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SPPN, Using Computationally Derived Molecular Properties, and
Comparison with π* and ET(30)
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UCD School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland; earle.waghorne@ucd.ie

Abstract: Catalan’s SPPN, a measure of solvent polarity/polarizability has been analysed in terms of
molecular properties derived from computational chemistry. The results show that SPPN correlates
positively with the molecular dipole moment and quadrupolar amplitude and negatively with the
molecular polarizability. These correlations are shared with Kamet and Taft’s π* and Reichardt
and Dimroth’s ET(30). Thus, one can associate the solvent polarity with non-specific interactions
involving the permanent charges on solvent molecules. It is also noted that the opposite correlations,
all three parameters increasing with increasing solvent polarity but decreasing with increasing solvent
polarizability, creates an ambiguity in their use, for example, in linear free energy relationships.
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1. Introduction

Understanding and predicting the effects of changes in solvent on chemical processes
are among the classical problems of solution chemistry. Thus, virtually all thermodynamic,
kinetic and spectroscopic properties of chemical systems are sensitive to changes in the
solvent, some changing by orders of magnitude.

The use of linear free energy relationships to explore or predict the effect of changes
in solvent on chemical processes is well established. The principle is straightforward and
one writes:

SP = ∑ ciPi (1)

where SP is some property, such as the log of the solubility of a solute, the Pi are experi-
mental parameters reflecting properties of the solvent (or solute) and that ci are coefficients
reflecting the response of the solute (or solvent). In effect each ciPi term represents the
effect of a different intermolecular interaction on SP.

Generally the parameters Pi are derived from experiments that are designed to isolate
a particular interaction. In general Pi values represent specific, acid–base interactions:
(1) the basicity of the solvent (Kamlet and Taft’s β [1], Catalan’s SB [2], Gutmann’s DN [3]);
(2) the acidity of the solvent (Kamlet and Taft’s α [4], Catalan’s SA [5], Gutmann’s AN [3]) or
non-specific interactions that are collected together in parameters that are measures of the
polarity/polarizability of the solvent (Kamlet and Taft’s π* [6], Catalan’s SPP [7], Reichardt
and Dimroth’s ET(30) [8]).

The range of experimental parameters raises several interesting questions, including
(1) the extent to which these parameters simply reflect properties of the solvent molecules,
(2) which molecular properties contribute to the experimental parameters and (3) whether
different parameters, for basicity say, reflect the same molecular properties.

These have been explored in a series of papers where experimental parameters have
been correlated with a set of molecular properties derived from computational chemistry.
These have shown that measures of solvent basicity (β, DN [9] and SB [10]) reflect the
partial charge on the most negative atom of the solvent molecule and the energy of the
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donor orbital, while measures of the solvent acidity (α [11], AN and SA [10]) reflect only
the partial charge on the most positive hydrogen atom of the solvent molecule.

In the present paper, a similar analysis of Catalan’s SPPN, a measure of solvent polarity
and polarizability, is reported and the results compared to those reported previously for
Kamlet and Tafts’s π* and Reichardt and Dimroth’s ET(30) [12,13].

2. Methods and Materials
2.1. Computational Details

The computational methods have been discussed in some detail previously [9,11–13].
Since the calculated molecular properties can depend on the method used, calculations were
carried out using both the Hartree–Fock and density functional (B3LYP functional) methods
using the 6-311+g(3df,2p) basis set. For the molecular dipole moments, quadrupolar
amplitudes and polarizabilities, plots of the values calculated using the two methods
against each other are linear and so the choice of method is immaterial [9]. This isn’t
the case for orbital energies, for which such plots show scatter around a straight line [9].
The situation for partial atomic charges is more complex, since these are not quantum
mechanical observables and require a model that ascribes the electronic charge density to
the individual atoms. Partial charges based on Mullican’s model are highly dependent on
the basis set and appear not to converge as the basis set is increased. Those based on the
Hirshfeld [14], Natural bond order [15] and the CM5 [16] model do converge as the basis
set is improved [9] and all have been used previously. It was fond that the Hirshfeld and
NBO models gave very similar results [12] and, in a recent paper considering Abraham
parameters it was recognized that the CM5 model overestimates the partial charges on
nitrogen atoms, for amides at least [17]. Thus the analyses reported here use partial charges
derived using Hirshfeld’s model.

All calculations were carried out using the Gaussian 9 software [18].

2.2. Analyses of Parameters

As in previous work, the normalized parameter, SPPN in this case, has been considered.
The use of normalized scales allows relatively direct comparison of the results of the
analyses. Values of SPPN were taken from [7].

The approach used is a simple [9], multivariable regression of the experimental param-
eter, P, against molecular descriptors, Qi, representing different molecular properties. Thus:

P = P0 + ∑ aiQi (2)

where P0 is the value of P when all of the aiQi terms are zero and the ai are the coefficients
recovered from the regression. In essence each aiQi term represents the contribution of a
particular interaction to P.

The molecular descriptors are normalized and calculated from the calculated molecular
properties, qi, as:

Qi =
qi − qmin

i
qmax

i − qmin
i

(3)

where qmin
i and qmax

i are the minimum and maximum values of qi. With the exception of
the orbital energies, the values of qmin

i are taken to be zero.
Seven molecular properties: the partial charges on the most negative atom and on the

most positive hydrogen atom, the molecular dipole moments, quadrupolar amplitudes (see
Appendix A) and polarizabilities and the energies of electron donor and acceptor orbitals
are considered. In general, the orbital energies are taken to be those of the highest occupied
and lowest unoccupied molecular orbitals; the exception to this is the case of solvents with
aromatic groups. This was discussed previously [9] but, briefly, solvents with a common
functional group have, for example, similar basicity parameters, whether they are aliphatic
or aromatic, although for aromatic solvents, the high energy π-bonds of the aromatic ring
are clearly the HOMOs, while for aliphatic solvents the HOMO is associated with the basic
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functional group. The fact that the basicity parameters are similar argues for the use of
the energies of the orbitals at the interacting functional group rather than those of the
aromatic ring.

In applying Equation (1), the experimental parameter, P, was initially correlated with
all seven molecular descriptors; subsequently, descriptors making negligible contributions
(typically ai ≤ 0.03) or with standard deviations comparable to the value of the coefficient,
were excluded and the correlation repeated with the remaining descriptors. Since both the
calculated properties and experimental parameters for solvents with a common functional
group are similar, the distributions of these can’t be represented by statistics based on
the normal distribution. Thus, the decision as to whether a descriptor was making a
significant contribution to P was decided on the basis of the increase in the standard
deviation between the calculated and experimental values of P, when the descriptor was
excluded from the correlation.

3. Results

Catalan’s SPPN is based on the differences in the solvatochromism of 2-(dimethylamino)-
7-nitrofluorine and its homomorph, 2-fuoro-7-nitrofluorine (Figure 1), which show similar
solvatochromism with that of 2-(dimethylamino)-7-nitrofluorine being substantially larger.
This assumes that specific interactions, such as hydrogen bonding to the NO2 moiety will
be removed by the subtraction, leaving only effects from solvent polarity and polarizability.
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Figure 1. Structures of 2-(dimethylamino)-7-nitrofluorine and 2-fuoro-7-nitrofluorine. Figure 1. Structures of 2-(dimethylamino)-7-nitrofluorine and 2-fuoro-7-nitrofluorine.

In the analysis of SPPN polychlorinated alkanes, flexible esters and pyridine were
outliers and were excluded from the analysis. The analyses showed that only three sol-
vent molecular properties: the dipole moment, quadrupolar amplitude and polarizability,
showed significant correlations with SPPN. The coefficients recovered from the analyses are
listed in Table 1. Also listed in Table 1 are the corresponding coefficients for Kamlet, Abboud
and Taft’s π and Reichardt and Dimroth’s normalized EN

T (30). The SPPN values calculated
using the coefficients in Table 1 and solvent descriptors, Qi, recovered from properties
calculated using the density functional method are compared with experimental values in
Figure 2 (the dashed lines are one standard deviation above and below the line representing
perfect agreement); the plot using properties recovered from Hartree–Fock calculations is
similar. The values for pyridine (brown circle below the line) and the polychloroalkanes
(grey triangles) are included in Figure 2.

The values for the esters provide a cautionary example for the use of computational
methods. For rigid molecules the molecular properties recovered from computational cal-
culations are essentially determined by the method and basis set but for flexible molecules
the properties may also vary depending on the assumed molecular structure. This was
discussed previously [12] with regard to the variation of calculated properties of carboxylic
acids with rotation around the C−OH bond of the acid group. It was found that the dipole
moments and quadrupolar amplitudes of the acids depended strongly on the conformation
but that the other properties did not. It was also found that all molecular properties were
relatively insensitive to coiling of the alkyl chain of longer chain carboxylic acids.
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Table 1. Comparison of the ai values for Catalan SPP, Kamlet, Abboud and Taft’s π* and Reichardt
and Dimroth’s EN

T (30).

SPPN π* b EN
T (30) c

DF a HF DF HF DF HF

Intercept 0.63 ± 0.02 0.63 ± 0.02 0.03 ± 0.04 0.01 ± 0.05 0.05 ± 0.02 0.05 ± 0.03

apol −0.14 ± 0.04 −0.18 ± 0.03 −0.51 ± 0.07 −0.58 ± 0.07 −0.24 ± 0.04 −0.32 ± 0.05

ad−pole 0.35 ± 0.02 0.34 ± 0.03 0.63 ± 0.04 0.63 ± 0.04 0.19 ± 0.02 0.18 ± 0.03

aq−pole 0.39 ± 0.05 0.49 ± 0.06 0.68 ± 0.07 0.74 ± 0.07 0.19 ± 0.04 0.21 ± 0.04

aEDonor 0.40 ± 0.05 0.45 ± 0.05

aq+
d 0.58 ± 0.02 0.61 ± 0.03

σ b 0.05 0.05 0.11 0.11 0.07 0.07
a DF and HF indicate analyses based on properties calculated using density functional and Hartree–Fock calcula-
tion methods, respectively; uncertainties are standard deviations. b Ref. [12]; c Ref. [13]; d Charges calculated
using Hirshfeld’s model [14].
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Figure 2. Comparison of the experimental SPPN values and values calculated using the coefficients
in Table 1 (for density functional calculations). The symbols represent: blue triangles, alkanes; dark
grey triangles, chloro-alkanes; orange triangles, aromatics; yellow circles, ethers; green circles, nitriles;
light grey circles, alcohols; brown circles, amines and pyridine; dark blue circles, esters; light blue
squares, ketones; grey diamonds, amides; beige squares, S=O and P=O compounds. The solid line
represents perfect agreement and the dashed lines are 1 standard deviation above and below this.

In the case of the esters, the O=CR−O moiety will be planar while rotation around
the C−O bond is relatively free. The variations in the calculated molecular properties with
rotation around the C−O bond are shown, as normalized molecular descriptors, in Table 2;
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also shown are the corresponding SPP values calculated using the descriptors and the
coefficients reported in Table 1.

Table 2. Solvent descriptors a for esters with different molecular geometries.

Propyl Formate–SPP = 0.815

O=C−O−R
Dihedral Angle Qd–pole Qq–pole Qpol QEDonor

QEAcceptor
Qq− Qq+ SPPcalc

0◦ 0.77 0.45 0.35 0.61 0.32 0.40 0.06 0.97

60◦ b 0.66 0.34 0.35 0.60 0.37 0.38 0.06 0.91

120◦ b 0.47 0.26 0.35 0.59 0.37 0.38 0.06 0.83

180◦ b 0.40 0.33 0.35 0.59 0.29 0.41 0.06 0.84

Average 0.58 0.35 0.35 0.60 0.34 0.39 0.06 0.89

methyl acetate–SPP = 0.785

0◦ 0.78 0.20 0.27 0.66 0.29 0.42 0.08 0.91

60◦ b 0.67 0.20 0.27 0.66 0.32 0.40 0.08 0.88

120◦ b 0.46 0.32 0.27 0.67 0.32 0.41 0.08 0.86

180◦ b 0.33 0.34 0.27 0.64 0.25 0.42 0.08 0.84

Average 0.56 0.26 0.27 0.65 0.29 0.41 0.08 0.87

ethyl acetate–SPP = 0.795

0◦ 0.79 0.30 0.35 0.67 0.29 0.43 0.08 0.93

180◦ 0.36 0.38 0.35 0.65 0.25 0.42 0.08 0.84

propyl acetate–SPP = 0.795

0◦ 0.80 0.48 0.42 0.68 0.28 0.43 0.08 0.97

180◦ 0.38 0.40 0.42 0.66 0.25 0.42 0.08 0.84

butyl acetate–SPP = 0.784

0◦ 0.81 0.61 0.50 0.68 0.28 0.43 0.08 1.00

180◦ 0.37 0.48 0.50 0.66 0.24 0.42 0.08 0.85

methyl salicylate–SPP = 0.836

0◦ 0.19 0.70 0.65 0.86 0.47 0.40 0.22 0.85

60◦ c 0.27 0.61 0.64 0.85 0.42 0.40 0.24 0.84

120◦ c 0.34 0.53 0.64 0.85 0.42 0.40 0.25 0.83

180◦ c 0.44 0.51 0.65 0.87 0.48 0.37 0.19 0.84

Average 0.31 0.59 0.64 0.86 0.45 0.39 0.23 0.84
a 0 ≤ Qi ≤ 1; calculated from molecular properties using Equation (2); molecular properties from density functional
calculations, Qq− and Qq+ are calculated using Hirshfeld’s model; b from single point calculations following
rotation of the O=C−O−R dihedral angle of the optimized 0◦ structure; c 60◦ and 120◦ results are from single
point calculations; angles are rotation of the benzene ring with respect to the O=CO−C plane; 0◦ corresponds to
the OH group of the benzene ring being on the same side as the COC oxygen and 180◦ to the OH being on the
side of the C=O.

Again, it can be seen that, while the variations are much smaller than those for the
carboxylic acids, it is only the dipole moments and quadrupolar amplitudes that vary
significantly with rotation around the C−O bond while the other molecular properties are
relatively constant.

Results for methylsalicylate are included in Table 2, since rotation of the benzene ring
progressively moves the O−H in the 2 position on the benzene ring away from the C−O−C
oxygen to the C=O oxygen. In this case, the dipole moment essentially doubles between
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the 0◦ and 180◦ rotamers but, in the calculation of SPPN, this is almost exactly compensated
by the corresponding increase in the quadrupolar amplitude.

4. Discussion

Like SPPN, both π* and EN
T (30) show positive dependences on the solvent dipole me-

ments and quadrupolar amplitudes and a negative dependence on the solvent molecule’s
polarizability. Each, however, shows an additional contribution.

In the case of EN
T (30), the additional contribution is from the charge on the most

positive hydrogen atom on the solvent molecule and reflects hydrogen bonding at the
pendant oxygen atom of the betaine dye used to define the scale. Of course, this is well
known and was used by Kamlet and Taft to define their α scale of hydrogen bond acidity [4].

The reason for dependence of π* on the energy of the electron donor orbital of the
solvent molecule is less clear. Both Catalan and Kamlet and Taft considered the possibility
of hydrogen bonding to the NO2 group on the aromatic probe molecules, but if this were
the case one would expect a correlation with the charge on the most negative atom of
the solvent molecule, which is the dominant contribution to measures of hydrogen bond
basicity (Kamlet and Taft’s β [9,12], Gutmann’s donor number [9], Abraham’s B [17] and
Catalan’s SB [10]).

Leaving these aside, it is interesting that all three parameters show positive correlations
with the solvent’s molecular dipole moment and quadrupolar amplitude and a negative
correlation with the solvent molecule’s polarizability.

Since these are intended as measures of a solvent’s polarity and polarizability, it is
reasonable to associate the polarity with the dipole moment and quadrupolar amplitude.
That is, the polarity is related to the intensity of the permanent charges imbedded in
the solvent.

The basis of solvent parameters based on solvatochromism is that the equilibrium
solvation of the ground state interacts with the excited state of the probe (By the Franck–
Condon principle, the time scale of the electronic transition is vastly less than the time
scale of molecular motions, so that, initially, the excited state interacts with the ground
state solvation shells.) and so, if, for example. the excited state of the probe has greater
charge separation than the ground state (This situation leads to an inverse relationship
between the solvent parameter and the energy of the electronic transition; that is, the larger
the energy gap the smaller the solvent parameter. The reverse situation, where the ground
state has greater charge separation leads to a direct relationship; that is, to parameters
that increase as the transition energy increases.), it will interact more strongly with the
surrounding solvation shells, lowering the excitation energy.

It is implicit in the design of all based on solvatochromism, that all solute–solvent
interactions will be stronger with the form of the solute with the greatest charge separa-
tion. This assumption is generally found to be correct; thus, basicity scales are positively
correlated with the partial charge on the most negative atom and the energy of the donor
orbital [9,10,12,17] and acidity parameters are positively correlated with the partial charge
on the most positive hydrogen atom [10,11].

As is clear from Table 1, the polarity/polarizability parameters show positive corre-
lations with the dipole moment and quadrupolar amplitude, measures of the intensity of
charges imbedded in the surrounding solvent, but negative correlations with the molecular
polarizability of the solvent. That is, increasing polarizability leads to decreases in SPPN,
π* and EN

T (30).
The expectation that polarizability should correlate positively with these experimental

parameters essentially arises from the assumption that charge–induced dipole interactions
will dominate. However, solvent molecules may also interact with the probe molecules by
London forces, in which case the stronger interaction is likely to be with the form with the
lower charge separation, the ground state in the above case, where the excited state has the
greater dipole moment. The observed negative correlation between SPPN, π* and EN

T (30)
the polarizability of the solvent molecules, argues that this latter interaction dominates.
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Whatever the explanation, SPPN, π* and EN
T (30) all show the same negative correlation

with the solvent molecular polarizability, which makes their use in linear free energy
relationships problematic. Thus, solvents with equal values of SPPN, for example, can have
quite different polarizabilities, compensated by differences in the dipole moments and/or
quadrupolar amplitudes.

5. Conclusions

The analysis of SPPN shows that, like Kamlet and Taft’s π* and Reichardt’s EN
T (30),

shows positive correlations with the molecular dipole moment and quadrupolar amplitude
of solvent molecules and a negative correlation with the molecular polarizability.

Since these parameters are measures of the solvent polarity and polarizability it is
reasonable to ascribe the solvent polarity to the permanent charges on the solvent molecules.
In the approach used here, the dipole moment and quadrupolar amplitude are used as
measures of the intensity of these charges. Thus, the solvent polarity is determined by
the permanent charges in the solvent molecule and acts by non-specific interactions of
these permanent charges with permanent charges on the solute. In contrast, solvent
polarizability is determined by the polarizability of the individual solvent molecules and
involves interactions with the non-polar parts of the solute through London forces.

It seems surprising that these experimental parameters reflect London rather than
the expected charge/dipole–induced dipole interactions. However, the experimental
parameters are based largely on probe molecules containing one or more aromatic rings,
generally one for π* [6], two for SPPN [7] and six for EN

T (30) [8], and so are likely to interact
well through London forces.

The observation that the polarity and polarizability act on the experimental parameters
in opposite directions, increasing polarity increasing the values of the parameter while
increasing polarizability decreases the values creates an obvious difficulty in the use of
these parameters in linear free energy relationships, for example.
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Appendix A

The quadrupolar amplitude is calculated as A =
√

∑ qijqij I = x, y, z and j = x, y, z,
where the qij are the components of the traceless quadrupole. Complex charge distribu-
tions, such as those of polyatomic molecules, are commonly represented by a series of
superimposed point objects. The first is a point charge (the net charge), which is a scalar
quantity, the second is the dipole, which is a vector and the third is the quadrupole, which is
a tensor. Just as the dipole has no net charge, the quadrupole has no net moment. The dipole
moment and quadrupolar amplitude are used here simply as quantitative measures of the
scale of charge centers imbedded in the bulk solvent, the “intensity” of embedded charges.
The simplest way to see the necessity for both the dipolar and quadrupolar contributions is
to consider CO2, which, despite having partial charges on the O and C atoms has a zero
dipole moment, but a nonzero quadrupolar amplitude.
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