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Abstract: Magnesium is an essential element with a pleiotropic role in human biology. Despite tight
intestinal and renal regulation of its balance, insufficient intake can finally result in hypomagnesemia,
which is a proxy of intracellular deficiency. Conditions such as diabetes, cancer, and infections are
often associated with hypomagnesemia, which mostly predicts an unfavorable outcome. The effects
of hypomagnesemia can either be direct and include neurological and cardiovascular symptoms or
indirect, taking a mechanistic role in inflammation, endothelial dysfunction, and oxidative stress. The
indication for intravenous magnesium as a treatment of torsades de pointes and pre-eclampsia is
unrefuted, but new indications of peroral or intravenous supplementation, albeit with less supporting
evidence, have emerged suggesting, respectively, an attenuation of vascular calcification in chronic
kidney disease and improved rate control in atrial fibrillation. Other potential beneficial properties of
magnesium, which were claimed by observational data, such as lipid lowering and renal protection,
were not, or only partially, investigated in randomized controlled trials. Thus, the role of peroral
supplementation of mild chronic asymptomatic hypomagnesemia should be separated from the more
targeted prescription of magnesium in specific study populations. (Severe) hypermagnesemia is po-
tentially life-threatening and occurs almost uniformly in subjects with severe renal failure exposed to
either supplements or to magnesium-containing cathartics or antacids. Moderate hypermagnesemia
is very common in pre-eclamptic women treated with intravenous magnesium. For most (but not all)
studied endpoints, mild hypermagnesemia yields a survival benefit. Long-lasting concerns about the
potential negative effects of mild hypermagnesemia on bone physiology and structure have so far
not been unequivocally demonstrated to be troublesome.
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1. Introduction

Magnesium is the second most abundant intracellular cation, which acts as a cofactor
of >600 enzymes in human biology. It is therefore involved in many essential cellular
processes, which include glycolysis, oxidative phosphorylation, transmembrane ion trans-
port, signal transduction, and protein and deoxyribonucleic acid (DNA) synthesis and
polymerization [1,2]. Almost the entire magnesium content of the body (25 g) is located
in bone (60%), where it is incorporated into hydroxyapatite and, to a lesser degree, in soft
tissue (38%), lessening its exchangeability. The small extracellular magnesium fraction is
protein-bound (20–30%) and complexed to anions, including bicarbonate, citrate, sulfate,
or phosphate (5–15%) [1,2]. Of the serum fraction of magnesium, more than half (55–70%)
is ionized and thus biologically active.

The increased interest in magnesium is illustrated by an exponential rise in publica-
tions during the last decade. This is largely driven by accumulating evidence of a potential
role of hypomagnesemia (mild if serum Mg < 0.7 mM and severe if serum Mg < 0.4 mM) or,
more accurately, magnesium depletion in the development of cardiovascular disease [2,3].
Also, the list of etiologies of magnesium deficiency is still expanding. Novel hereditary
causes of hypomagnesemia are being deciphered in tight conjunction with the exploration
of the various pathways of renal tubular magnesium transport [4,5]. The causal role of
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commonly used drugs such as proton pump inhibitors or, more rarely, cetuximab (mono-
clonal antibodies against epidermal growth factor receptor) adds to the increasing list of
drugs associated with decreased magnesium absorption or enhanced urinary loss. At least
as important from a general population perspective is an observed deficient magnesium
intake, not only in adults but also in adolescents following a high consumption of refined
food with simultaneous insufficient intake of whole grains and of green leafy vegetables,
with magnesium being a constituent of chlorophyll [6–8]. In vitro data and a relatively
low number of clinical trials performed so far hinted at a beneficial effect of magnesium
supplementation on intermediate endpoints such as endothelial dysfunction, telomere
shortening as a proxy of aging, intima media thickness, and vascular calcification in chronic
kidney disease (CKD) patients [2,9–13]. Low magnesium intake and/or hypomagnesemia
is associated with poor outcomes, especially due to cardiovascular events and heart failure
or with mortality in diabetes next to sarcopenia, acute kidney injury, CKD progression,
hypertension, diabetes, infections, cerebrovascular disease including stroke, cancer, osteo-
porosis, and fractures [14–26]. Observational cohort studies remain, however, very prone
to selection bias since high magnesium intake reflects a healthier lifestyle, less sedentarism,
more leanness, and so on. Also, questions concerning the ideal magnesium formulation
and the role of Sodium-Glucose Transport Protein-2 (SGLT2) inhibitors in the therapeutic
approach of hypomagnesemia are still unanswered [27]. Finally, the significance of hy-
permagnesemia (mild if serum Mg > 1.2 mM and severe if serum Mg > 1.9 mM) remains
more enigmatic: a more favorable outcome is commonly reported for mild hypermagne-
semia although U-shaped curves have also been described for outcomes such as cancer or
mortality [2,28–30]. And so, many questions concerning the biological relevance of altered
magnesium status until now remain unanswered.

2. Hypomagnesemia
2.1. Pathophysiology

About 80 to 90% of the daily food intake of magnesium is absorbed via non-saturable
paracellular concentration-driven passive uptake, especially in the jejunum and, to a lesser
degree, the colon [1]. The potentially saturable active transcellular transport is restricted
and occurs across the colonic channels transient receptor of melastatin (TRPM) 6 and 7 [1].
Both hypomagnesemia by itself and active vitamin D promote intestinal magnesium ab-
sorption, which can be upregulated from 40 to about 80% in case of magnesium deficiency.
Most of the filtered magnesium load in the kidney is reabsorbed in the thick ascending limb
(TAL) of Henle (70%) across an electrochemical gradient via the tight junction channels
claudin-16 and -19 [1]. Next to hypervolemia, hypermagnesemia and hypercalcemia also
inhibit the renal magnesium absorption at the level of the TAL of Henle via stimulation
of the calcium-sensing receptor (CaSR), while hyperparathyroidism increases the renal
magnesium absorption [31,32]. The remainder of the tubular absorption occurs in the
proximal tubule (10–25%), while the distal convoluted tubule (DCT) is responsible for the
regulation of the final urinary magnesium output via the adaptation of active absorption
via TRMP6 [1]. In magnesium deficiency or hypomagnesemia, the fractional urinary mag-
nesium excretion can be adapted and can decrease to as low as 0.5%. The dysregulation of
this delicate balance of renal tubular magnesium homeostasis can trigger hypomagnesemia.
Drugs interfering with intestinal and/or renal magnesium absorption can accordingly play
a causal role, whereby some drugs such as epidermal growth factor receptor (EGFR) in-
hibitors cetuximab and cisplatinum downregulate the expression of TRPM6 in the DCT. In
patients exposed to calcineurin inhibitors, and especially tacrolimus, a dose-dependent in-
hibition of TRPM6 expression at the level of the DCT leads to enhanced urinary magnesium
wasting and mild to moderate hypomagnesemia in half of all kidney transplant recipients
treated with tacrolimus [33]. In rodents, estrogens increase the expression of TRPM6 in
the DCT, and ovariectomized rats have enhanced urinary magnesium loss, but the role
of sex hormones in humans is largely unexplored [34]. PPI impairs intestinal magnesium
absorption as a higher luminal pH decreases its solubility [35]. PPI, moreover, lowers
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the expression of claudin channels and increases the transepithelial electrical resistance
in the small intestine [35]. In the colon, decreased activity of TRPM6 is partially driven
by changes in microbiota [35]. These mechanisms explain why, in most studies, PPI users
have a twofold risk of developing hypomagnesemia [35]. PPI-induced hypomagnesemia
can be potentiated by concomitant intake of diuretics (loop diuretics and thiazides which,
respectively, target the TAL and DCT segments) and lead to sporadically severe and po-
tentially life-threatening hypomagnesemia [1,36]. Hypomagnesemia is not uncommon
upon intake of resins but also of newer potassium binders such as patiromer, where it
was reported in 7% of all patients [37,38]. Also, proteinuria results in renal magnesium
wasting and is associated with refractoriness to correct hypomagnesemia by magnesium
supplementation [39].

Gastrointestinal causes of hypomagnesemia are not uncommon and include deficient
intake or intestinal malabsorption of magnesium with incomplete renal compensation. In
this regard, determination of fractional urinary magnesium excretion on a morning voiding
sample can demonstrate urinary magnesium wasting if >2%, but only in the setting of a
normal kidney function. Magnesium deficiency can occur even with normal serum magne-
sium concentrations, which reflects the limitations of serum magnesium as a proxy of total
body magnesium content. Some authors have claimed that the biologically active ionized
serum magnesium fraction is a more specific marker of magnesium status and correlates
better with blood pressure measurements and other clinical assessments [40]. Altogether,
the clinical value of the measurable ionized magnesium fraction remains undefined, as
reflected by its ongoing omission even from recent clinical trials [41–44]. A laborious
intravenous magnesium tolerance test could theoretically aid in diagnosing magnesium
deficiency despite normomagnesemia, provided the absence of renal magnesium wasting
and/or renal dysfunction. Following this line of reasoning and considering the finding
of unfavorable outcomes in patients with serum magnesium concentrations in the lower
normal range, a generalized adaptation of the reference range for normal magnesium
values has recently been proposed with an adaptation of the lower limit of the reference
range from 0.75 mM to 0.85 mM [45].

2.2. Hereditary Etiologies of Hypomagnesemia

In the last decade, transgenic murine models and the identification of their disorders
have provided valuable insights into the molecular mechanisms of renal magnesium absorp-
tion [5]. The spectrum of etiologies of hereditary magnesium wasting related to monogenic
mutations yielding dysfunctional transporter proteins, is still expanding [1,4,46]. Pheno-
typic traits alluding to a genetic etiology and warranting advice from the geneticist apart
from family history, are features like early-onset hypomagnesemia, dysmorphic characteris-
tics, neurosensorial hearing loss, cognitive dysfunction, epilepsy, diabetes, nephrocalcinosis
and biochemical features such as hypercalciuria, metabolic alkalosis, and hypokalemia. A
de novo disturbance of renal magnesium handling due to pathogenic claudin-19 antibodies
with ensuing severe hypomagnesemia was recently described in a patient with tubulointer-
stitial nephritis and acute kidney injury [47]. Gitelman syndrome is traditionally the most
common hereditary etiology of magnesium wasting, explained by heterozygous mutations
in the thiazide-sensitive Na+-Cl−cotransporter NCC (SLCC12A3) in the DCT [48].

More recently, however, mutations of other genes such as CKCNKB, KCNJ10, FXYD2,
or HNF1B, which indirectly reduce NCC activity, can lead to the same clinical phenotype,
explaining why the genotype in Gitelman syndrome is often unknown [49]. Also, four
pathogenic variants in the mitochondrial genome leading to defective oxidative phosphory-
lation and hence NCC-mediated uptake were reported in 13 families with a Gitelman-like
syndrome [50]. Gitelman syndrome was usually considered a benign condition despite the
presence of hyperaldosteronism and hypomagnesemia. This premise has more recently
been challenged by the confirmation of adverse metabolic and cardiovascular effects, in-
cluding disturbed glucose metabolism, insulin resistance, and immunodeficiency due to
impaired IL-17 response [51,52]. These findings highlight the active role of elements such
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as magnesium (and, to a lesser degree, potassium) in glucose metabolism and immunol-
ogy. To conclude, the spectrum of hereditary etiologies of renal magnesium wasting is
still expanding, while the clinical phenotype of its most archetypical example (Gitelman
syndrome) has been recently redefined.

2.3. Hypomagnesemia and Glucose Metabolism

The relationship between (mild to moderate) hypomagnesemia and disturbed glucose
metabolism, including diabetes mellitus, is quite well established with magnesium defi-
ciency, which correlates inversely with glycemic control [53]. This relationship is, however,
bidirectional. Both low dietary magnesium intake, hypomagnesemia, and single nucleotide
polymorphisms in genes involved in cellular magnesium physiology, which influence
serum magnesium concentration, predict the development of diabetes or prediabetes in the
general population or in kidney transplant recipients [54–56]. Magnesium is an essential
element for insulin secretion, which, moreover, increases the insulin-dependent glucose
uptake in adipocytes, contributing to improved insulin sensitivity [57]. Conversely, insulin
decreases the expression of TRPM6 in the DCT and hence promotes renal magnesium
wasting, which is commonly observed in type 2 diabetes [54]. Improvement in insulin
sensitivity by excessive weight loss after bariatric surgery not only improved glycemic con-
trol but also increased serum magnesium concentration, while chronic hypomagnesemia
predicted the irreversibility of diabetes in these morbidly obese subjects [58]. Further-
more, hypomagnesemia in patients with diabetes has been associated not only with the
occurrence of cardiac events such as heart failure but also with end-organ damage, in-
cluding microvascular complications [14]. Of note, although exercise and sports improve
insulin sensitivity, correction of hypomagnesemia may be offset by increased sweating
and increased urinary magnesium excretion [59]. Sports competition can further enhance
these processes, and marathon runners accordingly have a significant drop in their serum
magnesium concentration, which lasts, on average, for three days after the run [60]. To
summarize, the bidirectional relationship between hypomagnesemia and disturbed glucose
metabolism is established and appears to be clinically relevant.

3. Symptoms

The variety of symptoms related to hypomagnesemia and their severity depend not
only upon the degree of hypomagnesemia but also the (absence of) chronicity and the pres-
ence of concomitant electrolyte disturbances, including hypocalcemia and hypokalemia [61].
The majority of patients with moderate hypomagnesemia (0.5–0.65 mM) have chronic
asymptomatic hypomagnesemia. Non-specific and therefore under-recognized symptoms
are drowsiness and fatigue. Neuromuscular symptoms include the somewhat specific
downbeat vertical nystagmus in severely hypomagnesiemic subjects in the absence of
structural brain lesions [61]. The risk for choreiform movements, tetany, and seizures
is amplified in patients with hypocalcemia [1,61]. Following severe hypomagnesemia
(<0.5 mM), parathyroid hormone (PTH) hyposecretion and renal and skeletal resistance to
PTH might aggravate hypocalcemia and ensuing neuromuscular symptoms [62]. Further-
more, magnesium deficiency impairs active vitamin D synthesis, which can contribute to
the co-existence of both electrolyte abnormalities [61]. Hypomagnesemia, often in concor-
dance with hypokalemia, has cardiotropic effects, including a lower threshold for cardiac
arrhythmia, atrial fibrillation, supraventricular tachycardia, and, less commonly, ventricular
fibrillation [62]. Hypomagnesemia can promote hypokalemia by inhibiting the transcel-
lular tubular gradients generated across the renal outer medullary potassium (ROMK)
channels, leading to renal potassium wasting and impairing the function of the cellular
Na+-K+-ATPase [62,63]. The correction of hypokalemia should equally include treatment of
concomitant hypomagnesemia. Correction of even asymptomatic hypomagnesemia should
also be considered in patients with heart failure, especially when treated with digitalis or
ischemic heart disease and liver cirrhosis.
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3.1. Hypomagnesemia and Its Clinical Correlates

Meta-analyses of prospective studies in the general population pointed to a dismal
cardiovascular outcome corresponding with hypomagnesemia [26]. An increased mortality
risk was also observed in particular populations such as the elderly, people with variable
degrees of CKD, kidney transplantation (KTR), and people with heart failure [29,30,64–69].
Hypomagnesemia also has immunotropic properties considering the extracellular magne-
sium regulation of the activity of CD8+ T-cells via their sensing co-stimulatory molecule
LFA-1 and by increasing the cellular expression of activating NK receptors (NKG2D) [70,71].
A functional defect in MAGT1 transcellular receptors leads to the hereditary X-linked dis-
ease X-men disease, which is characterized by recurrent Epstein–Barr viremia (EBV) and
a propensity to develop B-cell lymphoma [71]. The beneficial role of magnesium supple-
ments, as described in the original paper, could, however, not be validated in a recent
trial [72]. Hypomagnesemia was associated with increased infection risk and/or mortal-
ity in kidney transplant recipients and systemic lupus erythematodes (SLE) patients and
higher mortality risk in patients with community-acquired pneumonia. Serum magnesium
was also lower in children with increasing circulating Epstein–Barr Virus (EBV) levels
and lymphoma [20,30,73–76]. Hypomagnesemia is also associated with the occurrence
of cerebrovascular disease, including Alzheimer’s disease, while a higher serum magne-
sium concentration correlated with a higher brain volume and the absence of subclinical
cerebrovascular disease according to data from the ARIC study [77,78]. Middle-aged
patients with hypomagnesemia have a higher risk of hip fracture, in line with a meta-
analysis demonstrating an increase in hip and femoral neck bone density with increasing
magnesium intake in older people [22,79,80]. In patients admitted to the hospital and
especially the intensive care unit (ICU), hypomagnesemia is associated with overall mortal-
ity [61,81,82]. Hypomagnesemia at admission has also been associated with a higher risk
of valve dysfunction after transcatheter aortic valve implantation (TAVI) in hemodialysis
patients [83]. Preoperative hypomagnesemia was also associated with acute kidney injury
after cardiac surgery and has been associated with a faster decline in kidney function
in many population-based observational studies, including a recent analysis from the
CRIC cohort [18,19,84,85]. However, another observational study could not confirm this
association between serum magnesium and decline in kidney function [69]. Although
studies have demonstrated an association between not only hypomagnesemia but also
lower dietary magnesium intake and faster decline in kidney function, we need to consider
the risk of bias inherent to the design of these studies; so far, no clinical trials have been
conducted to evaluate the nephroprotective properties of Mg supplementation [19,65,86,87].
Considering the risk of bias inherent to the design of these studies, the need to supplement
magnesium in vulnerable populations should be ascertained by interventional studies.
With variable success, beneficial effects were demonstrated on intermediate outcomes such
as intima media thickness and endothelial function, although the lack of trials focusing on
pre-defined hard cardiac endpoints has precluded its broad application in populations at
risk of cardiovascular events [12]. To conclude, there is still a gap between broad evidence
in support of a negative outcome related to hypomagnesemia and the clinical translation
into targeted supplementation. The clinical spectrum of hypomagnesemia and magnesium
deficiency is summarized in Figure 1.

3.2. When and How to Treat Hypomagnesemia?

A solid indication to treat hypomagnesemia is the presence of clinical symptoms
and/or severe hypomagnesemia (<0.5 mM), which classically necessitates intravenous
correction. The short-acting and thus transient effect of intravenous magnesium sulfate,
of which half is renally excreted, should be taken into account as it temporarily abolishes
the concentration gradient and hence the tubular magnesium reabsorption and can lead
to hypotension and more sporadically hyperphosphatemia [62,88]. Oral magnesium sup-
plements are used for the correction of mild to moderate chronic hypomagnesemia [62].
Meta-analyses of RCTs have demonstrated small but statistically significant effects on sur-
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rogate endpoints such as CRP and blood pressure [89]. Of relevance, some of the included
participants in these trials were not hypomagnesemic and hence the value of magnesium
supplementation in subjects with hypomagnesemia on classical cardiovascular risk factors
remains ill-defined.
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Figure 1. The clinical spectrum of hypomagnesemia. Depicted in the upper part are symptoms
related to hypomagnesemia (or a magnesium deficit), both of which are potentiated by concomitant
hypokalemia and hypocalcemia, electrolyte disturbances that are more common in subjects with
hypomagnesemia. Depicted in the lower part are clinical associations with hypomagnesemia (arrows
in grey point to a strong association; arrows in yellow point to a described association with less
supportive evidence) [8,12–14,18–24,53,62,67,73–77].

SGLT2 inhibitors could theoretically become an elegant option to treat patients with
hypomagnesemia, especially in patients with diabetes mellitus, renal disease, and/or
cardiovascular disease. The magnesiotropic effect of these drugs seems related to the
increased renal expression of TRPM6/7 and Claudin-16 (TAL Henle), which led to an
increment in serum magnesium concentration of 0.05–0.2 mM in treated patients in the
published large RCT [90–92]. In the CANVAS trial, the rise in serum magnesium in
patients treated with canagliflozin did, however, not correlate with the better cardiovascular
outcome of these treated patients [93]. In any case, the potential role of SGLT2-inhibitors in
hereditary tubulopathies such as Gitelman syndrome is promising, while its pleiotropic
effects in transplant recipients also warrant further investigation. And so, SGLT2 inhibitors
could become an additive therapy to optimize magnesium status in selected patients.

3.3. Magnesium and Pregnancy

Intravenous magnesium sulfate is an evidence-based treatment of pre-eclampsia, but
iatrogenic hypermagnesemia is rather common and should be monitored, especially in case
of decreased kidney function. According to a recent retrospective study of 429 severely
pre-eclamptic women, the majority (61%) developed critical hypermagnesemia, which
was associated with lower gestational age, a higher uric acid concentration, and a higher
baseline serum magnesium concentration [94]. Peroral magnesium supplements were
demonstrated to improve metabolic control in women with gestational diabetes, and
nocturnal cramps in pregnancy seem to respond to supplementation in most trials [95,96].
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3.4. Magnesium and Critical Illness

Although of potential use in critically ill patients, the role of correcting hypomag-
nesemia remains unclear, and a meta-analysis including three RCTs demonstrated lower
mortality (RR 0.54 with 95%CI of 0.30–0.96) although high-quality trials are warranted to
further support this [61,97].

Intravenous (IV) magnesium supplementation decreased the incidence of atrial fibrilla-
tion by 49% after cardiac surgery and has shown (in addition to standard-of-care treatment
of rapid atrial fibrillation) significantly improved rate control and, to a lesser degree, the
restoration of sinus rhythm [98,99]. Also, other therapeutic indications of intravenous
magnesium sulfate exist, such as torsades de pointes, analgesic properties where it may
reduce postoperative morphine consumption, asthma, and status asthmaticus in children,
and/or chronic obstructive pulmonary disease exacerbations [100–102]. In the aforemen-
tioned placebo-controlled trials, hypomagnesemia was, interestingly, not a prerequisite
for inclusion in the studies. To conclude, the therapeutic role of magnesium in the ICU
remains relatively uncertain despite its beneficial effects for various indications. In Table 1,
the evidence-based indications for magnesium supplementation were summarized and
categorized according to the degree of supporting evidence.

Table 1. Therapeutic effects of magnesium supplementation (derived mostly from randomized
controlled trials) *.

Proven Probable Uncertain or Unproven

• Prevention and
treatment of eclampsia

• Treatment of torsades de
pointes *

• Decreases the incidence
of arrhythmia after
cardiac surgery

• Improvement in glucose metabolism (lowering of
HbA1c and fasting blood glucose)

• Blood pressure lowering (minor effect)
• Improvement in endothelial function

(flow-mediated dilation)
• Decrease in carotid intima media thickness
• Decrease mortality in the ICU
• Improvement in insulin sensitivity in the ICU
• Improvement in postoperative pain
• Anti-inflammatory effects
• Decrease in the rate of asthma exacerbations
• Decrease in vascular calcification (CKD patients)

• Decrease in intensity, frequency,
or duration of muscular cramps

• Reduction in anxiety and
depressive symptoms

• Effects on markers of
bone turnover

• Lipid lowering
• Inhibition of kidney

stone formation
• Decrease in the rate of chronic

obstructive pulmonary
disease exacerbations

* High-grade evidence despite the absence of randomized controlled trials.

3.5. Efficacy of Magnesium Supplementation

The evidence to support one magnesium formulation over another is rather limited
but favors the use of organic magnesium compounds, although bioavailability is also
enhanced by concomitant intake with food with the exception of partly fermentable and
non-fermentable fibers, phytate, and oxalate [27]. Also, high intestinal concentrations of
minerals such as calcium lower intestinal magnesium absorption. Absorption is enhanced
with lower intestinal pH in conjunction with intake of proteins, medium-chain triglycerides,
and low- or non-digestible carbohydrates (and avoidance of proton pump inhibitors if
feasible) [27]. And so, an analysis of dietary intake could be relevant to reveal undesirable
food interactions in patients with ongoing hypomagnesemia.

Refractoriness to magnesium supplementation is very prevalent among transplant
recipients treated with calcineurin inhibitors, patients with diabetes, particularly with
poor glycemic control, and CKD patients with proteinuria [33,39,53]. Of note, magnesium
supplements decrease the bioavailability of non-steroidal anti-inflammatory drugs, tetracy-
clines, calcium channel blockers, aminoglycosides, bisphosphonates, and fluoroquinolones.
In analogy, rats exposed to quinolones and a magnesium-deficient diet were more prone to
develop tendinopathy. Magnesium could thus have pleiotropic effects, which prevent this
drug-related adverse event [103].
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4. Hypermagnesemia

Hypermagnesemia is defined by a serum magnesium concentration >1.2 mM
(2.5 mg/dL) and is almost non-existent in patients with normal kidney function unless
exposure occurs to huge concentrations of magnesium, for instance, in survivors of near-
drowning in the Dead Sea [104]. A decline in glomerular filtrations impairs the adaptive
ability to decrease renal magnesium absorption, although this does not automatically trans-
late into hypermagnesemia, considering the prevalence of hypomagnesemia in CKD and
even ESKD. This paradox is due to dietary restrictions to limit potassium exposure, general-
ized malnutrition, vitamin D insufficiency, use of diuretics and, of course, the development
of a negative magnesium balance due to the low magnesium dialysate concentration in
patients on peritoneal or hemodialysis [39,105]. Hypoalbuminemia can aggravate the
negative magnesium balance in hemodialysis patients due to a higher concentration of free
and dialyzable ionized fraction.

In patients with kidney dysfunction, exposure to magnesium-containing antacids and
laxatives has been described to cause life-threatening hypermagnesemia, partially due
to the unsaturable passive absorption [106–108]. Patients in the intensive care unit (ICU)
with hypermagnesemia face a higher mortality even after adjustment for kidney func-
tion [109,110]. A U-shaped mortality curve has been observed in other study populations
as well (such as hemodialysis patients). On the other hand, both higher and lower serum
magnesium concentrations are associated with the development of cancer [2,28–30].

Symptoms of hypermagnesemia (>1.7–2.1 mM) are mostly neurological, with typi-
cally absent deep tendon reflexes, impaired consciousness, and disturbed gait, although
more vague symptoms such as nausea and vomiting can co-exist. Hypermagnesemia
can result in arrhythmia, including bradycardia and malignant ventricular tachycardia.
The treatment of symptomatic and/or severe hypermagnesemia (>3 mM) includes airway
management, continuous cardiac monitoring, and intravenous calcium (100–200 mg over
5–10 min), which antagonizes the neuromuscular and cardiac effects of magnesium and
rarely renal replacement therapy [111]. For mild hypermagnesemia, the removal of sources
of exogenous magnesium is mostly sufficient.

Controversy exists concerning the potential beneficial role of (mild) hypermagne-
semia considering the pleiotropic effects of magnesium, which include anti-inflammatory,
anti-oxidant, and anti-apoptotic properties [1,112,113]. Accumulating evidence points to a
protective role of magnesium in vascular calcification supported by in vitro data, experi-
ments in rodents with CKD but, more importantly, by RCTs in patients with CKD, where
magnesium appears as one of the only treatment options where evidence was generated in
favor of anti-calcification properties, although not all studies show a consistent protective
effect [10,11,114]. The underlying mechanisms are diverse and include inhibition of the
formation of hydroxyapatite and the trans-differentiation of vascular smooth muscle cells.
Also, magnesium impedes the transition from calcified protein particles CPP1 into CPP2,
restores the CaSR activity of the vascular smooth muscle cells, and activates the expression
of the vitamin-K-dependent matrix Gla protein, which inhibits vascular calcification [115].
Magnesium also binds phosphate and improves endothelial function [1,112]. In CKD
patients with or without end-stage kidney disease, moderate hypermagnesemia was associ-
ated with a survival benefit. These findings were, however, not validated in other study
populations, such as people with cardiac failure, post-myocardial infarction, or admitted to
the intensive care unit [29,65,66].

The discrepancy of absent benefit despite a biological rationale could allude to the
poor reflection of cellular magnesium concentration by serum magnesium levels and
has led some investigators to propose an altered reference interval for normal serum
magnesium [45]. Moreover, the biologically active free ionized magnesium fraction can
be lower due to a high anion gap or to complexing with excess phosphate, systematically
biasing outcome according to strata of ionized serum magnesium in ESKD [116]. Anyway,
whether serum magnesium is associated with superior clinical outcomes depends on the
study population and investigated outcome. According to a recent Spanish study, patients
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with CKD and hypermagnesemia (serum magnesium > 2.2 mg/dL) had a higher risk of
cardiovascular events [117]. Finally, animal experiments raised concerns about enhanced
magnesium exposure leading to the development of adynamic bone disease. Bone biopsy
studies in humans will be essential to resolve these concerns.

5. Conclusions

Hypomagnesemia is becoming more and more prevalent, and this is most likely
attributable to a restricted oral intake and, to a lesser extent, to the widespread use of causal
drugs, which include proton pump and calcineurin inhibitors. In line with this, some
authors have proposed an adaptation of the normal reference values of serum magnesium
concentration to comply with an updated Gaussian distribution.

The indications to correct moderate and asymptomatic hypomagnesemia remain the-
oretical and are based upon in vitro data, cross-sectional data, or therapeutic trials with
mostly surrogate endpoints. Fortunately, trials are ongoing (NCT04079582, NCT03565913)
to address the effects of increased magnesium exposure to patients with increased cardio-
vascular risk including CKD and dialysis patients, bearing in mind the potentially negative
effects of overcorrection.

Hypermagnesemia remains mostly confined to patients with ESKD and to women
with pre-eclampsia treated with high-dose IV magnesium supplementation. Rather scarcely,
case reports and series of hypermagnesemia upon exposure to antacids and cathartics in
patients with relatively preserved kidney function have been described. The majority of
recently published interventional trials demonstrated no hazardous outcome following
magnesium exposure in (CKD) patients with mild hypermagnesemia.
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