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Abstract: A miniaturized electrochemical sensor was developed for the remote detection of chemical
warfare agent (CWA) simulants. To facilitate drone-based remote sensing, this present study focuses
on advancing the miniaturized and compact electrochemical sensor for monitoring two CWA simu-
lants, diisopropyl fluorophosphate (DFP) and O,S-diethylmethylphosphonothioate (O,S-DEMPT).
The differential pulse voltammetry (DPV) signal was processed, and the DPV signature features were
extracted on the basis of the redox properties associated with the absence and the presence of DFP
and O,S-DEMPT. Upon the addition of 0.10 equivalence of DFP or O,S-DEMPT, a shift in potential
(E) of ~0.13 V was recorded. The limit of detection (LOD) was calculated to be 0.25 µM (0.046 ppm)
and 0.10 µM (0.017 ppm) for DFP and O,S-DEMPT, respectively. These results were validated using
a portable Palmsens Emstat HR potentiostat, which corroborated the results obtained using a lab
benchtop potentiostat. Additionally, Boolean logic (“AND” operation) was implemented for future
drone technology deployment. This advancement enables the fabrication of a networked device
capable of autonomously executing tasks without constant oversight.

Keywords: remote sensing; detection of CWA simulants; miniaturized potentiostat; differential pulse
voltammetry (DPV); Boolean logic; unmanned aerial vehicles (UAVs)

1. Introduction

Chemical warfare agents (CWAs) are substances designed and synthesized to harm
hosts deliberately. These compounds are classified into several categories based on their
mechanisms of action. Examples include nerve agents (e.g., G-agents and VX), blister
agents (e.g., nitrogen and sulfur–mustard), choking agents (e.g., phosgene and chlorine
gas), and blood agents (e.g., HCN and arsine) [1,2]. Several mechanisms can remove
CWAs; for example, the hydrolysis of the organophosphate to phosphoric acid, photolysis,
oxidation, or microbial degradation make CWAs less toxic and easily wash them away [3,4].
Consequently, ensuring national security and public safety necessitates detection methods
for the selective and sensitive monitoring of CWAs. Currently, there are many analytical
approaches available for the detection of CWAs, for example, gas chromatography coupled
with mass spectrometry (GC-MS) [5], ion mobility spectrometry (IMS) [6], colorimetric
sensor arrays [7,8], infrared detectors [9], photoionization [10,11] and flame ionization
detectors [12], biosensors [7], and surface acoustic wave sensors [13,14]. These techniques
have their advantages. For example, the instrumentation setup can be simple and relatively
inexpensive. These methods can perform rapid analyses of many different analytes, and
the detection limit and sensitivity can be in the ppb to ppt range. Still, they are not
conducive to remote sensing and point of care testing (POCT) applications, as they are
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difficult to transport and require ongoing monitoring. Often an expert is needed to interpret
the results.

There has been a lot of interest in the development of drones or unmanned aerial
vehicles (UAV), which are equipped with sensing chemical payloads that replace the use of
heavily equipped analytical instrumentation for the detection of CWAs [15,16]. Utilizing
drone technology in CWA detection provides several advantages, including enhanced
safety measures, increased precision, faster responses, the ability to monitor real-time
data, and improved scalability. It can facilitate seamless integration with electrochemical
techniques. Additionally, smartphones or laptops can be seamlessly added to the set for
onsite monitoring.

Sensors based on electrochemical processes utilize a number of voltammetric tech-
niques, for example, cyclic voltammetry (CV) [17,18], differential pulse voltammetry
(DPV) [19], and square wave voltammetry (SWV) [14]. An advantage of using DPV
instead of CV is improved sensitivity because the applied pulse potential waveform can
substantially deduct the background and the charging or capacitive current. Instead of
using a benchtop electrochemical workstation, great efforts have been made over the years
to develop compact, affordable, and effective miniaturized potentiostats for in situ analy-
sis [20,21]. The miniaturized potentiostat offers easier connectivity, is customizable, has
better energy efficiency and simplified operations, and is portable. One of the earliest
miniaturized, low-cost potentiostats that use Microchip Technology ATxmega32E5 micro-
controller was developed by Adams et al. [16]. Alper et al. [15] developed a USB-powered
potentiostat for the sensitive detection of nucleic acids and their biomolecular interactions.

The implementation of logic is the fundamental concept that underpins all electronic
digital computers via the performance of arithmetic operations using Boolean opera-
tions [22]. Many chemical recognition events using colorimetric and fluorescence mecha-
nisms have been shown to undergo AND [23], OR, and XOR gate operations [24]. Despite
the plethora of optical spectroscopic techniques utilized in logic, surprisingly there are
only a handful of electrochemical examples of Boolean logic that have been reported, and
these are mainly in the biosensing community [25–27]. To the best of our knowledge, this
logic approach has not been utilized with electrochemistry and low molecular weight
fluorescent (LMWF) compounds that are not larger than 1000 Da [28] for the detection of
organophosphate targets.

2. Materials and Methods
2.1. Reagents

All chemicals, including silver nitrate, tetrabutylammonium perchlorate (TBAP), diiso-
propyl fluorophosphate (DFP), and O,S-dimethylmethylphosphonate (O,S-DEMPT), in this
study were purchased from Sigma-Aldrich, St. Louis, MO, USA and used without further
purification. The coumarin derivative probe 1 was synthesized according to a procedure
from the literature [29,30]. Glassy carbon electrode (GCE), silver wire, and platinum (Pt)
mesh were obtained from CH Instruments, Inc., Austin, TX, USA.

2.2. Electrochemical Measurements

Electrochemical measurements were carried out on a CH Instruments Model 660A
(CHI 660A, Austin, Texas, USA) using a three-electrode system consisting of a glassy carbon
electrode (GCE ~3 mm diameter) as the working electrode, a Ag/Ag+ (10 mM AgNO3
with 0.10 M TBAP in acetonitrile (MeCN)) as the reference electrode, and a Pt wire as
the counter electrode. The GCE was first polished with 0.05 µm alumina powder, then
ultrasonicated with distilled water, and then dried with a stream of N2 gas before each
experiment. The solution was degassed with N2 gas for 5 min to remove dissolved oxygen
so that its reduction background signal could be avoided. A 0.6 mM probe 1 dissolved in
MeCN with 0.10 M TBAP as the electrolyte was used.
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2.3. EmStat4s HR Postentiostat

The miniaturized EmStat4s HR potentiostat was purchased from PalmSens BV (Houten,
The Netherlands), is housed in an aluminum body with dimensions of 72 × 55 × 26 mm,
and weighs approximately 30 g. The setup, which includes the EmStat4s HR development
board and an electrochemical work setup of the potentiostat, is shown in the photographs
in Figure 1. The EmStat4s HR utilizes the Arduino MKR microcontroller (MCU) and the
OEM configuration standard.
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Figure 1. EmStat4s HR development board (left) and electrochemical work setup of the potentiostat (right).

2.4. Electrochemical Logic Gate Operation

The electrochemical logic gate operation was conducted using a three-electrode system,
as described in Section 2.1. The electrolyte solution was filled with 0.6 mM molecular probe
1, one equivalence of DFP, and 0.1 mM ferrocene, with a total volume of 3 mL in MeCN
containing 0.1 M TBAP (supporting electrolyte). For the DPV runs, the potential was
applied between 0 and 1.5 V with 500 ms intervals at a scan rate of 50 mVs−1 in which
input X1 is molecular probe 1, input X2 is DFP, and output Y is ferrocene. Ferrocene acts
as the label-free redox probe in the reaction [31]. If both the molecular probe 1 and the
DFP molecule are present, then the changes in the electrochemical reaction are noted as
the output signal (Y). In the absence of either one, the signal is off, and only the ferrocene
signal is detectable, which is represented as “0”.

3. Results and Discussion

The coumarin–enamine (probe 1) was synthesized using a multistep synthesis, whereby
the N N-dipropylanaline part of the molecule was incorporated into the organic molecule
to help with solubility in the organic media (MeCN), which was used in the electrochemical
work. The oximate moiety, a supernucleophile, can undergo a fast chemical reaction with
organophosphates to form an organophosphate adduct. The synthesis of probe 1 and its
photophysical property changes that occur upon the addition of organophosphates, for ex-
ample, diisopropyl fluorophosphate (DFP), are based on previously published work [29,30].
See Figure 2 for the molecular structures of probe 1, DFP, and O,S-DEMPT that were used
in this study.
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Figure 2. Structures of (a) oxime molecular probe 1 and (b) nerve agent mimics DFP and O,S-DEMPT.

Before we discuss the electrochemical response, it is appropriate to discuss the fluores-
cence mechanism that is utilized in these systems. When the fluorescence band is quenched
(known as the “off” state), the excitation of the fluorophore component (which, in this work,
is the coumarin–enamine organic framework shown in Figure 2) is hindered. The “off” state
occurs because the oxime functional group (i.e., the reactive functional group, Figure 2a)
loses a proton in the electrochemical process (Scheme 1). The resulting oximate anion can
donate an electron to the fluorophore. Conversely, when the oximate anion reacts with an
organophosphate, the excited state of the fluorophore results in an observable emission
signal as the new adduct perturbs the thermodynamically favorable photoinduced electron
transfer (PET) process, thus producing the “on” state [32]. This mechanism can be described
using molecular orbital diagrams, whereby the electrons in the reactive functional group’s
(Figure 3) frontier molecular orbitals (FMO = HOMO + LUMO) are higher in energy than
the electrons in the HOMO in the excited state of the fluorophore (the coumarin–enamine
organic framework). The electrons from the reactive functional group can be transferred to
the HOMO of the excited state of the fluorophore, preventing the electron in the LUMO
from falling back to the lower-energy HOMO level, thereby quenching the signal. On
the contrary, when the reactive group phosphorylates the organophosphate molecule, the
FMO of the fluorophore*–adduct is lower in energy; thus, no electron transfer can take
place, and the excited state electrons in the LUMO of the fluorophore*–adduct can relax
and return to the lower-energy HOMO level, resulting in the emission of a photon and
a visible emission band. This fluorescence process is known as a turn “on”–turn “off”
fluorescence mechanism.
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Figure 3. (a) The chemical makeup of molecular probe 1 of the free receptor. The photoexcited free
state (fluorophore*) produces the “off” state. A simplified molecular orbital diagram shows the
relative energy levels of the fluorophore* and the FMO (shown as HOMO’). The thermodynamically
more stable PET diagram shows that the HOMO’ of the reactive functional group is higher in energy
than the HOMO of the fluorophore*. (b) The electron transfer from the fluorophore–adduct is
hindered, preventing the PET process, as shown by a shift of the HOMO’ of the fluorophore–adduct
to a lower energy. Adapted from reference [32].

Motivated by the fluorescence response and the elegant use of the fluorescence PET
mechanism used in molecular receptor design, we now extend our approach to investigate
the electrochemical characteristics of probe 1. To fulfill the needs of remote sensing and
point-of-care testing, some thought is required in the experimental setup. For example, the
system needs to be miniaturized; therefore, reducing the weight is imperative. Moreover,
networking capabilities and communication also need to be taken into account when
decreasing the capabilities from the lab bench situation so that this sytem can be integrated
into drone technology (remote sensing). To move in this direction, we chose to use a
commercially available PalmSens EmStat4s HR miniaturized USB-powered potentiostat to
acquire the electrochemical data because we believe it will be sufficiently lightweight and
produce reliable and reproducible results compared with those obtained from a laboratory
standard CHI 660A potentiostat.

3.1. EmStat4s HR Postentiostat Validation

Before any studies can be carried out using the EmStat4s HR potentiostat, it is essential
that this miniature device is validated using the benchtop CHI 660A electrochemical
workstation. This was carried out using a well-known redox couple, potassium ferricyanide
K3[Fe(CN)6] and potassium ferrocyanide K4[Fe(CN)6], using cyclic voltammetry (CV), as
shown in Figure 4a.
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Figure 4. (a) Comparison of CHI 660A (black dotted line) and EmStat4s HR potentiostat (red line).
CV studies of 5.0 mM K3[Fe (CN)6] in 0.1 M KNO3 aqueous solution at a GCE with a scan rate
of 50 mVs−1. (b) DPV studies of 0.6 mM probe 1 with 0.1 M TBAP in MeCN at a GCE with the
parameters listed in the text.

The cyclic voltammograms were obtained at a GCE from a 5.0 mM K3[Fe(CN)6]
aqueous solution containing 0.1 M KNO3 (supporting electrolyte). The potential was run
between 0.8 V and −0.012 V at a scan rate of 50 mVs−1. Under identical experimental
conditions, both the CHI 660A (benchtop) and the EmStat4s HR (portable) potentiosats
produced consistent results, generating identical potential–current responses. This suggests
that the EmStat4s HR potentiostat can generate precise and accurate measurements. Fol-
lowing this effective validation, the electrochemical property of the molecular probe 1 was
studied using the Emstat4s HR. A solution containing 0.6 mM probe 1 and 0.10 M TBAP
(the electrolyte) was prepared in MeCN using a GCE electrode. As our studies were carried
out in organic media, a Ag/Ag+ (10 mM AgNO3 with 0.10 M TBAP in CH3CN) reference
electrode was used, which is common for electrochemical studies. Aqueous-based reference
electrodes such as Ag/AgCl2/KCl or SHE can contaminate the electrochemical system and
narrow the potential window. The following DPV parameters were used for recording the
current responses: initial potential = 0 V, final potential = 2.0 V, pulse period = 0.75 s, pulse
width = 0.05 s, sample width = 0.01 s, and amplitude = 0.075 V. The DPV voltammograms of
probe 1 from the two potentiostats are shown in Figure 5b, and the probe’s four oxidation
peak potentials are summarized in Table 1. The oxidation peaks I, III, and IV are assigned to
the electro-oxidation of the tertiary amine, the oxime, and the secondary amine functional
groups in probe 1, respectively. A small post-wave after peak I (i.e., peak II) is most likely
produced from the strongly absorbed reactant probe 1 on the GCE. Again, as expected, the
data obtained from the CHI 660A match well with those from the EmStat4s HR.
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Figure 5. DPV voltammograms of 0.6 mM probe 1 after addition of various equivalent concentrations
of DFP simulant acquired with (a) CHI 660A and (b) EmStat4s HR potentiostats.
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Table 1. Comparison of the electrochemical oxidation potentials of CHI 660A and EmStat4 HR
instruments before and after the addition of nerve agent simulants.

Instrument Compound
Eox (V vs. Ag/Ag+)

I II III IV V

CHI 660A

Probe 1 0.72 0.86 1.29 1.64

DFP 0.72 0.86 1.16 1.59

O,S-DEMPT 0.72 0.86 1.16 1.60 1.86

EmStat4s HR

Probe 1 0.72 0.86 1.28 1.63

DFP 0.72 0.86 1.15 1.58

O,S-DEMPT 0.72 0.86 1.15 1.59 1.86

3.2. Electrochemical Detection of CWAs

As shown in Figure 5, in both the CHI 660A and EmStat4s HR potentiostats, oxidation
peak III exhibits a subtle shift of ~0.13 V, transitioning from 1.29 V to 1.16 V with the
addition of the nerve agent mimic DFP. This change is due to the formation of a cova-
lent bond between the oxime of probe 1 and the phosphorous center of DFP because of
phosphorylation. In addition, oxidation peak IV shows a marginal shift of ~0.05 V from
1.64 V to 1.59 V, which is due to the disruption of the structure of the enamine moiety
in probe 1 by free F− ions from the DFP simulant [29]. As shown in Figure 6, upon the
addition of the thiol-containing nerve agent mimic O,S-DEMPT, a new distinct peak V,
most likely as a result of the thiol oxidation, emerged at 1.85 V. Oxidation peak III also
showed a similar shift of ~0.13 V upon the addition of O,S-DEMPT, which is similar to
the results observed previously with the DFP simulant. Note that the apparent current
increases with the increasing concentration of both the simulants, which is probably the
result of the baseline shifts. Note also that the oxidation peak potentials for peaks I and
II remain unchanged with the addition of both nerve agent simulants. This behavior is
consistent with the proposed “oxidation–phosphorylation” reaction mechanism illustrated
in Scheme 1 in which the phosphorylation reaction occurs only after the oxidation of the
oxime group in probe 1. That is also why slight changes in the peak potentials of peaks III
and IV are seen in Figures 5 and 6 after the addition of the simulants.
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Figure 6. DPV voltammograms of 0.6 mM probe 1 after the addition of various equivalent concentra-
tions of O,S-DEMPT simulant acquired with (a) CHI 660A and (b) EmStat4s HR potentiostats.

3.3. Sensor Sensitivity

The sensitivity of the proposed sensor was analyzed with eight consecutive DPV
measurements using the EmStat4s HR potentiostat, and the apparent peak current was
taken from peak III at various concentrations of DFP or O,S-DEMPT that were added
to probe 1. As shown in Figure 7, the current increases linearly with increases in the
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concentrations of DFP (Figure 7a) or O,S-DEMPT (Figure 7b), with a linear regression
equation of Ip = 2.124x + 14.07 (R2 = 0.9704) for DFP and Ip = 3.354x + 13.05 (R2 = 0.9947)
for O,S-DEMPT. The detection limit (LOD) of the designed sensor was calculated using
the formula LOD = 3s/m, where s is the standard deviation and m is the slope of the
line. Accordingly, an LOD of 0.25 µM (0.046 ppm) for DFP and 0.10 µM (0.017 ppm) for
O,S-DEMPT was estimated. In humans, the lethal dosage (LD50) was estimated to be
6 ppm for DFP and 8210 ppm for O,S-DEMPT. The calculated LOD is significantly lower
than the lethal dosage determined by the National Institutes of Health (NIH) [33]. The
reproducibility of the proposed sensor was studied by repeating the measurements of the
same analyte solution five consecutive times, resulting in an average relative standard
derivation (RSD) value of about 2.31%. Additionally, the same experiment was replicated
at five distinct electrodes, which provided an RSD value of 3.56% for DFP mimic.
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Figure 7. Linear calibration curves for the peak current III vs. the concentration of (a) DFP and
(b) O,S-DEMPT.

3.4. Logic Gate

Electrochemical logic gates can be constructed by incorporating the added simulant as
an input signal and applying the resulting current responses in relation to potential sweep
as output signals. These operations facilitate the functionality of traditional computer mi-
croprocessors, simplifying the design of microprocessors that can seamlessly integrate into
drones. Additionally, the precise combination of electrochemical sensors and logic gates
could rapidly assess the impacted site by converting output signals into straightforward
electronic signals through an on/off programmed system. In conventional electrochem-
ical logic gate systems, species like DNA sequences, redox enzymes, and nanomaterials
were employed to label biomolecules or targeted species. However, immobilization and
chemical labeling on the electrodes can decrease their chemical stability and reaction
efficiency [34–38], limiting their applicability in chemical computations. Thus, the devel-
opment of a molecular logic gate that operates without the need for labels, especially one
capable of handling various inputs, opens up new possibilities for practical applications.
Here, we propose the use of the coumarin–enamine probe 1 we previously synthesized
for electrochemical detection of DFP and O,S-DEMPT and propose an “AND” logic gate
operation for their future implementation in drone technology. This advancement enables
the fabrication of a networked device capable of autonomously executing tasks in large
spaces without constant oversight.

Recently, logic gate operations coupled with drone technology to extend the appli-
cations of remote sensing sensors have attracted much attention in the sensor commu-
nity [39,40]. To enhance the capabilities of our electrochemical sensor, we aimed to integrate
the proposed sensing system with an AND logic gate (X). In this context, we selected molec-
ular probe 1 as Input 1 (X1) and the DFP mimic as Input 2 (X2). For the output response, we
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opted to use ferrocene (Y), a standard redox probe that is always present in the test solution
but does not disrupt the electrochemical sensing system (Figure 8).
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Figure 8. The AND logic gate configuration of the proposed sensor.

When there is an interaction between molecular probe 1 and the DFP mimic, the
resultant current response is represented as output “1”. Conversely, if there is no interaction
between molecular probe 1 and the DFP mimic, as the DFP mimic is not electrochemically
active, the current response is represented as “0” only if the ferrocene signal is present.
If only the molecular probe or the DFP simulant is present, the current response is again
represented as “0” (Table in Figure 8).

As shown in Figure 9, at input (0,0), it solely represents the current response of
ferrocene with a peak potential of 0.40 V. At input (0,1), it represents the absence of any
redox activity from DFP, with only ferrocene oxidation occurring. At input (1,0), both
ferrocene and the molecular probe exhibit oxidation, but ferrocene does not interact with
probe 1 (see DPV peaks of probe 1 in Figure 3b for comparison). At input (1,1), when both
probe 1 and 0.75 equivalence of DFP are present, the ferrocene peak remains the same.
However, the interaction between the probe and target mimic DFP results in a potential
shift (∆Ep) of ~0.11 V, which is accompanied by an increased current response.
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4. Conclusions

In this work, we conducted a comprehensive validation and examination of the
electrochemical measurements of the coumarin–enamine molecular probe, particularly its
interactions with chemical warfare agent mimics, using a standard benchtop CHI and a
miniaturized EmStat4s HR potentiostat. Additionally, we established an AND logic gate
configuration that operates as a single networked device. The developed sensor shows a
high level of sensitivity, with detection limits of 0.25 µM (0.046 ppm) for DFP and 0.10 µM
(0.017 ppm) for O,S-DEMPT.

Since 2006, the number of published manuscripts that utilize unmanned aerial vehicles
(UAVs), i.e., drones that have the capabilities of sensing various analytes in the fields of
atmospheric chemistry [41], industrial monitoring of emissions [42], and precision agricul-
ture [43], has exponentially grown. This technology has emerged as an alternative approach
or a complementary method to ground-based sensors or the sending of samples back to a
laboratory. There is certainly a need to attach sensing platforms to drones. Yet, the field
is emerging, and many sensors that have already been fitted to the hardware of a UAV
are still in the proof-of-concept phase, and further refinement and validation are needed.
Most of the current sensors that have been implemented into drone technology are either
optical sensors [44] or miniature mass spectrometers [45] or have infrared capabilities [46].
By successfully demonstrating that reliable electrochemical results can be produced using
a miniaturized potentiostat, we believe that this contribution can advance the field by
incorporating a different sensing paradigm onto UAVs and the field writ large. Therefore,
our ultimate goal is to envision a portable and ultrafast chemical warfare agent detection
system that can be integrated with UAVs using this electrochemical approach. There is still
room for further refinement of the designed sensor to enhance its selectivity and sensitivity
in the detection of chemical warfare agents. Our forthcoming work will primarily focus
on integrating diverse approaches, including the utilization of the electrogenerated chemi-
luminescence (ECL) technique, which could provide faster and more sensitive analysis
by converting electrochemical current signals to light signals or vice versa. We will also
explore the use of molecularly imprinted polymer techniques to improve selectivity by
developing target-specific thin films.
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