,
and piperazine [49,50]. Therefore these and some other nitrogen-containing compounds,
which readily form covalently modified fullerene molecules, are called “reactive” sol-
vents [24].

2.2. Peculiarities of Fullerenes Dissolution

For solutions that were considered as true (molecular) ones, i.e., non-colloidal, a
number of correlations were proposed in order to explain the fullerene solubility with the
help of various solvent descriptors, including the QSPR (quantitative solvent-property
relationship) approach; this problem was considered in a previous review [24]. In such
procedures, it is necessary to take into account the formation of crystal solvates of fullerenes
with some solvents [51]. This effect was revealed in connection with the detection of an
extremum on the dependence of solubility on temperature in some solvents [52]. According
to Beck, “there are two problems concerning the molecular states of fullerenes in solution.
One should determine the degree of self-association and determine the nature and extent
of interaction between the fullerene and the solvent molecules.” [53].

The analysis of the solubility in respect to the Hildebrand constant of the solvents
performed by many authors revealed that the optimal δH value is within the range of 18
to 20 MPa1/2 [24]. Ruelle et al. [54] stated that the highest solubility of C60 corresponds
to solvents with δH = 20.0. As early as 1993, Ruoff et al. [28] stated that a typical “good”
solvent for C60 must have a relative permittivity value about εr = 4, a large refraction index
and molecular volume, the δH value of 20 MPa1/2, and tendency to act as a moderate
strength nucleophile. The latter indicates that the fullerene is a kind of a Lewis acid. This
feature is important for understanding the stability of C60 and C70 colloids in respect of
electrolytes in polar solvents; see Section 4.2.

A detailed analysis of 1213 solvents was made using the three-dimensional Hansen
solvent parameter [38]. The later allows separately estimate three contributions to the
Hildebrand constant of the solvent. Using 15 “good” solvents, Hansen and Smith estimated
the corresponding contributions for the C60 solute that are as follows: 19.7 MPa1/2 for
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nonpolar dispersion, 2.9 MPa1/2 for permanent dipole–permanent dipole interactions, and
2.7 MPa1/2 for hydrogen bonding interactions [38]. The δH value for C60 is a square root
of the sum of the corresponding squares: 20.1 MPa1/2. Also, 55 additional earlier not
experimentally examined liquids were proposed as “good” solvents for C60, where the
solubility reaches molar fraction 0.001 [38]. Cataldo calculated the δH values for fullerenes
from C60 (19.5 MPa1/2) to C90 (δH = 20.7 MPa1/2) [55].

In some theoretical studies, the relation between solvation of a fullerene molecule and
solubility has been disclosed. For example, Wang et al. [56] used the molecular dynamics
simulation of C60 in different solvents to estimate the half-life time of solvent molecules
encompassing the fullerene molecule, t1/2, as well as other parameters of the solvation shell.
A pronounced drop of solubility along with decrease in t1/2 in chlorobenzene, toluene,
trichloromethane, ethanol, and water was revealed. Further study on fullerene C60 and its
derivative [6,6]-phenyl-C61-butyric acid methyl ester, PC61BM, demonstrated a single time
contact characterizing the dynamic stability of angstrom-size solvation shell allows to know
the trend of fullerene solubility [57]. Peerless et al. [58] studied the correlation between
solvation shell structure, solvate formation, and solubility. Molecular dynamics simulations
for C60 and PC61BM in nine aromatic solvents have shown the clear dependence of solubility
and solution enthalpy on the degree of order of the solvation shell. Quantum-chemical
calculations performed by Zhang et al. [59] for C60 in “good” solvents demonstrated that the
solubility is generally proportional to the intermolecular force between solute and solvent.

If “poor” solvents are included in various considerations, it should be taken into
account that the very low solubility, determined experimentally, may reflect the (possible)
presence of colloidal species. Note that most of the available solubility data were obtained
without checking the presence of colloids. This issue is of special importance for fullerene
solutions. Non-equilibrium methods of preparation can readily result in formation of
oversaturated solutions and colloids even in “good” solvents [60–62]. This is likely the
main reason of a substantial scatter of the published solubility data. By non-equilibrium
methods of preparing solutions, we mean intensive mixing, stirring, sonication, etc. For
example, Ruoff et al. determined the solubility of C60 in benzonitrile to be 5.7 × 10−4 M [28].
Five years later, Nath et al. firmly proved the appearance of ca. 250 nm-sized aggregates at
fullerene concentration over 1 × 10−4 M [63].

Interestingly, the solubility value of fullerenes in dimethylsulfoxide (DMSO) is absent
in the available data summaries, though C60 and C70 solutions in DMSO and DMSO–water
mixed solvent were already used in 1993 for spreading fullerenes at the water/air sur-
face [64]. Accordingly, DMSO was not included in the correlations between solubility and
solvent descriptors. In 2013, Pushkarova and Kholin [65] analyzed the solubility of C60
at 25 ◦C, basing on Kohonen and probabilistic networks, used a set of nine characteris-
tics of 76 solvents. As a result, they divided the data into eleven solvent groups; DMSO
appeared in a group together with N-methylpyrrolidine-2-one (x2 = 1.2 × 10−4), benzoni-
trile (x2 = 6.3 × 10−5), nitromethane, and acetonitrile (negligible solubility). As will be
demonstrated in Section 4.2, C60 readily forms a colloid solution in DMSO.

As for the targeted preparation of colloidal solutions, there are two ways. Formation of
colloidal particles occurs either “top-down” or “bottom-up”. The first approach presumes
application of sonication, mechanical impact, grinding, trituration, laser beam, etc. The
second one consists of the dilution of a stock molecular solution of fullerene in a “good”
solvent with a polar solvent. For this purpose, fullerene solutions in toluene, benzene, or
CS2 are often used.

3. Fullerene Solutions in “Good” Solvents as a Platform for Preparation of Colloids
3.1. Precautions for Preparing Molecular Solutions of Fullerenes in “Good” Solvents

It should be noted that even the preparation of fullerene molecular solutions via the
equilibrium procedure in “good” solvents is a nontrivial task [21,24,66,67]. For example, Ak-
senov et al. revealed a non-monotone change of the total C60 concentration in CS2 solution
over time [67]. They explained it by simultaneous passing of dissolution of the solid phase,
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aggregation, and sedimentation of large-sized aggregates [67]. Many other examples of
such peculiarities of solution preparation can be found in the previous review [24] and ref-
erences cited therein. After being stored in the dark for at least ten days or, for better results,
two weeks, filtering through 220 nm or 450 nm pored filters is necessary, because small
pieces of the solid phase can be introduced into the liquid phase. Additional verification of
the absence of large-sized species can be made by dynamic light scattering-based methods.
Sonication favors clustering of fullerene molecules both in “good” solvents [21,53,60,61]
and n-hexane [68]. Checking of the presence of oxidation products is also desirable. These
products can appear as result of contact with the atmosphere, illumination, and sonication;
the oxidation of fullerene molecules can favor the aggregation processes [69]. The most
probable admixture in the commercial samples of C60 is C60O. In general, the biography of
the initial solid sample can sometimes influence the results. Recently we have mentioned
that if the stock solutions of fullerene C70 in benzene or toluene are kept at low tempera-
tures, the colloid systems obtained by dilution with acetonitrile exhibit somewhat different
properties [70]. Note that C60 aggregates were observed by other authors when solutions
were prepared in benzene and CS2 at temperature of solvent freezing [71,72].

As an example of UV-visible spectral data, the molar absorptivities of fullerenes
in toluene and benzene are presented in Table 1. These values can be used for de-
termination of the concentration of a fullerene in a working solution; they obey the
Bouguer–Lambert–Beer law within the concentration range of (0.06 to 6.00) × 10−4 M [73].
We used the molar absorptivities of C60 for determination of the solubility in benzene and
toluene, (2.04 ± 0.02) × 10−3 and (3.84 ± 0.10) × 10−3 M, respectively [73]. Average values
of the literature data at 25 ◦C or room temperature are 2.2 × 10−3 and 3.7 × 10−3 M [24].

Table 1. The values of λmax, nm and (in parenthesis) molar absorptivity, Emax × 10−3, M−1 cm−1.

C60
a C70

b

Benzene Toluene Benzene Toluene

335 (64.30) 336 (58.43) 333 (45.5) 334 (37.9)
407 (2.962) 407 (3.163) 365 (33.3) 365 (28.7)
541 (0.911) 541 (0.908) 382 (44.5) 383 (37.8)

596.5 (0.809) 596.5 (0.798) 472 (24.5) 473 (21.0) c

Note. a The values for C60 for 20 ◦C are taken from ref. [73]. b [74] c [46,47,75].

The Emax value of 21.0 × 103 M−1 cm−1 for C70 in toluene at 473 nm was taken as
an average of three publications by Sun, Bunker, and co-authors [46,47,75]. Based on this
value, we determined accurate values at 25 ◦C for other wavelengths [74]. Accordingly, the
molar absorptivities of C70 in toluene–benzene mixtures and benzene were estimated. For
C60 in benzene and toluene, Gunkin and Loginova [76] reported somewhat lower λmax and
Emax values as compared with Table 1.

Accurate values for both fullerene solutions in ortho-xylene and ortho-dichlorobenzene
were determined by Törpe and Belton [37]. For example, the λmax, nm (Emax × 10−3,
M−1 cm−1) values for C60 in ortho-xylene and ortho-dichlorobenzene are 336 (50.63) and 334
(60.37); for C70 they equal 336 (40.61) and 334 (38.83), respectively. In the cited article, an
overview of the literature data was presented as well [37]. Data in n-hexane were published
by Cataldo et al. [77].

Formation of fullerene aggregates in “good” solvents was reported by different re-
search groups. Some authors state that they can be easily destroyed by hand-shaking [78,79],
while others report that the aggregation is irreversible [41]. In the last publication, a radical
scavenger is used to prevent the aggregation that may occur thorough the disproportion-
ation process. On the other hand, evidence is given for aggregation and nucleation as
a result of fullerene interaction with the surface of the flask [41]. According to Bezmel-
nitsin et al. [80,81], C60 in carbon disulfide behaves as a “cluster substance”. However,
it was shown using the SANS (small-angle neutron scattering) method that equilibrium
procedure of preparation leads to a C60 molecular solution in CS2 [21]. Fullerene solutions
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in “good” solvents tend to form oversaturated solution, aggregates, and sediment. Based
on the SANS method, Avdeev et al. introduced a definition “final quasistationary state
of solutions” for low-polarity solvents; small 6 nm-sized clusters can appear near the
solubility limit [21]. Using the same method, Török et al. [66] revealed fractal clusters of
C60 in toluene at concentrations close to saturation.

3.2. Specific Properties of Molecular Solutions of Fullerenes

Despite the peculiarities mentioned above and some other obstacles, there is a wealth
of information on the (unusual) properties of true molecular fullerene solutions in CS2
and some aromatic solvents. For example, after evaporation of benzene the solid C60
cannot be re-dissolved completely [79]. C60 and C70 in benzene, toluene, and para-xylene
within the concentration range of 10−4 to 0.05 mass % exhibit properties atypical for true
solutions [82–84]. The concentration dependence of density is nonmonotonous [82], and
the same refers to the relative permittivity [85]. Concentration dependence of boiling point
was also reported [86]. Structural ordering by X-ray diffraction studies was revealed by
Ginzburg, Tuichiev, and their co-authors long ago and confirmed by ebullioscopy and
other methods [82–84]. These investigations were continued [87,88]. They firmly proved
that in the boiling process, the number of the solvent molecules related to one solute
molecule in the act of phase transition is within the range of ca. 500 to 1000. Different
methods allow concluding that for C60 and C70 in benzene, toluene, bromobenzene, 1,2-
dichlorobenzene, and para-xylene, the single fullerene molecule is surrounded by several
hundreds of molecules of aromatic compounds; columns of solvent tens of nanometers
long are formed. This is in line with their previous data concerning the large solvation
shells deduced from the X-ray diffraction patterns [84]. Zhelezny et al. [89] supported these
ideas when studying C60 in ortho-xylene. Compressibility studies of C60 solution in toluene
allowed deducing that the solvation shell thickness is about 1 nm [90].

A number of important theoretical publications have appeared over the past decade,
devoted to the solvation of fullerenes in “good” solvents, including the nature of the
solvation shells around the C60 and C70 molecules. These studies confirm in outline the
above vision of the fullerene state in “good” solvents [56,91,92]. Fritsch et al. [91] reported
the formation of a structured ca. 1 nm-thick toluene layer around a C60 molecule. In
another molecular dynamics study, it has been shown that “aromatic solvents are compara-
tively more structured then the aliphatic ones in close vicinity of C60” [56]. According to
quantum-chemical calculations of Li et al., “the π. . .π stacking configurations of the complex
C6H6

. . .C60 are more strongly bound than the C−H. . .π analogues, and the C−H. . .π inter-
actions in the C−H. . .π configurations of C6H6

. . .C60 are not of the hydrogen bond” [92].
These conclusions are based on the quantitative estimations of the interaction energies [92].

These remarkable results can be consisted with previously published theoretical
and experimental studies. So, it was shown that the standard entropy values, ∆S0,
of dissolution and solvation of fullerenes C60 and C70 in “good” solvents are substan-
tially negative [93–97]. For instance, the ∆S0

solut values of fullerene C60 dissolution in
ortho- and meta-xylene, bromobenzene, 1,2-dichlorobenzene, CCl4, and toluene are about
≈−100 J mol−1 K−1 [24,94,95]. The solvation entropy for C60 in aromatic solvents, CCl4,
and tetralin is also negative, about ∆S0

solv ≈ −200 J mole−1 K−1. Such a sharp decrease in
entropy indicates an ordering of the solvent structure, similar to what occurs during the
well-known hydrophobic hydration of hydrocarbons in aqueous solutions.

The same can be expected for polar (“poor”) solvents, where the solvophobic nature
of fullerene colloids is undisputable [23,24,98–101]. In the recently named systems, it
leads to formation of colloidal aggregates owing to solvophobic interactions. Solvophobic
properties of solutions of C60 in tetrahydrofurane, benzonitrile, and in other solvents were
proved as early as 1992 [102].

The size of the C60, C70, and even more so of higher fullerenes corresponds to the
turning point between usual molecules and colloidal particles. They can also be considered
as sub-colloidal particles. This allows regarding this kind of nanocarbon as a unique object,
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which can be a challenge for application of the common principles of solution chemistry.
The most important feature is the structure of fullerenes that makes them impenetrable for
solvent molecules. This distinguishes them from many much larger molecules, the separate
portions of which are solvated individually.

Therefore, the fullerene molecular solution can also be considered as a kind of a colloid
system. The solvation layers around the molecules are thick enough to pronouncedly
alter the solvent properties. Such systems resemble the so-called periodic colloidal struc-
tures [103–105] or colloidal crystals [106,107]. In other words, according to the DLVO
terminology, it looks like a system that is coagulated in the “distant minimum”. Any
external influence readily leads to aggregation or deposition.

This issue should be considered in a more detailed way in future. However, as a
preliminary conclusion it may be stated that even molecular solutions of fullerenes in
“good” solvents exhibit some colloidal features. From the time of Wolfgang Ostwald [108]
and Peter von Weimarn [109], it is known that any chemical compound can be, depending
on the nature of the solvent, obtained in a colloidal state. Apparently, due to peculiarities
of the molecular structure, in particular, due to the extremely high surface atomic density,
fullerenes are compounds that exist in a colloidal state or, at least, exhibit colloidal features,
in almost any solvent. (Of course, almost infinite dilutions down to “homeopathic” concen-
trations in any solvent, “good” and “poor”, will result in a true molecular solution, but this
is beyond the scope of our discussion).

In addition to the above considered publications, some other interesting articles are
worth to consider. Recently, Garcia-Hernandez et al. [110] isolated the complexes of C70
with three acenes and characterized them by FTIR, TGA, DSC, and electronic absorption
spectra. This again gives evidence of strong interaction between fullerenes and aromatics.

On the other hand, Zhang and Li [111] presented a convincing example of governing
the shape of fullerene solid species by evaporation of C60 solution in CS2 under various
solvent atmospheres. SEM images demonstrated different architectures of species: belts,
sheets, and starfishes depending on the kind of solvent. Twenty different organic liquids
were used, which, except for toluene, belong to poor solvents. Previous publications in this
direction are also referred to by these authors [111].

3.3. Forced Aggregation of Fullerenes in “Good” Solvents

Until now, we have considered the aggregation of fullerenes rather as a phenomenon
that interferes with the preparation of molecular solutions by equilibrium methods. But
sometimes prolonged sonication is used consciously to obtain and study aggregates.

Bokare and Patnaik [60,61] purposefully created fullerene aggregates in CS2 via sonica-
tion. Subsequently, Guo et al. [112] prepared C60 solutions in toluene and chlorobenzene via
sonication 10 h per day at 50 ◦C for 4 days. SLS/DLS (static and dynamic light scattering),
depolarized DLS, SAXS (small-angle X-ray scattering), and cryo-TEM methods were used
in order to characterize thus obtained fullerene aggregates. Though all aggregates have the
size of several hundred nm, it was revealed that while aggregate clusters are anisotropic in
shape in chlorobenzene, they are basically isotropic in toluene. Solvent-induced differences
were disclosed by other methods as well [112].

A series of studies with C60 and C70 fullerenes were performed by Makhmanov
et al. [113–116]. Two methods of preparation of C60 in toluene, non-equilibrium and
equilibrium, were compared [113]. Stirring with a magnetic stirrer within 14 days allowed
the authors to obtain porous particles with diameter of 380 ± 20 nm and fractal dimension
Df = 2.13. Storing C60 in toluene for the same period results in the formation of particles
with size ≤50 nm, as determined by the TEM and AFM methods. It was revealed that in
C70 solutions in xylene–tetrahydrofurane, the changes of the refractive index over time
reflect the formation and stabilization of colloidal particles [116].

Makhmanov published interesting results for C60 fullerene in the xylene–hexane
binary solvent [115]. In these solutions, prepared using magnetic stirrer and passed through
220 nm pores, the diameter of colloidal particles reaches 60–70 nm. The measurements
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were accompanied by determination of the refractive index; fullerene concentration was
5 × 10−5 M. TEM and DLS methods were used in this investigation. Despite the low εr
values, the author managed to determine the electrokinetic potential of −(26.6–28.2) mV;
solutions were stable up to 72 h.

Bakhramov et al. [4] developed a method of preparation of C70 nanowhiskers, C70NW,
by thermal evaporation of droplets of toluene solutions. The average length of the obtained
species was 1.8 µm with width up to 175 nm; the shape was confirmed by SEM [4]. Solutions
of C60 in toluene–tetrahydrofurane were used for fractal coating with thickness up to ca.
1.2 µm on a flat dielectric glass surface [114].

Jia et al. [1] improved the formation of high quality homogeneous C60 films for prepa-
ration of the perovskite solar cells by adding PC61MB in chlorobenzene to C60 solutions in
ortho-xylene to suppress the aggregation of fullerene solutions prepared using sonication.

PC61BM and PC71BM are now very popular because of their use in photovoltaic
devices. Therefore, their properties in solutions are intensively studied using both the-
oretical [2,57,58,117,118] and experimental methods [2]. In the last work, agglomeration
of both derivatives was examined in trichloromethane, toluene, chlorobenzene, and 1,8-
diiodooctane using the Spin-Echo Small Angle Neutron Scattering (SESANS) method.
The solutions were prepared by intensive stirring at elevated temperature. As a result,
formations of large agglomerates were observed for PC61BM, but not for PC71BM.

3.4. Some Examples of Theoretical Modeling of Fullerene Aggregation

Paliy et al. [118] performed a molecular dynamic study of two C60 molecules with a
charge of −5e in a trichloromethane droplet, either with or without 10 and 20 Na+ ions.
The results clearly illustrate the regulation of the state of C60 molecules with the help of
charge. Negatively charged particles, like C60

5−, repel each other, particles neutralized by
adsorbed counterions stick together and overcharged and thus positive particles repel each
other again. Also, the influence of the nanocarbon species on the state of the nanodroplets
is studied. The same simulations were made for a carbon nanotube [119]. This is a good
explanation of the overcharging phenomenon, which will be considered by us in Section 5.2.

Somewhat earlier than this study, molecular dynamics modelling was also used by
Banerjee [120] for fullerenes C60, C180, C240, and C540 in toluene, acetone, and water. It was
shown that the diffusion coefficient of solvent molecules in the solvation shells is much
lower than of those in the bulk liquid. Uncharged fullerene molecules agglomerate in
water and acetone, but not in toluene. Introducing a negative charge from −0.5e to −3e
per molecule, with Na+ as counterions, results in repulsion of molecules and significantly
reduces agglomeration in polar solvents; in toluene, the sodium ions associate with anions
in accordance with the known regularities for electrolytes in non-polar solutions [120].
These theoretical results give a fairly accurate picture of the colloidal properties of fullerenes
in solutions.

Mortuza and Banerjee [121] performed a molecular dynamics study of the behavior
of PC61BM in toluene, indane, and in mixtures of these two solvents at temperatures
between 280 and 320 K with different concentrations of this fullerene derivative. It was
demonstrated that large clusters are formed in toluene. Another important work of the
same research group was based on the combination of molecular dynamics with kinetic
Monte Carlo method [122]. The agglomeration of fullerene species was proved for aqueous
NaCl solutions; this article will be considered later in Section 5.1 devoted to coagulation
of hydrosols.

4. Formation and Properties of Colloidal Particles in “Good” + “Poor” and
“Poor” Solvents
4.1. “Bottom-Up” Procedure of Fullerene Organosols Preparation

The variations of concentration and using different preparation methods, the fullerene
spectra in high-solubility solvents stay almost unaffected. Contrary to it, a fundamental
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change is observed on going to polar solvents, and the DLS method firmly indicates
appearance of colloidal species (Figure 1).
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Let us consider the “bottom-up” procedure. Dilution of molecular solutions with
acetonitrile, ethanol, methanol, and other “poor” solvents leads to formation of colloid
solutions. In this case, the formation of colloidal species in solutions can be observed
using UV-visible spectra. First it was demonstrated in the pioneering work by Sun and
Bunker for fullerene C70 in the toluene–acetonitrile binary solvent system [45]. Since then,
a number of such studies with C60 and C70 fullerenes was published; benzene, toluene,
carbon disulfide, and some other “good” solvents were used for preparation of the initial
fullerene solutions [21,39–44,71,72,124–126].

Dilution of a fullerene solution in a polar solvent with another polar solvent is a
special case [127] that will be considered below. Some studies were performed in this
laboratory [70,73,98,99,101,123]. Figure 2 demonstrates the changes in the UV-visible
absorption spectra of C70 in toluene–acetonitrile along with the decrease in the CH3CN
concentration [70,99]. At high acetonitrile content, a contribution of light scattering cannot
be ruled out [99].

It is well documented that in the toluene–acetonitrile system, the solvent mixing
regime is of key importance [44,46]. For example, dropwise or prompt adding of CH3CN to
a toluene solution of C70 results in principally different absorption spectra of fullerene [46].
Molecule–aggregate transitions of fullerenes are accompanied by changes in fluores-
cence [39,43,46].

It seems natural to reveal the critical composition of the binary solvent where the
colloidal particles appear [45]. Nath et al. [42,43] subjected this problem to detailed study.
Basing on a number of binary solvent systems and using the εr value as a characteristic
of the solvent, they stated that C60 forms molecular associates already at εr about 12–13,
while C70 only at εr 27–31. Such differences are explained by a stronger interaction of C70
with “good” solvents [43]. These critical parameters were determined by both electronic
absorption spectra and DLS, and the results agree [42,43]. It should be noted that in these
works, the εr values of mixed solvents were calculated using the additive scheme, which
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can lead to some (slight) errors [73]. Also, it is well known that many properties of solutes
can substantially differ in isodielectric solvents [128].
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Figure 2. Selected absorption spectra of C70 (5 × 10−6 M) in the toluene–acetonitrile solvent system
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Two remarks should be made on this. First, even when the DLS method demonstrates
the formation of colloidal particles and absence of molecular species, the UV-visible spectra
retain the features of molecular absorption [70,73,99,101]. In other words, the onset concen-
tration of the polar co-solvent is somewhat lower as determined by light scattering. For
example, for the system presented in Figure 3, the critical content of acetonitrile is 62 vol.%
and 64–70 vol.% as obtained by DLS and UV-visible spectroscopy, respectively [99]. Such
findings can be explained either by hindering of observation of fullerene molecules in the
presence of much stronger light scattering colloidal aggregates or by retaining aromatic
solvation shells of fullerenes involved into the aggregates. Note that in a toluene–n-hexane
solvent system, the absorption spectrum of C70 changes gradually along with rise of the
aliphatic component, whereas no sign of colloidal particles is observed. This phenomenon
is obviously caused by replacing the toluene molecules in the primary solvation shells of
C70 by n-hexane [99] and of C60 by dichloromethane [129].
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Second, the fullerene concentration is an important factor. Sun and Bunker [45]
mentioned that in a toluene–70% acetonitrile mixture, the absorption spectrum of C70
at concentration ≤ 8 × 10−8 M is close to that in neat toluene. We confirmed this early
statement using the DLS method: at C70 concentration of 1.2 × 10−7 M under the same
conditions, only species with a size of ca. 1 nm were found [70,99].

A more detailed consideration of the formation of fullerene colloidal species in the
toluene–methanol system [73] reveals that the size of the aggregates decreases along with
the increase in the polar solvent fraction. This is in accordance with the classical regularity
formulated by Volmer [130]: the lower the solubility is, the smaller the colloidal particles
are formed. However, if the initial toluene solution of C60 is prepared by a non-equilibrium
method and oversaturated, the situation observed for a toluene–acetonitrile solvent system
can be reverse [129].

Interestingly, Pille et al. [131] considered the alterations of the C60 UV-visible absorp-
tion spectra on adding acetic acid, acetonitrile, methanol, DMSO, and DMF to a 1.3 × 10−3

M toluene solution in terms of preferential solvation, not aggregation. The stock solution
was prepared using stirring and sonication.

Recently, Kyzyma et al. [129] conducted a detailed study of the C60–toluene–acetonitrile
system using the UV-visible absorption spectra, TEM, DLS, SLS, SAXS, SANS, and LDI
mass-spectrometry. Two series of experiments were performed, starting with C60 solutions
in toluene prepared by equilibrium and non-equilibrium (sonication) methods. The C60
working concentrations were (4.0–6.3) × 10−6 and (0.23–1.9) × 10−3 M, respectively. In
all cases, adding of acetonitrile to the toluene solutions of C60 favors aggregation. It is
firmly proved that oxidation and illumination display pronounced influence on the aggre-
gation processes. In the cited article [129], the obtained data are compared with the results
published by others.

In entire benzonitrile and benzyl alcohol, a threshold concentration of fullerene C60
aggregation was reported [63]. These polar solvents belong to the aromatic ones. For
example, in benzonitrile, a solvent with εr = 26, colloidal ≈250 nm-sized particles appear at
1 × 10−4 M. Note that ultrasonication was used for preparation; larger particles may be
removed by centrifugation and decantation [63]. This critical concentration was estimated
by both DLS and visible spectra at λ = 450–700 nm; the nC60 ⇌ (C60)n equilibrium is
reversible [63]. This is typical rather to lyophilic systems, like diphilic surfactants in
water, which are characterized by a critical micelle concentration, CMC. However, the
fundamental difference consists of the limiting solubility (here, it is 5.7 × 10−4 M [28,35]),
whereas for common surfactants in water, after reaching the CMC, the micellar solubility
rises up to gelation. On the other hand, as it was mentioned in Section 3.1, small fullerene
aggregates can appear near the solubility limit even in “good” solvents [21]. Obviously, the
same takes place for the C60 solutions in benzonitrile.

For C60 in the toluene–acetone binary solvent system, the effects are similar to those
observed for toluene or benzene mixtures with acetonitrile [73]. If a benzene solution of
C70 is diluted by DMSO, the spectral changes resemble those presented in Figure 2. At
DMSO content of 33 vol.%, no sign of colloidal particles is observed (Figure 4). The turning
point of molecule–aggregate transition is about 60 vol.% DMSO [74].

It should be noted that, contrary to the mixtures of a “good” solvents with methanol
and acetonitrile, the size colloidal particles does not decrease near 100% DMSO. Obvi-
ously, DMSO plays another role compared to “poor” solvents, due to good solvation
of C70 molecules. The properties of the DMSO-based systems will be considered in the
next sections.
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4.2. “Top-Down” Preparation of Organosols and Suspensions

Another way is the “top-down” preparation. This means the breaking, grinding, mix-
ing, and stirring of a solid sample in a polar solvent. Sonication and laser beam treatment
can be also used. A more practical procedure was developed by Deguchi and Mukai [132].
The “top-down” preparation of C60 colloids in methanol, ethanol, 1-propanol, 2-propanol,
1-octanol, acetonitrile, and acetone was performed using 1–2 min hand-grinding of the
solid sample in an agate mortar and sonication in a “poor” solvent [132]. Furthermore, the
same research group used this procedure to obtain stable graphite dispersion in aqueous
acetone [133].

We have repeated this protocol for C60 in acetonitrile with some modifications [100,129].
The size of particles as determined by DLS is 200–300 nm, in agreement with Deguchi and
Murai [131] and with our TEM data. The size distribution by number, scattering volume,
and intensity is similar; the repeatability is medium, the polydispersity index, PDI, is 0.3
on average. Dilution with benzene (Figure 5) allowed determination of the initial fullerene
concentration in acetonitrile of ca. 3 × 10−5 M.

Fullerene C60 and C70 solutions in N-methylpyrrolidine-2-one, NMP (εr = 32), are
a special case [17,21,125–127,134–148]. While dilution of fullerene solutions in toluene,
benzene, or CS2 by acetonitrile, acetone, or alcohols is quite understandable from the point
of view of colloid chemistry as an example of “bottom-up” preparation, the “top-down”
preparation of fullerene colloids in the last “poor” solvents needs sonication. However,
sonication is unnecessary in NMP. In earlier studies [125,126], C60 and C70 solutions in
toluene were diluted with NMP in order to prepare colloidal solutions. Also, sonication was
used for the preparation of fullerene solutions in toluene, toluene–NMP mixtures, and in
entire NMP. In other cited papers, the fullerene solutions were prepared directly by stirring
the solid sample in NMP. The stirring time varied from 10–15 min [138,140,143,146,147] to
1 h [136,139,144], 6 h [141], 24 h [127] or four days [135]. In some studies, initial solutions
for investigation of the NMP–toluene systems were prepared either in toluene or in both
polar and “good” nonpolar solvents [140,143–145].
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with permission.

Detailed studies of C60 [134–136,138–141,144,147] and C70 [143,145,146] in NMP-based
systems made it possible to shed light upon the unusual properties of this solvent in respect
to fullerenes. The main specific feature is the strong interaction between the fullerene and
solvent molecules. Obviously, it is a kind of donor–acceptor interaction, which results in for-
mation of charge transfer complexes [139,141,144,147] proved by the 1H NMR spectroscopy,
quantum-chemical calculations [139,144], and mass spectra [135,144]. Another property
is ageing of fullerene solutions over time, slow increasing in size up to ca. 500 nm as
determined by DLS, SANS, and SAXS methods. The UV-visible spectra exhibit some bands
characteristic for molecular absorption, but after preparation of solutions, smoothing of the
absorption curve begins immediately, and the spectrum strongly resembles that shown in
left hand side of Figure 5. Importantly, using some assumptions it was demonstrated that
the Mie light scattering makes a negligible contribution it this case [135].

Sun et al. [149] studied the behavior of C60 and C70 in entire triethylamine. The UV-
visible spectra of the solutions prepared either by sonication or without it exhibit a smooth
curve. UV-visible spectra of freshly prepared solutions exhibit some features of molecular
absorption. However, within 2 h, the spectra curve became completely structureless, like
in the above mentioned case of NMP. However, the authors assume that the origin of the
absorption changes is a chemical reaction, not a complex formation. This point of view is
based on the NMR spectra and fluorescence data. This allows classifying triethylamine as a
“reactive” solvent.

Returning to the NMP, it should be concluded that, in any case, the reason for the ease
of dissolution is the strong interaction of this electron-donor solvent with fullerenes. In
toluene–NMP binary solvents, formation of 55–60 nm particles occurs within ca. 1 h [125,126].
A set of works were devoted to absorption spectra of fullerenes in the toluene–NMP
system at different sequence of components adding [125,126,140,141,143–146]. These data
demonstrate peculiarities of competition between these two solvents in the solvation shells
of fullerene molecules. Because of some information on the irreversible changes of the
fullerene solutions [140], the NMP may be (partly) attributed to the “reactive” ones.

Some studies were devoted to kinetics of fullerene aggregation [21,150]. The nucle-
ation process was studied in detail be Tropin, Avdeev, Aksenov, and their colleagues in
NMP [21,137,142,151,152]. These authors managed to describe the experimental data using
the model of complex formation between fullerene and solvent.
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Obviously, the electron-donor properties of solvents are of the crucial role in solvation
of fullerenes, which are Lewis acids [74]. While the value of the relative permittivity, εr, is
used to characterize the solvent polarity, the Gutmann’s donor number, DN, describes the
cationophilic properties [128,153]. In Table 2, both parameters for some selected solvents
are given (mainly at 25 ◦C).

Table 2. Solvent characterization from ref. [128].

Solvent εr DN

Benzonitrile 25.2 11.9
Acetonitrile 35.9 14.1

Acetone 20.6 17.0
Methanol 32.7 19.1 a

Water 78.4 24.3 a

DMF 36.7 26.6
NMP 32.2 27.3

DMSO 46.4 29.8
Triethylamine 2.42 31.7

Pyridine 12.9 33.1
Note. a Approximate estimates.

Among the non-hydrogen bond donor solvents, the first three in Table 2 are typical pro-
tophobic (cationophobic) ones, while the last five are protophilic (cationophilic). Pyridine
dissolves the C60 fullerene, and aggregates were observed via DLS [154]. The prepara-
tion of solutions of C60 in DMF was described by at least two research groups [155,156].
However, recently the colloidal solutions in this solvent were obtained even easier [74].
Note that some organic solvents may become unstable over time. For example, DMF can
decompose to formic acid and dimethylamine [157]. In our study, we used freshly purified
and distilled DMF.

Although solutions of fullerenes in DMSO and DMSO–water solvents were already
obtained in 1993 and were used for spreading at the water/air interface [64], these systems
were not further considered in more detail. Wang et al. [64] reported no details of the
preparation of solutions. For DMSO, the sonication is undesirable (After even several
minutes of sonication, substantial amounts of acidic admixtures appear in DMSO; colloidal
particles of fullerenes became positively charged and unstable [74].) but fortunately not
necessary [74], analogous to the case of NMP. We prepared C60 and C70 colloidal solutions
in DMSO and DMF by hand grinding in an agate mortar and 3 h mixing with a magnetic
stirrer [74]. The solutions are rather stable over time and contain ≈200–250 nm-sized
particles with substantially negative electrokinetic potential. The repeatability of the
preparation procedure was good.

UV-visible absorption spectra are typified in Figure 6. Particle sizes and size distribu-
tion do not undergo major changes over time. In the freshly prepared solutions of C70 in
DMF, the molecular bands are observed with the λmax, nm (Emax × 10−3 M−1cm−1) values
of 331 (55.7); 360 (43.2), 380 (56.0), and 467 (31.4). However, smoothing of the spectral
curve begins shortly after the preparation of solutions. For the C60 solution in DMF, typical
molecular band of 332–333 nm was observed immediately after preparation.

Similar results were obtained in DMSO: C70 exhibits molecular bands of 333, 363, 380,
and 470 nm, and smoothing of the curve takes place (Figure 7).
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Despite a significant variety of solvent compositions of organosols (suspensions) of
fullerenes, they have one important property in common. Namely, colloidal particles are
always negatively charged [44]. Now we have a set of electrokinetic potential values in
different solvents, calculated using the Henry equation (Ohshima approximation) [158,159].
They are compiled in Table 3. (The overcharging phenomenon in the presence of electrolytes
will be considered in Section 5).
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Table 3. Values of the electrokinetic potential of organosols, 25 ◦C.

Fullerene Solvent ς, mV a Reference

C60 Methanol –37 [123]
–“– CH3CN—0.1 vol.% toluene –53 [98,129,160]
–“– CH3CN—0.1 vol.% toluene –(47–51) [98,129,160]
–“– CH3CN—benzene (1:1 by vol.) –53 [98,101]
–“– DMSO –34 [74]
C70 CH3CN—10 vol.% toluene –55 [70]
–“– DMSO –42 [74]
–“– DMSO—10 vol.% benzene –45 [74]

Note. a The accuracy is normally ±(3–8) mV.

These results are in agreement with the earlier published work by Alargova et al. [44],
where the ς = −(32.5–38.5) mV in acetonitrile for colloids if C60, C70, and their mixtures
was reported. Their calculations were processed using the Smolukhowski equation; for
recalculation to the Henry equation, they are −(48.8–57.8) mV.

The origin of the charge of fullerene colloidal species in polar organic solvents is
of special interest. The transfer of electrons from the solvent molecules to fullerenes is
obviously the most probable path [44]. Also, disproportionation of the C60 molecules
into oppositely charged radicals can also take place [41]. In the latter case, it favors
aggregation even in a “good” solvent; this process can be suppressed by introducing
a radical scavenger [41]. Indeed, we have demonstrated that if a benzene solution of
C60 is mixed with an equal volume of acetonitrile in the presence of 2,6-di-tert-butyl-4-
methylphenol, a substantial decrease in the ς value, accompanied by a jump of the particle
size, takes place [101]. Within a period of 1 h, the average size reaches 1700 nm, and then the
precipitation of fullerene takes place, while ς approaches zero [101]. If, however, the radical
scavenger is added at 1.5 h after formation of the colloid, no changes are observed. In a set
of C60 colloidal solutions in acetonitrile, prepared by hand-grinding and sonication [100],
the ς value was within the range of −(42–63) mV, average value ς = −48 mV. If acetonitrile
contains a radical scavenger 2,6-di-tert-butyl-4-methylphenol, the interfacial charge greatly
reduces; ς is about −10 mV. This further confirms that free radicals are a source of charge
formation. Similar but not expressed changes are observed in acetonitrile with 1 vol.%
toluene [101]. For C70 colloids, the above effects were almost imperceptible.

Fullerene solutions in polar basic solvents can readily be mixed with water. This was
demonstrated by Mrzel et al. [154] for pyridine. These authors underline the difference be-
tween the C60 aggregates in pyridine and nanocapsulates of fullerene in pyridine–water mix-
tures [154]. DMSO-based organo-hydrosols of C60 and C70 were prepared by Wang et al. [64]
and in our study [74]. Chaban et al. [161] studied the C60–water–DMSO system using
the molecular dynamics simulations and predicted good solvation of fullerene molecules
by DMSO and fullerene aggregation. The same was demonstrated for the DMF–water
systems [74]; Yang et al. [156] added water to the C60 deposit after evaporation of DMF,
and a hydrosol was obtained. Dilution of fullerene solution in NMP with water also results
in organo-hydrosols [135,136,138,146,148]. In all these hybrid sols, the fullerene particles
are also negatively charged.

To conclude this section, fullerenes in polar solvents exist as colloidal systems. How-
ever, all these solvents exhibit individual features. While methanol, acetonitrile, and acetone
are typical “poor” solvents with C60 solubilities of 3.3 × 10−8, 5.6 × 10−7, and 1.4 × 10−6 M,
respectively [35], for cationophilic DMF, pyridine, and NMP this key parameter is higher:
3.75 × 10−5, 8.3 × 10−4, and 1.2 × 10−3 M, respectively [35]. On the other hand, the solu-
bility of C60 in benzonitrile, a polar solvent with the lowest DN value among collected in
Table 2, is with 5.7 × 10−4 M substantial. Obviously, the reason is the aromatic nature of this
solvent, which favors solvation of fullerenes. Moreover, just in this solvent single fullerene
molecules predominate within a pronounced concentration range, before the aggregation
is observed [63]. The same was reported by Nath et al. for the benzyl alcohol [42]; these
authors underline the “intermediate” character of polar aromatic solvents. It can be argued
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that even for the few organic liquids discussed above, it is possible to divide them into
three sub-groups of “poor” solvents.

Though NMP should be considered rather as a “poor” solvent, with some features of
“reactive” ones, Stuart et al. [127] prepared a C60 solution in acetonitrile by ten-fold dilution
of the initial NMP solution with another “poor” solvent CH3CN. Alargova et al. [44]
consider NMP as a polar solvent, which “exhibits good solubility of C60 (comparable
to that in toluene), being an exception among the “good” solvents for fullerenes.“ Their
experiments showed that dilution of C60 solution in NMP with acetonitrile resulted in the
formation of colloidal particles similar to those obtained using aromatic solvents instead
of NMP [44]. However, it was firmly proved that, despite relatively easy dissolution
of fullerenes in NMP, all solutes within a short interval of time transfer into colloidal
state [134–136,138–141,143–147]. The same is true, e.g., for DMSO [74].

So, if such solvents can be classified as “high-solubility” to some extent, they dissolve
fullerenes only in the form of colloidal aggregates. On the contrary, aromatic solvents
dissolve fullerenes in molecular form under equilibrium conditions.

4.3. Fullerenes in Room Temperature Ionic Liquids, RTIL

Room temperature ionic liquids, RTIL, like fullerenes, have long ceased to be exotic
compounds, but their combination has been relatively little studied to date. Theoret-
ical studies on C60 with were performed by Fileti, Chaban, and Maciel [162–165] and
Garcia et al. [166,167], whereas Pádua group performed both experimental [168–170] and
theoretic studies [168].

In the first article [168], interaction of C60 with four ionic liquids having the same anion,
bis(trifluoromethanesulfonyl)amide (Ntf2

−), and differing in the lengths of the alkyl chains
of the 1-alkyl-3-methylimidazolium cations, from ethyl to n-decyl, was described. Solid
fullerene was dissolved in CH2Cl2 using 5 min sonication and prolonged stirring. After
mixing with the RTIL 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide
and evaporating the molecular solvent, UV-visible spectra at C60 concentrations up to
6.25 × 10−4 M demonstrated pronounced difference from that in CH2Cl2. Some differ-
ence in the behavior of the fluorinated fullerene, C60F48, was observed [168]. In the
next study, it was shown that the enthalpy of mixing of decylmethylimidazolium
bis(trifluoromethanesulfonyl)amide with 1,2-dichlorobenzene is more negative in case the
organic solvent contains C60 [169]. More detailed comparison of C60 and C60F48 demon-
strated that their solubilities in [bmim]+[Ntf2

−] are 7 × 10−5 and 6 × 10−4 M (here, bmim+

means 1-butyl-3-methylimidazolium cation). Whereas colloidal particles of C60 are large,
up to 5 × 104 nm and sedimentates even at low concentrations, C60F48 exists as solvated
isolated molecules or small aggregates and sedimentates only at concentration of 1.5 g/L.
However, the smoothing of absorption curve also takes place for C60F48.

The solubility of C70 in imidazolium-, ammonium-, and phosphonium-based RTIL
was found even earlier in the course of fluorescence studies; Cl− and Ntf2

− were used as
counter ions [171]. The procedure was as described above. The solubility of C70 varied
from 0 in [bmim+][BF4

−] to 9.5 × 10−5 M in [methyltrioctylammonium+][Ntf2
−]. Although

the authors exclude the formation of suspensions, this conclusion is probably based on
visual observation. In any case, the absorption curve is smooth. Hence, some kinds of
aggregates seem to be probable.

Maciel and Fileti [162] used molecular dynamics simulations for estimating the solva-
tion energy of C60 in ethylammonium nitrate and 1-butyl-3-methylimidazolium tetrafluo-
roborate. The solvation of the fullerene by nitrate is substantially better than by the BF4

− ion.
The energy of C60 transfer from the first to the second RTIL was estimated as 235 kJ mole−1

(±1%) [162]. The modeling predicts separation of two C60 by a bmim+ cation [163,164].
At the same time, fullerenes are Lewis acids. In the last work, Fileti and Chaban theoreti-
cally predicted a jump of the C60 solubility in [bmim+][BF4

−] at high temperatures, up to
380 K [164]. This interesting conclusion should be verified experimentally.
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Garcia et al. [166,167] presented important results on analyzing the interactions of
24 different RTIL with C60 using molecular dynamics and DFT methods. Structural, dy-
namic, and energetic factors were analyzed to clarify their role on the behavior of the above
systems. In particular, the role of the π–π interactions is important, which is in line with
other theoretical considerations [162–164]. Useful guidelines are provided for selecting
an RTIL suitable for fullerene solvation; rationalization means an adequate cation-anion
choice [167].

Recently, Cardoso and Colherinhas [172] published a detailed molecular dynamics
investigation of C60 with [bmim+][PF6

−] and water, using polarization effects. In order to
observe the impact of fullerene–solvent electronic interactions, the NMR and electronic
absorption spectra were calculated using the GIAO-DFT and TD-DFT methodology [171].
These authors also compared the solvation of C60 in water, DMSO, and DMF and demon-
strated a better solvation in the last organic solvents [171].

It can be concluded that in RTIL, also known as “green” solvents due to their negligible
vapor pressure, the C60 and C70 fullerenes exist in form of aggregates. As for the permittivity
of RTIL, even estimating this value is not an easy task. For [bmim+][PF6

−] and estimate
εr ≈ 10 can be accepted [173,174]. Hence, the RTIL solvents are on the border between polar
and non-polar ones; they should be ascribed to “poor” solvents. Also, the large variability
of RTIL should be taken into account; in this case, the above mentioned theoretical modeling
can be useful for correct choice of solvents.

Campisciano et al. [175] covalently attached imidazolium groups to the C60 molecule
and thus obtained a valuable supramolecular system for providing Suzuki and Mizoroki–Heck
reactions in aqueous media. The smoothing of the spectral curve in the UV-visible range is
pronounced. In any case, such a modification makes it possible to transfer the fullerene to
water. Basing on molecular dynamics method, Fileti and Chaban [165] recommended the
imidazolium ionic liquid [bmim+][BF4

−] for dispersion of fullerene in water. In this sense,
the RTIL is one of the ionic compounds capable of stabilizing colloidal fullerene particles
in hydrosols.

4.4. Hydrosols of Fullerenes: Preparation

In water, fullerenes exist in colloid state. Because the electrophilic properties of C60
and C70 are pronounced, a number of studies were directed to their biological activity
and possible application in medicine [6,9,11,12,14,15,176,177]. On the other hand, a plenty
of information on cytotoxicity, photocytotoxicity, genotoxicity (DNA damage), etc., is
available [24,25]. Many studies are devoted to the behavior of fullerenes in soils, freshwater,
etc. [9,10,16,177–180].

As a result, an impressive number of different procedures and protocols of preparation
of fullerene hydrosols and aqueous suspensions is accumulated; see, e.g., recent review
papers [15,16,24,25]. This set of methods that have been tried for the preparation of
hydrosols and aqueous suspensions of fullerenes can serve as an excellent teaching example
for a university course in colloid chemistry.

Some of the colloidal solutions are rather suspensions than sols, first of all those
prepared by “top-down” method, whereas hydrosols are first of all prepared by the “bottom-
up” way. However, following many authors, we use these terms here mainly as synonyms.
For orientation in this dataset, special designations for the most popular preparation
methods gradually appeared, such as, e.g., son/nC60. Here “son” and “nC60” denote
sonication and aggregate formation, respectively.

First approach was the stepwise solvent exchange going from C60 in benzene to
tetrahydrofurane, then to acetone, and finally to water; the final fullerene concentration
was 2 × 10−6 M [181]. If the initial fullerene solution is prepared in toluene and succes-
sively diluted with tetrahydrofurane, acetone, and water, the target system is designated
as TTA/nC60. In this case, even a C60 concentration of 0.002 M can be reached [182]; the
procedure was subsequently reconsidered [183]. Dilution of tetrahydrofurane solution
of fullerene with water leads to hydrosols of THF/nC60 type [184,185]. First, a fullerene
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solution in THF is prepared in inert atmosphere, and after mixing with water the or-
ganic solvent is evaporated [184]. Dilution of C60 and C70 solutions in polar solvents
N-methylpyrrolidine-2-one and dimethylformamide with water results in NMP/nC60,
NMP/nC70 [186], and DMF/nC60 [155] colloidal systems. New versions of such approaches
were developed by the Ausman group [183,187]. These authors proposed a new proce-
dure using C60 solution in hexane, diluted with iso-propanol and water [187]; under such
conditions, hexane is evaporated first.

An approach based on the introduction of a surfactant sodium dodecylsulfate (SDS)
has been proposed. A fullerene solution in a “good” solvent is added to aqueous acetone
containing SDS, and organic solvents are removed by distillation [188–190]. Here, SDS
stabilizes the final C60 colloidal particles; however, utilization of surfactants, polymers, etc.,
is beyond the shape of this minireview.

Another “bottom-up” method was already reported as early as 1997. It consists of
the introduction of THF solutions of the C60 anion radical into water; oxidation with
atmospheric oxygen results in formation of a hydrosol [191]. This procedure was revisited
after two decades [192]. Reaction with KOH and oxidation results in formation of fullerenol;
the NIR spectra of fullerene anion radical and the properties of hydrosol of fullerenol is
recently reported [193].

Preparation of colloid solutions can be performed using sonication. Solutions of
C60 were prepared in DMF and THF by stirring and then, instead of mixing with water,
the latter was added and accompanied with sonication only after the organic solvents
evaporation [156]. The authors of the original article designate thus obtained as DMF/nC60
and THF/nC60 [156]. A versatile analysis of these obtained systems disclosed substantial
chemical changes of the fullerene. Not only sonication but the nature of the organic solvent
plays a role in these alterations [156].

More popular is the sonication method consisting in ultrasonic extraction from toluene
to water [194]. The hydrosols prepared in this “bottom-up” way are designated as son/nC60,
or tol/nC60, or SON/nC60. Contrary to the above mentioned procedures this allows to
receive much higher fullerene concentrations, up to 0.001 M [195] and particle size down to
20 nm [16].

This method works well not only for C60, but also for C70 [196–198] and C76, C84 [196],
and is permanently modified [196,199–203]. So, if the pH of the water phase is elevated
to 10, the negative charge of the colloidal particles increases, therefore making them more
stable [199]. Also, SDS was added in order to stabilize the particles that appear during the
ultrasound extraction; the surfactant was removed from the final colloid via dialysis [203].
Some authors added small amounts of ethanol to the aqueous phase [196,200,204]. Slight
heating to 40 ◦C and passing nitrogen to remove toluene traces is proposed [200]. For the
same purpose, 15 min boiling of the final hydrosol can be used [201]. Heating the system
during the sonication process up to 60 ◦C allows substantially decrease the size of colloidal
particles [202].

The disadvantages of the method include the occurrence of the (possible) fullerene
oxidation and other chemical reactions under conditions of sonication. So, reactive oxygen
species are readily formed such as superoxide ions, singlet oxygen, etc. [16]. Conversion of
toluene into the benzoic acid and benzoate is also reported [205,206].

In 2022, two new approaches to the C60 hydrosols preparation were published [14,15].
Merland et al. modified the extraction/sonication method and developed an emulsification–
evaporation process in the presence of an amphiphilic polymer. Instead of toluene,
trichloromethane or carbon disulfide was used. Kop et al. [14] proposed a fullerene–
curcumin antioxidant system. These authors prepared the C60 hydrosols by 9-fold dilution
of a solution in NMP with water, followed by stirring, dialysis, and filtration though a
450 nm-pored filter. The sols were stabilized by Tween-80, polyvinyl pyrrolidone, cyclodex-
trin, and curcumin with different combinations.

As an example of a hydrosol of C70, the results of our recent study are presented
in Figures 8 and 9 [198]. This colloid system of son/nC70 type was prepared by Dr.
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Vladimir Klochkov using highly pure benzene instead of toluene. At the C70 concen-
tration of 3.3 × 10−6 M and 25 ◦C, the size of particles is 97 ± 3 nm (Figure 8) and
ς = −40 ± 4 mV [198].
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Figure 9. UV-visible absorption spectra of C70 in “good” solvents and in the son/nC70 hydrosol.
From ref. [198] with permission.

Increase in concentration displays insignificant alterations of the particle size; PDI is
always around 0.2 [198]. The above characterization of this C70 hydrosol is in agreement
with the results by Aich et al. [196].

The size/ς values for C70 hydrosols, available in the literature, as follows: 92 ± 14 nm/
−39 ± 4 mV [196]; 175 ± 5 nm/−34.4 ± 0.7 mV [197]; ≈100 nm/−21.7 mV [177] (in the last
paper, the fullerene concentration was 8.9 × 10−5 M). As a rule, data are published without
specifying the type of equation used for ς calculation. As mentioned above, we used the
Henry–Ohshima equation, which corresponds to the Hückel equation in the absence of
foreign electrolytes.

It is important to note that relatively small variations in this preparation method often
lead to formation of hydrosols with significantly different properties. This is a typical sign
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of hydrophobicity of the colloidal system of interest. Given the widespread use of this
method, it is important to try to standardize the synthetic protocol. Such attempts were
made by Mikheev et al., who prepared standard samples of fullerene hydrosols [206,207].
Note that in these works as well in the study by Kyzyma et al. [186], sonication was used
not only for the toluene–water system, but also during the preparation of the initial toluene
solution of fullerenes. Contrary to it, we used to prepare the stock solutions in toluene
and benzene without sonication, keeping the solid sample in the “good” solvent within ca.
2 weeks [198].

Finally, the “top-down” methods have been used, first of all, prolonged stirring of
the solid samples of fullerene in water. Thus, the obtained colloid systems were desig-
nated as aq/nC60, aqu/nC60, stir/nC60, or STI/nC60. Sometimes stirring continued even
1075 days [208]. Murdianti et al. [209] presented experimental evidence that suspension
formation does not occur in an inert atmosphere. They attach a key importance to the
formation of fullerene oxide C60O for the appearance of colloidal particles [209]. Based on
detailed studies, it was concluded that it is impossible to obtain identical results by mixing
in water [210].

Mixing and stirring can be performed in the presence of salts of organic acids. For
example, if citrate is used, the colloid is named as cit/nC60 [211]. Some authors used
sonication in water and named the colloid as aq/SON/nC60 [210], while others crushed a
solid fullerene sample in water by a laser beam [212]. The hand-grinding of the solid sample
in a mortar followed by transfer to water and sonication was named mechano-assisted
reduction of size, or MARS/nC60 [213,214], is preferably carried out on with the addition
of SDS [25]. In any case, filtration of the resulting colloid solutions using 220 or 450 nm
pore filter is highly recommended.

4.5. Hydrosols of Fullerenes: Key Properties

Briefly summarizing the numerous data accumulated to date, we can give the follow-
ing characteristics of hydrosols or suspensions of fullerenes. These are typical hydrophobic
colloidal nanodispersed systems, with the size of negatively charged particles being be-
tween ≈40 and ≈200 nm, and with fullerene concentration, as a rule, below 0.01 mass %.
Although it is obvious that the authors of various works sought to obtain the maximum
concentration of fullerene, the final concentrations depend to a large extent on the method
of preparation used. Other properties of the colloids also strongly depend on the prepa-
ration protocol. Such scattering of the properties of the colloidal solutions prepared by
different methods or even by the same methods but by different authors gives additional
support to the idea of pronounced hydrophobic character of the systems of interest.

Since the initial weight of fullerene usually cannot be completely transferred into water,
it is necessary to have a method for determining the fullerene concentration in solution.
A common method consists of deposition of fullerene colloidal species by Mg(ClO4)2,
NaCl, NaNO3 or/and acetic acid followed by extraction with toluene and absorbance
measurements [24,25,183,187]. New method basing on the light scattering has also been
developed [210].

As for the determination of particle size and polydispersity of fullerene aqueous
dispersions, the dynamic light scattering method is used first of all. However, indirect
methods based on UV-visible absorption spectra [213,215,216] may also be used. For
example, Deguchi et al. [213] proposed an equation that describes the dependence of the
absorption maximum in the region of 340–350 nm on the hydrodynamic diameter of the
colloidal particle determined using the DLS method, Equation (1).

λmax = (337.1 ± 1.4) + (0.065 ± 0.009) dH (1)

The discussion of applicability of this and other equations can be found in a previous
review [25]. A more detailed characterization provides for knowledge about impurities,
first of all oxidation products [156,183,187,206,209].
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The origin of the negative charge of the colloidal particles is of special interest because
it allows to shed additional light on the nature of the fullerene/water interface. Several
popular explanations of the charge origin have been considered and discussed in previous
reviews [24,25]. The most probable reasons are as follows. (i) Adsorption of the HO−

ions, which is typical for many hydrophobic surfaces such as oil droplets [217] and gas
bubbles [218]. (ii) Localized hydrolysis caused by electrophilic properties of fullerenes,
which are in fact Lewis acids [24,25,219]; it also favors the additional formation of the
HO− ions. The role of HO− ions in formation of the surface charge is supported both
by additional stabilization at pH above 7 and coagulation at pH 1–2 [25]. (iii) Quantum-
chemical calculations made by Choi et al. [220] revealed that the interactions between
fullerene and water molecules lead to charge transfer and polarization, thus making a
contribution to the negative charging of the fullerene aggregates in water. This explanation
is in line with our concept (ii).

In any case, the negative charge is a main factor of the aggregative stability of colloids
including fullerene sols and suspensions. Noneman et al. [221] performed a detailed
molecular dynamics modeling of mixtures of C60 with C60O in water. The main idea of this
and of previous works of this group [183,187,209] consists of stabilization of C60 colloids
in water by admixtures of C60O. The latter to some extent plays the role of a diphilic
compound, a kind of stabilizing surfactant [221]. This is quite plausible, but the fullerene
oxide itself cannot cause the surface charge, and it is the charge screening by electrolytes
that leads to coagulation.

According to molecular simulations made by Hinkle and Phelan [222], the Gibbs
solvation energy, ∆Gsolv, of C60 in water (−50.9 kJ mol−1) is more negative than that
reported by Stukalin et al. [93]. However, the energy of transfer from water to methanol
and ethanol is −68.1 and −86.5 kJ mol−1, respectively. The ∆Ssolv value of C60 hydration
is negative. These parameters, however, refer to the C60 molecule and not to the colloidal
particle. Voronin et al. [223] estimated the negative entropic ∆S value by studying a
son/nC60 hydrosol using DLS method at different temperatures, atomic force microscopy,
and isothermal titration calorimetry. Based on the combined equation of the first and second
laws of thermodynamics, they stated that the C60 fullerene aggregation in aqueous solution
is entropically driven, occurring with nearly zero enthalpy change. However, the use of a
thermodynamic approach for a hydrophobic colloidal system is clearly inappropriate.

Recently, Godínez-Pastor and González-Melchor [224] published a detailed molec-
ular dynamics study of the behavior of the fullerene/water system under liquid and
liquid–vapor conditions. A computational study of fullerene/water systems under liquid
phase and liquid-vapor conditions was performed using atomistic model. At 300 K and
1 bar, fullerene aggregates were observed. The aggregation was less defined at 373 K and
10 to 24 kbar [224].

In addition to the hydrosols and aqueous suspensions of fullerenes, the C60 layers on
the water/air interface should be mentioned. Kolker and Borovkov [225] used cyclohexane
as spreading solvent and prepared a diluted highly homogeneous 2D system C60—H2O.
They also showed that under compression, instead of true Langmuir monolayers, poly-
layers up to hexalayers can arise. This system can be considered as an interfacial colloid
system; the cited article also provides a review of the relevant literature data [225].

Another interesting issue is the partition of fullerenes between water and nonpolar
solvents. Mikheev et al. [226] presented a detailed quantitative study of partition of C60
and C70 between mutually saturated water and toluene. The specificity of their approach
consists of using sonication; the ratio of concentration of fullerenes in aqueous and organic
phases was relatively similar when the quasi-equilibrium state was reached from both sides.
The distribution constants for the two fullerenes were found to be 6 and 2, respectively [226].
Note that Jafvert and Kulkarni [227] determined the partition constants of C60 between
toluene or 1-octanol and water, 2.8 × 108 and 4.7 × 106, respectively. These values for
mutually saturated solvents were obtained using three different procedures and describe
the equilibrium of single C60 molecules in different solvents. The solubility of fullerene
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in water was estimated as 1 × 10−11 M [227]. Such difference of partition constants is
understandable because in the first paper [226], fullerene is in colloid state in water and,
probably, in toluene under conditions of sonication.

This problem is to some extent connected with the partition of nanoparticles between
water and organic solvents, including 1-octanol [228]. The last concept was criticized by
Praetorius et al. [229], because, for lyophobic systems, the thermodynamic approach is
not correct. Their paper is entitled “The road to nowhere: equilibrium partition coeffi-
cients for nanoparticles” [229]. Based on an approach developed by Hill [230], Shchukin
et al. [231] mentioned that a disperse system with very small particles can be conditionally
regarded as a one-phase colloidal solution containing large “molecules”. However, for the
partition of charged particles of a lyophobic system between two liquid phases it can be
really misleading.

The colloidal particles, including those of fullerenes in water are charged, which
hinders their transfer into the organic phase. However, Mikheev et al. [226] explained their
results by transferring of single molecules. They estimated a maximum concentration of
C60 in water produced from a toluene solution by the solvent-exchange procedure, i.e.,
in the son/nC60 sol, as 5.6 × 10−4 M. Though their results are self-consistent, it would
be worthwhile to process the experiments using other parameters of sonication. For
example, Scharff et al. managed to prepare a son/nC60 colloid with concentration of
1.9 × 10−3 M [232].

5. Coagulation by Electrolytes
5.1. Coagulation of Hydrosols and Aqueous Suspensions

Hydrosols of C60 and C70 are typical lyophobic colloidal systems with negatively
charged particles [20,22–25,198,229,233,234]. They readily coagulate on adding electrolytes,
are irreversible (i.e., cannot be spontaneously restored after the complete evaporation of
the solvent), and exhibit the so-called coagulation zones, i.e., coagulation—stabilization—
coagulation, in the presence of cationic surfactants [16,25,198,233]. The particle size, size
distribution, electrokinetic potential, and other properties for fullerene hydrosols and
suspensions prepared by different methods and by different authors do not coincide. This
is typical for lyophobic (hydrophobic) systems. As a result, a pronounced scatter of the
critical coagulation concentrations, CCC, becomes evident after gathering numerous results
available in the literature [25]. So, the reported CCC for NaCl vary from 25 mM [203] to
321 [235]. Some representative examples are given in Figure 10 and Table 4.
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Table 4. The critical coagulation concentrations of fullerene hydrosols by electrolytes a.

Type of Hydrosol Fullerene Conc., M
CCC, mM

CCC(NaCl): CCC(CaCl2) Ref.
NaCl CaCl2 LaCl3, La(NO3)3

son/nC60 1 × 10−4 85 4.1 0.056 21 [233]
son/nC60 1.5 × 10−5 140 — — — b

son/nC60 3.9 × 10−5 321 6.7 — 48 [235]
son/nC60 8.2 × 10−6 160 6.1 — 26 [236]
son/nC60 9.2 × 10−7 220 10 — 22 [237]
son/nC70 3.3 × 10−6 250 — 0.070 b — [198]
son/nC70 1.7 × 10−5 145 — — — [198]
son/nC70 6.9 × 10−5 130 — — — [198]
son/nC70 7.9 × 10−7 150 12 — 12 [237]
son/nC76 7.3 × 10−6 100 6 — 17 [237]
son/nC84 6.6 × 10−6 70 7.5 — 9 [237]
aqu/nC60 1.1 × 10−5 140 5.3 0.11 26 [238]
aqu/nC60 4.2 × 10−6 295 5.9 — 50 [235]
aqu/nC60 1.5 × 10−6 84 4.25 — 20 [239]
THF/nC60 9.7 × 10−6 104 4.8 — 22 [17]

a A much larger body of data can be found in ref. [25]. b Our data, to be published.

A theoretical study by Mortuza et al. [122] sheds additional light on the electrolyte-
induced coagulation of fullerene hydrosol. In the first paper [120], it was demonstrated by
molecular dynamics simulation that uncharged fullerenes aggregate in water, the charged
species avoid it because of electrostatic repulsion. In the second study [122], the increase in
the size of the C60 clusters in the 100 mM NaCl solution was described using a combination
of molecular dynamics and kinetic Monte Carlo method. The mechanism of cluster growth
turns in salt solutions from the reaction limited to the diffusion limited cluster aggregation
(RLCA → DLCA) [122].

The most regularities of coagulation were described in outline as early as 1997 [233].
Before that in the same year, it was mentioned that a C60 sol, obtained by oxidation of
fullerene anion-radical, can be precipitated using NaOH, HCl, NaCl, and BaCl2 [191]. Since
then, many studies have been performed using more advanced methods for CCC determi-
nations [198,235–242]. Using the DLS method, Meng et al. [242] determined CCC = 98 mM
for NaCl at 1.39 × 10−5 M C60 solutions; Khokhryakov et al. [243] obtained a CCC value
of 100 mM for C60 concentration of 4.00 × 10−4 M using UV-visible spectra. (In Table 5 in
ref. [25], for the last two articles the fullerene concentrations were indicated with an error.).
In a study by Aich et al., the coagulation parameters of C60, C70, C76, and C84 colloids were
determined [237].

For NaCl and KCl, a CCC of 167 mM is average of nineteen values [25]. In these
studies performed by different authors, the fullerene concentrations varied from ~10−6

to ~10−4 M [25]. For salts with double-charged cations, CaCl2, MgCl2, and MgSO4, an
average value of 6.8 mM can be calculated using results of twenty-three studies [25]. This
leads to a ratio of the averaged CCC values of single-charged to double-charged cations
about 25. Importantly, despite the scatter of the results of different authors, the classical
Schulze–Hardy rule is valid in the case of fullerene hydrosols.

For salts with a triple-charged cation, La3+, two reports are available for C60 hydrosol.
The ratio of reciprocal CCCs for Na+, Ca2+, and La3+ was determined as 1:21:1518 [233].
This result was subsequently confirmed by Zhang et al. [238]: 1:26:1272; such agreement is
sufficient for lyophobic colloid systems. The DLVO theory in its classical version predicts
the ratio of 1:64:729 (the so-called z6 law) for sols with highly charged particles and
in the absence of ion adsorption [244]. Since then, a number of modifications of the
theory were proposed [245–248], and this process is ongoing [249–251]. Among other
problems, the role of the colloidal particles size [252], overcharging, hetero- and mutual
coagulation [253–256], consideration of structural forces [257], and the role of the co-ions (or
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similiions) influence [258] are discussed in order to refine the theory. For a long ago studied
hydrosol As2S3, an example of the above ratio for single-, double-, and triple-charged
cations is 1:80:725, whereas for AgI hydrosol, it is 1:58:2029. These are averaged values
from a fundamental book [259].

For relative to fullerenes nanocarbon systems, single- and multi-walled nanotubes,
SWCNT, and MWCNT, respectively, with different degrees of oxidation, twenty-nine CCC
values for NaCl, thirty-two CCC values for calcium, magnesium, and barium salts, and
five CCC values for cerium, lanthanum, and aluminum salts give an averaged ration of
coagulative power: 1:71:2775 [260]. For a sample of SWCNT with 10 mass % oxygen,
studied by us, the CCCs for NaCl, Ca(Ba)Cl2, and La(NO3)3 are 150; 1.4; and 0.025 mM,
which corresponds to the CCC−1 ratio 1:107:6000 [260]. Specific interactions with oxygen-
containing groups, obviously carboxylic, take place for multi-charged metal cations. Either
blocking the carboxylic groups by methylation or decarboxylation results in drop of the
CCC(NaCl)/CCC(Ca(Ba)Cl2) ratio by an order of magnitude [260].

Two works connected with the fullerene–electrolyte interaction under unusual con-
ditions should be mentioned. First, the state of C60 layers on the water/air interface is
affected by introducing 1% (i.e., 171 mM) of NaCl. The hydrophobic hydration is hindered,
and the sub-monolayer structure becomes cross-linked due to direct contacts between
fullerene molecules [225]. Note that the above NaCl concentration is around the CCC value
of hydrosols. It should be kept in mind that coagulation in the interfacial layers and even
the 2D Schulze–Hardy rule is described in the literature [261].

Second, Gigault et al. [178] revealed using in situ DLS, that nC60 aggregation on
passing the salinity gradient in a micro-fluid occurs not so expresses as under common
bulk conditions at the same NaCl concentrations.

For the same colloidal system, the CCC value sometimes depends on the sol concen-
tration. An increase in the CCC value for a single-charged coagulating ion of the electrolyte
along with the dilution of the sol is known as the Burton–Bishop rule [262–264], which
would be more accurately called the Mukherjee–Sen–Burton–Bishop rule [265]. For some
colloidal systems, it was not confirmed [263,264], but it works for fullerene hydrosols.
Whereas the particle size of C70 hydrosol stays practically unaffected at the fullerene con-
centration within the range of 3.3 × 10−6 to 6.9 × 10−5 M, the CCC value drops from 250
to 130 mM NaCl [198]. This finding resembles the same effect for C60 [25].

The behavior of fullerene hydrosols in the presence of a cationic surfactant is well
within the classical principles of colloid chemistry [264,266]. For the C70 hydrosol at
3.3 × 10−6 M, the CCC = 0.005 mM value for CTAB is fifty thousand times lower than for
NaCl [198]. A jump in size from ca. 100 nm up to ca. 550 nm and substantial decrease in |ς|
is observed. At higher CTAB concentrations, overcharging takes place up to ς = +40 mV
at surfactant concentration of 0.02 mM. Both effects occur well below the critical micelle
concentration of CTAB, 0.9 mM, and are certainly caused by the surfactant adsorption:
first layer of CTA+ neutralizes the surface charge and leads to the hydrophobization of
the surface of colloid particles, while the second, tail-to-tail layer, results in overcharging
and stabilization of the particles. This is in line with the results earlier obtained with
C60 [16]. Such “coagulation zones” were observed for the Au, As2S3, AgI hydrosols with a
number of cationic surfactants [264,266], and SiO2–CTAB system [267]. The peculiarity of
the systems of interest is the extremely low concentration of fullerenes, contrary to much
higher concentration of the colloids in the above cited works [259,262–264].

The coagulation data can be explained in terms of the universally recognized DLVO
theory. However, the exact value of the Hamaker constant for fullerene–fullerene inter-
action, AFF, stays unknown. So, an attempt might be done to solve the inverse problem.
In this case, an AFF value corresponding to the CCC value, particle size, and electrical
surface potential should be regarded the most reliable. In the classical version, the DLVO
approach considers only two contributions to the energy of interaction between two col-



Liquids 2024, 4 56

loidal particles, U, the energies of electrostatic repulsion, Uel, and molecular attraction,
Umol, Equation (2).

U = Uel + Uattr (2)

We used the Dukhin – Derjaguin – Semenikhin version [245] of the DLVO theory,
Equation (3).

U = Uel + Uattr = 64πεrε0
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Here, h stands for the distance between the centers of the particles, s = 2 + h/r,
ε0 = 8.854 × 10−12 F m−1, κ is the reciprocal Debye length, R, T, F have their usual mean-
ings, Ψd is the electrical potential of outer Helmholtz plane; usually, the experimentally
available ς value is used instead of Ψd, which is a kind of a Galvani potential.

The A∗
FSF value characterizes the fullerene–solvent–fullerene interaction in solution. It

is connected with the AFF and ASS values, which characterize the fullerene–fullerene and
solvent–solvent interaction in vacuum, through the Hamaker equation:

A∗
FSF = (AFF

1/2 − A1/2
SS )

2
(4)

The Hamaker diagrams, i.e., the dependences of U on h, can be constructed. Various
A∗

FSF values can be used, and those that met the coagulation conditions were selected. Then,
Equation (4) should be used to estimate the AFF value. The systems with Umax ≈ (0–2)kBT
can be considered as unstable and corresponding to the experimentally determined CCC
(kB is the Boltzmann constant).

For C70 hydrosol, Figure 10, such an approach leads to AFF = 7.0 and 6.2 × 10−20 J
for Umax = 0 to 1 kBT, respectively [198]. The results reported by the Elimelech group for
the C60 hydrosol lead to an AFF value of 7.5 × 10−2 J [240,241]. Our processing of the data
of these authors leads to a value of 7.35 × 10−20 J, though somewhat different versions
of the DLVO theory were used [70]. The utilization of other results of the same research
group [242] results in AFF = 5.25 × 10−20 J [70].

Although consideration of C60(or C70)(OH)x fullerenols in water is beyond the scope
of this review, two points should be noted. First, despite excellent solubility, fullerenols
as a rule exist in water in form of aggregates [24]. Second, coagulation of fullerenol in
water takes place in diluted KCl solutions, despite the substantial initial negative ς value of
−60 mV [193]. It is obvious that the energy of molecular attraction is quite high due to the
high surface atomic density of the fullerene structure.

5.2. Coagulation of Sols and Suspensions in Polar Organic Solvents (This Section Is Based Entirely
on Experimental Results from This Laboratory [70,74,100,101,123,160])

Despite numerous studies devoted to fullerene colloidal solutions in polar and “good”
+ polar solvents, the stability of these systems in respect to electrolytes was not examined
to the best of our knowledge. Accordingly, no information was available concerning the
CCC values. On the contrary, many works on coagulation of aqueous colloidal fullerene
solutions have been published. Obviously, this is due to the fact that both in biological
systems and in environmental objects, the interaction of fullerenes with electrolytes is
inevitable. But paradoxically, the study of the aggregative stability of organosols can shed
additional light on the nature and properties of hydrosols.

The first experiments made by us have already shown that in polar organic solvents,
the C60 aggregates readily coagulate and the CCC in acetonitrile-based solvents are two
to three orders of magnitude lower than those in water [101]. For example, in acetonitrile
with 1 vol.% toluene, the CCC value for NaClO4 is 0.15 mM. Some representative values
are collected in Table 5. The accuracy of the CCC values is normally around 15–20%.
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Table 5. The CCC values of C60 sols in different solvents, mM.

In Water a In Acetonitrile b,c In Methanol c,d

Na+ 85 e 0.15–0.20 0.25–0.30
Ca2+ 4.1 f 0.016–0.030 0.04–0.05
La3+ 0.056 0.0068 —
H+ 0.55–1.2 g 0.14 0.3–1.0 h

Note. a From ref. [233]; metal cations were introduced in form of chlorides and nitrates. b From ref. [160]. c 1 vol.%
toluene; metal cations were introduced as perchlorates. d From ref. [123]. e Average CCC of nineteen literary
values is 167 mM (see Section 4.1). f Average CCC of twenty three literature values is 6.8 mM (see Section 4.1).
g HClO4, HCl, HNO3.

h The Fuchs curve for HClO4 is unusually stretched.

The ratio of reciprocal CCC values for NaClO4, Ca(ClO4)2, and La(ClO4)3 is 1:9:22.
In an acetonitrile–benzene binary solvent, 1:1 by volume, the CCC values are higher due
to incomplete dissociation of electrolytes [101]. In this case, the reciprocal CCC values
are related as follows: 1 (NaClO4):1.25 (HClO4):2 (tetraalkylammonium perchlorates):9.1
{Ca(ClO4)2}:62.5 {La(ClO4)3}.

Other results obtained with C60 and C70 in methanol and acetonitrile (Figures 11 and 12,
Table 6) confirm the above conclusions.
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Table 6. The CCC values of fullerene organosols with addition of 10 vol.% toluene, mM a.

C70 in Acetonitrile CCC(Na+):CCC(Cation) C60 in Acetonitrile C70 in Methanol

Na+ 0.25 1 0.11 0.13
Li+ 0.024 10.4 0.02 0.13

H+ b 0.015 16.7 0.15 c —
Ca2+ 0.001 250 0.016–0.030 d 0.002
La3+ 0.0007 357 0.003 c; 0.0068 d —
Ca2+ 1.2 e 0.21 ≈1 e —

Note. a From ref. [70]. b Acids in organic solvents: perchloric, triflic, p-toluenesulfonic. c 6.6 vol.% benzene.
d 1 vol.% toluene. e CCC2.
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Interestingly, in such systems, not only the Schulze–Hardy rule is valid but also the
overcharging of colloidal particles by cations and appearance of “coagulation zones” takes
place. The overcharging occurs at metal ion concentrations above the CCC and is very
pronounced, for example, for C60 sols in acetonitrile with small additives of benzene or
toluene, the electrokinetic potential increases from ς = −(47–56) mV to +(30–49) mV in the
presence of Ca2+, Ba2+, and La3+ [101,160]. In methanol, the ς = −37 mV value increases up
to +37 mV, +26 mV, and +24 mV for La3+, Ca2+, and Ba2+, respectively [123]. The whole
dependences of the electrokinetic potential on the electrolyte concentrations are available
in the cited papers [123,160].

Such well-documented effects were not observed for the hydrosols [24,25,233]; the sole
exception is a study of C60 in water in the presence of Al3+ ions [199]. The obvious reason for
overcharging in organic solvent is, in addition to enhanced electrostatic interactions, poor
solvation of the used cations in acetonitrile and methanol; the introduction of 18-crown-6
and cryptand [2.2.2] substantially weakens the effect due to binding of the metal cations
into the macrocyclic ligand [101,123,160]. Even 10 mM N-cetylpyridinium perchlorate
causes overcharging (+11 mV) [160]. Acids can also overcharge the colloidal particles in
acetonitrile [101].

Such influence of adsorption on the coagulation process is in line with the observed
deviation from the z6 law. Experiments with C70 sols in acetonitrile were performed in the
presence of 10 vol.% toluene; at lower content of the latter, the systems are less stable. The
reciprocal CCC values for Na+, Ca2+, and La3+ are given in Table 5. The overcharging of the
initial colloidal C70 particles is very pronounced in acetonitrile: the values of ς = −55 mV
to +30 mV in the presence La3+ and +55 mV for Ca2+ cations [70]. Even in LiClO4 solutions
the overcharging of particles reaches +20 mV [70].

The overcharging leads to an interesting phenomenon that is well documented for
some colloidal systems studied long ago [253,254]. Namely, the appearance of the coagula-
tion zones allows determining the second CCC value, or CCC2, corresponding to the coag-
ulation of the modified, i.e., positively charged, fullerene aggregates [70,100,101,123,160].
This CCC2 value for Ca(ClO4)2 is about 1.0 mM for C60 in acetonitrile with 1 vol.% toluene
and 1.2 mM for C70 in the presence of 10 vol.% toluene (Table 6). Paradoxically, it is
this CCC value that is better suited for estimating the Hamaker constant, which will be
discussed below.

Another important issue is the low CCC value for LiClO4 in acetonitrile, but not in
methanol (Table 6). For C60 and C70 colloids, it is 5.5 and 10.4 times lower than that for
NaClO4, respectively [70]. In concert with the pronounced overcharging in the case of
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Li+ this allows deducing that in the last case a typical heterocoagulation or even mutual
coagulation takes place [254].

Moreover, the overcharging of colloidal particles by multi-charged counterions gives
grounds to assume the effects of hetero- and mutual coagulation, which should affect the
ratio of the CCC values [254].

First, the AFF were estimated using the approach described above for hydrosols.
Examples of the corresponding Hamaker diagrams are given in Figure 13. The values
(8.7–12.4) × 10−20 J and (6.6–13.7) × 10−20 J were obtained in methanol [123] and acetoni-
trile [160], respectively. The first conclusion was as follows: these values are similar to the
more precisely determined in water. However, more detailed analysis allowed selecting
electrolytes that can be used in such reconstruction of the AFF value [70]. The systems
with pronounced change of the interfacial electrical potential due to adsorption of coun-
terions were ruled out. In this case, higher AFF values, such as 16 × 10−20 J (Table 7), are
more probable and better agree with the high interfacial atomic density of fullerenes. The
corresponding data for C60 are very similar.
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Table 7. Examples of the AFF estimation for C70 organosols a.

Salt CCC, mM ς, mV AFF × 1020, J

NaClO4 0.25 –6 5.8–8.0
Na[2.2.2]ClO4 5.1 –15 7.7–7.9
Li[2.2.2]ClO4 1.5 –20 11.8–13.2

N(n-C4H9)4ClO4 0.90 –21 14.5–16.0
Ca(ClO4)2 1.2 +40 16.2–16.6

Note. a C70 sols in acetonitrile with 10 vol.% toluene, 25 ◦C; radius of colloid particle: 150–160 nm; in the system
with N(n-C4H9)4ClO4—110 nm.

As a result, the AFF value is substantially higher as compared to that estimated basing
on coagulation of hydrosols. Accordingly, the construction of a Hamaker diagram for
fullerene hydrosol using a higher Hamaker constant AFF estimated in organosols, predicts
the coagulation concentrations of electrolytes well below the experimental CCC (Figure 14).
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These findings lead to an idea of some additional “non-DLVO” interactions in the
hydrosols. According to the concept proposed long ago by Churaev and Derjaguin [257], a
“structural” contribution, Us, to the right hand side of Equation (2). The reason can be the
specific interactions, for example described in ref. [220].

The idea of additional interactions “non-DLVO” in water, which are probably absent
in acetonitrile, is convincingly supported by data for fullerene sols in DMSO and DMF [74].
In these cationophilic (protophilic) non-hydrogen bond donor solvents, the aggregative
stability of fullerene sols increases dramatically. The Gutmann’s Donor Numbers (Table 2)
for DMSO and DMF are with 29.8 and 26.6 much higher than those for acetonitrile (14.1)
and methanol (19.1, conventional value). The value of the relative permittivity displays
(if any) a secondary role; e.g., the εr values of acetonitrile and DMF is very close. This is
clearly illustrated by the data for coagulation of the C70 sols with sodium salts in different
solvents (Table 8).

Table 8. CCC values of NaClO4 for C70 sols in different solvents a.

Solvent: H2O CH3OH c CH3CN c DMSO

CCC, mM: 130–250 b 0.13 0.25 ≥180

Note. a In water, NaCl was used. b Depending on the sol concentration. c With 10 vol.% toluene.

For instance, for the colloids of C70 in DMF and C60 in DMSO, the CCCs of NaClO4
are 40 and 70 mM, respectively. This is ca. 200–300 times higher than in acetonitrile or
methanol. For C70 in DMSO, the CCCs of NaClO4 and LiClO4 are no less than 180 mM.
These abnormal values give evidence of substantial stabilizing factors, which is certainly
caused by the basic character of DMSO and DMF and the electrophilic properties of
fullerenes, which are Lewis acids. Note that in a basic (cationophilic) solvent, Li+ ion is
well solvated and displays no anomalous coagulating impact, contrary to the behavior in a
cationophobic solvent acetonitrile.

In the case of Ca(ClO4)2 in DMSO, the negative charge of the C70 colloidal particles
decreases substantially. This gives evidence for the pronounced role of adsorption of cations
on the fullerene/DMSO interface. Nevertheless, the CCC value is with 1 mM 1000-fold
higher than in acetonitrile.

Interestingly, p-toluenesulfonic acid acts pronouncedly in DMSO: for the sol C60,
CCC = 0.1 mM. Moreover, overcharging takes place and CCC2 = 17 mM [74]. Hence,
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even in DMSO, like in other solvents (water, acetonitrile, methanol), acidic medium is
unfavorable for fullerene stability. The CCC values for acids in water, methanol, acetonitrile,
and DMSO range from 1.2 to 0.015 mM (Tables 5 and 6).

Thus, despite the fact that fullerenes are Lewis acids, the negatively charged centers
on the surface of colloidal particles have a basic character and are neutralized by protic
acids, as well as by multiply charged metal cations, i.e., Lewis acids. A similar phenomenon
was observed for oxidized single walled carbon nanotubes, SWCNT [268]. An aqueous
suspension of SWCNT was five-fold diluted with acetonitrile, acetone, and alcohols, which
decreases the CCC (NaCl) value by 1–2 orders of magnitude. In contrast, diluting the initial
suspension with DMSO and DMF does not lead to a significant change in the CCC [268].
For organohydrosols of detonated nanodiamond, DND, with positive particle charge [269],
the CCC values of most inorganic salts are higher than in water, if DMSO is the organic
component, whereas in the mixtures of water with acetonitrile a pronounced drop of the
CCC is observed. Here, the carbon atoms are in a state of sp3 hybridization, but the strong
solvation of DMSO particles is obviously due to the interaction of this cationophilic solvent
with cationic centers on the DND surface.

Finally, Figure 15 reflects the pronounced increase in the stability of the C70 organosol
with an increase in the DMSO: acetonitrile ratio.
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Taking into account Table 2 and the behavior of fullerenes in NMP, considered in
Section 4.2, the high stability of the corresponding organosols in respect to electrolytes can
be predicted.

6. Conclusions

This review gives the following vision of the state of fullerenes in liquid media at
the present time. In so-called “good” solvents, fullerenes exist in molecular form if the
solutions are prepared by equilibrium methods. However, despite the molecular nature of
such solutions, some of their properties resemble those of colloidal systems. The standard
entropy of solvation and dissolution is significantly negative, while experiments prove
that each fullerene molecule is surrounded by large solvation shells of an aromatic sol-
vent. This makes the solution similar to systems known as colloidal crystals or periodic
colloidal systems.

In polar or ”poor” solvents such as acetonitrile or methanol, fullerenes form typical
colloidal solutions with particle sizes up to several hundred nanometers. In binary “good”
+ “poor” solvent systems, the fullerene aggregates appear at a certain threshold solvent
composition. The latter depends to some extent on the concentration of fullerene. It is
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likely that C60 and C70 molecules are capable of retaining aromatic solvation shells even in
colloidal aggregates.

A special group of polar solvents are NMP, DMSO, and DMF. These relatively basic
solvents dissolve fullerenes without sonication. The solubility is higher than in other polar
solvents, and large aggregates appear spontaneously. Formally, these solvents should be
considered as “poor”, but with some features of “reactive” ones. Despite theoretical inves-
tigation of fullerenes in room temperature ionic liquids, the corresponding experimental
data are few in number.

The interaction of fullerene hydrosols with electrolytes obeys all the classical laws and
rules of colloid chemistry. There are known attempts to estimate the Hamaker constant
of fullerene–fullerene interaction, AFF, based on coagulation data. Two features of the
behavior of C60 and C70 sols in acetonitrile and methanol fundamentally distinguish them
from hydrosols. First, the critical concentrations of coagulations are two to three orders
of magnitude lower than in water. Second, the overcharging of colloidal particles readily
takes place. These phenomena make it difficult to process the data to estimate the Hamaker
constant, AFF, but after some judicious selection this value was found to be higher than
that calculated from the hydrosol data. This allows us to derive some additional, non-
DLVO specific interactions in water in accordance with the concept of “structural forces”
by Churaev and Derjaguin.

The significance of specific interactions becomes obvious when studying the inter-
action of fullerenes with electrolytes in DMSO and DMF. In DMSO, the CCC is even
higher than in water due to the strong solvation of fullerenes, which can be considered as
Lewis acids.

Thus, in solvents of completely different chemical nature and physical properties,
fullerenes can be obtained in a colloidal state. The systems discussed in this article provide
many new illustrations for modern colloid chemistry.
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