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Abstract: Ensuring high-quality control in laser additive manufacturing and laser welding relies
on the implementation of reliable and cost-effective real-time observation techniques. Real-time
monitoring techniques play an important role in understanding critical physical phenomena, namely,
melt pool dynamics and defect formation, during the manufacturing of components. This review
aims to explore the integration of acoustic measurement techniques with X-ray imaging for studying
these physical phenomena in laser manufacturing. A key aspect emphasized in this work is the
importance of time synchronization for real-time observation using multiple sensors. X-ray imaging
has proven to be a powerful tool for observing the dynamics of the melt pools and the formation of
defects in real time. However, X-ray imaging has limitations in terms of accessibility which can be
overcome through combination with other more-accessible measurement methods, such as acoustic
emission spectroscopy. Furthermore, this combination simplifies the interpretation of acoustic data,
which can be complex in its own right. This combined approach, which has evolved in recent years,
presents a promising strategy for understanding acoustic emission signals during laser processing.
This work provides a comprehensive review of existing research efforts in this area.

Keywords: synchronization; X-ray imaging; acoustic emission; ultrasound; melt pool dynamic;
keyhole; laser-based manufacturing

1. Introduction

Laser-based manufacturing is a rapidly growing industry with a wide range of
applications in manufacturing processes [1]. One example of this technology is laser
metal welding, which offers non-contact, high-speed processing compared to traditional
methods [2]. Laser metal welding is utilized in various fields, including electronics, auto-
motive, aerospace, aircraft, and other industries [3]. Another significant aspect of laser-
based manufacturing is metal additive manufacturing (AM), which has the potential to
revolutionize global parts manufacturing and logistics [4]. For instance, directed energy
deposition (DED) additive manufacturing shows promise in fabricating multi-material
parts with controlled microstructures by locally solidifying the deposited powders of dif-
ferent metallic alloys [5]. DED has proven to be effective in repairing damaged automotive
and aerospace components, surpassing traditional welding with enhanced precision and
automation suitability [6]. Powder bed fusion by laser beam (PBF-LB), another type of
AM [7], efficiently utilizes a high-energy laser to selectively melt metal powder layer by
layer, solidifying sequentially to produce final lightweight parts. Major advantages of
PBF-LB include cavity fabrication, three-dimensional mesh or lattice parts, and geometrical
freedom in design [8,9].

In laser-based manufacturing techniques, such as PBF-LB, a keyhole (also known as a
vapor depression [10]) is a deep cavity filled with vapor that forms within the molten metal
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pool when the laser beam interacts with the metal powder. The metal surrounding the
keyhole melts due to heat conduction, forming a molten pool [11]. Unstable collapse of the
keyhole traps gas bubbles, resulting in voids or pores in the solidified material [12]. These
porosities caused by the keyhole can lead to defects in fusion, where layers are not properly
bonded. Adjusting the laser energy to the keyhole regime can help mitigate this issue [13].
Additionally, laser manufacturing can also cause cracks and delamination, affecting stress
concentration and fatigue resistance [14]. Therefore, a significant obstacle to the widespread
industrial adoption of laser-based additive manufacturing is the possibility of keyholes and
other various defects (such as balling [15], rippling [16], and spattering [17]). These defects
occur during the manufacturing process and impact the quality of the final product [18,19].
For instance, during laser welding, pores, cracks, lack of fusion, and spattering defects
inevitably occur, weakening joints and potentially affecting performance [20]. Spattering
refers to the ejection of molten metal droplets from the melt pool during the laser–material
interaction [21]. However, analyzing the keyhole and its behavior is challenging because the
keyhole is concealed within non-transparent workpieces and inaccessible to conventional
imaging and non-imaging diagnostics [22]. Therefore, real-time observation of dynamic
phenomena during this process and detecting defects in real time can be valuable for
industry and manufacturing.

To study the complete volume of material where pores and keyholes form, real-
time measurement techniques are necessary. X-ray imaging is a significant technique for
monitoring unknown laser–material interactions and the underlying physics. Synchrotron
X-ray imaging is a valuable tool for gaining real-time insights into subsurface phenomena,
including the dynamic behaviors of melt pools and keyholes. Therefore, real-time imaging
of dynamic phenomena includes the motion of spatter and pore formation during laser–
material interactions, allowing researchers to understand the origins of defects. For instance,
researchers at the Paul Scherrer Institute [23] have miniaturized and specially designed
PBF-LB devices for in situ X-ray measurements of PBF-LB. The designed PBF-LB devices
mimic the commercial PBF-LB process (shown in Figure 1) and exemplify the apparatus
developed. The apparatus enables the use of X-ray measurements to study the laser melting
process of PBF-LB under controlled conditions [24].
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Figure 1. The schematic of operando radiography is set up at the TOMCAT beamline. (a,b) Build of 
the mini-PBF-LB machine chamber and the camera via two separate views. (c) Zoom of the build 
plate and the printed object. The laser beam (2) is focused onto a 12 mm2 build plate (3) and the 

Figure 1. The schematic of operando radiography is set up at the TOMCAT beamline. (a,b) Build of
the mini-PBF-LB machine chamber and the camera via two separate views. (c) Zoom of the build
plate and the printed object. The laser beam (2) is focused onto a 12 mm2 build plate (3) and the
sample (4) during PBF-LB processing via a two-axis scanning head (1). Through the sample (c), a
parallel X-ray beam (5) travels to the microscope (6) [25].
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In addition to the advantages of synchrotron X-ray imaging, there is a notable absence
of sufficient details regarding the thermal history and chemical composition of the processed
material [26]. Furthermore, the practical utility of X-ray imaging is constrained by issues
related to portability and usage outside of laboratory settings [27]. Therefore, alternative
measurement techniques are imperative to address these inherent limitations.

Acoustic emission (AE) sensors can address issues of portability and usage outside
of laboratory settings [27,28] in X-ray utilities while also being applicable for real-time
measurement of dynamic processes in laser advanced manufacturing. AE analysis, as
a low-cost and robust monitoring technique, is widely used in laser manufacturing and
extends across various manufacturing processes. In laser welding, AE signals are utilized
to assess penetration depth [29,30]. In additive manufacturing, they also play a crucial
role in defect detection [31,32] and distinguishing between different materials and process
regimes [33]. For example, AE signals are employed in DED to differentiate between stable
and unstable processes (such as geometric fluctuations, oxidation effects, or other process
anomalies) by measuring the mean intensity of the acoustic emissions [34].

Real-time monitoring of industrial processes with AE involves collecting and ana-
lyzing AE signals to identify and assess defects throughout the structure [35]. AE signals
are valuable tools due to their cost-effectiveness and ability to achieve high temporal
resolution (attributed to their 1D signal nature) [36,37]. This high temporal resolution
allows AE sensors to detect and record rapid changes in the material during the laser
melting process. However, it is important to note that AE signals are highly sensitive to
environmental factors, making them susceptible to interference and variations based on
surrounding conditions [38].

Interpreting AE signals in laser metal manufacturing is complex due to various
factors [39], including variability in process parameters like power settings and scanning
speed [40] and material composition [41]. Discriminating between signals associated with
regular processing and those indicating defects also requires sophisticated signal processing
algorithms. These complexities of interpreting AE signals arise from the intricate nature
of AE signals and the need for accurate analysis to ensure quality control [42]. Therefore,
integrating AE signals with X-ray imaging, which serves as a ground truth, can enhance
the overall analysis.

This paper comprehensively explores AE measuring techniques when coupled with
X-ray imaging. X-ray imaging serves as a ground truth, facilitating the validation of other
measurement techniques [43]. Precise synchronization of signals captured through various
methods with X-ray imaging is critical for achieving this validation. This synchronization
allows for subsequent validation and establishes a foundation for robust and accurate
results. The present study conducts a comprehensive review of synchronization methods
employed in AE signals in conjunction with X-ray imaging, aiming to ensure the validation
of obtained results.

The rest of this review is organized as follows: Section 2 discusses the X-ray measure-
ment techniques and their usage for studying the dynamics of the melt pool. Section 3 ex-
plores two types (contact and non-contact) of AE technology synchronized with X-ray imag-
ing to investigate the dynamic process in laser-based manufacturing. Finally, Section 4 pro-
poses some conclusions regarding the synchronization of AE testing technology with X-ray
imaging, including the advantages, challenges, and development of this synchronization.

2. Synchrotron X-ray Applications in Monitoring Dynamic Phenomena for
Laser-Based Manufacturing

This section provides an overview of the application of synchrotron X-ray imag-
ing in monitoring the dynamics of the melt pool [44–48] and powder motion [49–51].
These dynamic phenomena are crucial for understanding laser material interactions in
laser-based manufacturing.
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2.1. Melt Pool Dynamics

The primary result of the interaction between the laser and materials is the formation
of a melt pool. Understanding the characteristics of the melt pool is crucial for achieving
high-quality products [52]. Cunningham et al. [53] utilized synchrotron X-ray imaging
to reveal the sequence of keyhole formation in PBF-LB for metal additive manufacturing,
based on laser power density. The study identified five key stages at an approximate frame
rate of 200 kHz: (1) melting; (2) formation and growth of a vapor depression; (3) instability
of the vapor depression; (4) formation and growth of a keyhole; and (5) change in the
shape of the melt pool (Figure 2). The study also discovered two distinct transitions:
The first occurred when there were fluctuations in the vapor depression, resulting in an
accelerated increase in aspect ratio (depth to width) as seen in D to G in Figure 2 The second
transition occurred when the aspect ratio [48,54,55] approached a value close to 0.5 [53].
This evolution from a hemispherical melt pool (conduction mode) to a well-defined sharp
keyhole provides more direct insights than other methods that rely on cross-sections of
solidified weld pools.
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differences, as shown in Figure 3a, where the melt pool lacks sufficient contrast. The laser 
scanned from left to right, with a sample thickness of 380 µm, a scanning speed of 500 
mm/s, and a laser power of 260 W. Increasing the exposure time from 1 to 20 µs (Figure 
3a–d) enhances the visibility of the melt pool due to a higher photon flux, which improves 
the signal-to-noise ratio. These images, with stable interfaces between solid–liquid and 
liquid–gas phases, are suitable for reliable quantitative analysis of melt pool dynamics. 
Additionally, further improvements for heavier materials like Ni-based superalloys are 

Figure 2. Melt pool and vapor depression evolution under stationary laser light. (A) The initial
stage of melt pool formation. (B) A tiny, stable vapor depression forms. (C) The vapor depression
is steadily growing. (D) In the vapor depression, instabilities arise. (E,F) Rapid changes occur in
the form of vapor depression. (G,H) The vapor depression fluctuates regularly. (I,J) The melt pool
changes from quasi-semicircular to bimodal, with a bowl on top and a spike in the center at the
bottom. A Ti-6Al-4V bare plate was used as the sample. The laser spot has a diameter of 140 µm in,
and the laser output is 156 W. The photos were background-corrected using the image taken prior to
the laser illumination. The region of the melt pool is highlighted in red in (E,J) [53].

A challenge in X-ray imaging is to display clear boundaries of the melt pool and vapor
depression during laser–material interactions. Parab et al. conducted a study on the impact
of exposure time on hindering the identification of features with slight density differences,
as shown in Figure 3a, where the melt pool lacks sufficient contrast. The laser scanned from
left to right, with a sample thickness of 380 µm, a scanning speed of 500 mm/s, and a laser
power of 260 W. Increasing the exposure time from 1 to 20 µs (Figure 3a–d) enhances the
visibility of the melt pool due to a higher photon flux, which improves the signal-to-noise
ratio. These images, with stable interfaces between solid–liquid and liquid–gas phases,
are suitable for reliable quantitative analysis of melt pool dynamics. Additionally, further
improvements for heavier materials like Ni-based superalloys are expected by utilizing
higher-energy photon sources and making beamline adjustments [56].
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Figure 3. The effect of camera exposure duration on solid–liquid interface imaging during the laser
AM process: (a) 1 µs; (b) 5 µs; (c) 10 µs; (d) 20 µs. (e) The solid–liquid (red squares) and liquid–gas
(blue circles) interfaces. The laser was scanned from left to right. The sample thickness is 380 µm
(along the X-ray beam direction). The scanning speed was 500 mm/s, and the laser power was 260 W.
The scale bars are 100 µm. Ref. [56].

Parab et al. [56] utilized synchrotron X-ray imaging to observe the dynamics of the
PBF-LB process in high resolution, providing insights into vapor depression and melt
pool phenomena in both temporal and spatial dimensions. Figure 4 displays high-speed
X-ray images of laser AM for an Al-Si10-Mg plate and powder bed fusion for Ti-6Al-4V,
capturing the intricacies of vapor depression. The experimental parameters for each case
are detailed in the caption of the figure. The images reveal dynamic oscillations in the
liquid–vapor interface during the processes. To study dynamic phenomena in the PBF-LB
process, ultrafast laser-melting experiments were conducted using a high-speed camera at
1.08 million (Figure 4a,c) and 10 million (Figure 4b) frames per second (fps). The first image
sequence (t = 0.8 to 1.1 µs) showed minor changes in vapor depression geometry, while
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the second sequence (t = 8.3 to 8.6 µs) revealed significant differences. Slower recording
speeds are suitable for tracking major vapor depression changes. However, ultrafast
recording is essential for capturing rapid oscillations in the liquid–vapor interface, as
slower speeds may result in missed phenomena [56]. It is important to note that the 10 MHz
camera recording speed represents the maximum continuous recording rate achievable
with currently available high-speed CMOS cameras [57,58].
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Figure 4. High-speed X-ray images of the laser AM process for the Al-Si10-Mg plate (a,b), as well
as the powder bed fusion process for Ti-6Al-4V (c). The frames were cropped to allow for easy
observation of the vapor depression’s intricacies, including oscillations in the liquid–vapor interface.
The experimental parameters for each process were as follows: (a) laser power of 520 W, scan speed
of 0.8 m/s, frame rate of 1.08 MHz, and exposure time of 200 ns; (b) laser power of 468 W, scan speed
of 0.6 m/s, frame rate of 10 MHz, and exposure time of 50 ns; and (c) laser power of 416 W, scan
speed of 0.7 m/s, frame rate of 1.08 MHz, and exposure time of 200 ns. The thickness of the plates
was approximately 500 µm. For panel (c), the powder size used was 15–45 µm. The rotation of the
particle identified by the red square [56].

Understanding the flow of the melt pool is crucial for controlling both the microstruc-
ture and the process itself [59]. However, evaluating this flow is challenging due to the
opacity of liquid metals, which requires in situ assessment. To address this issue, researchers
introduced highly attenuating tungsten carbide particles into a blend of aluminium and
copper powders with varying compositions. This allows for the visualization of Marangoni
flow traces in the melt pool through high-temporal-resolution synchrotron X-ray radiog-
raphy experiments. The high-magnification images in Figure 5a–e display the movement
of a single tungsten tracer particle around the keyhole. Figure 5f presents a composite
image created by extracting the pixel-wise minimum intensity from a stack of 250 images,
showing a section of the visible melt pool. This method enables us to observe the direction
and speed of flow during the process [60].
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2.2. Powder Motion

In PBF-LB processes, the ejection of powder spatter is a common problem that can neg-
atively affect the building process, leading to structural defects and reduced construction
accuracy [61]. To study this phenomenon, high-speed X-ray imaging is employed [62,63].
When a high-power laser hits the powder bed, the particles rapidly melt and evaporate,
resulting in the release of metal vapor that pushes adjacent particles out of the bed. The
liquid metal is subsequently propelled outward due to Marangoni flow and recoil pressure,
causing the liquid metal to wet and melt the particles [64].

Ultrafast X-ray imaging, recorded at a speed of 1.08 million fps, allows for precise
tracking of high-velocity particle ejections in the PBF-LB process. This imaging technique
also provides valuable insights into particle rotation. Slower recording speeds, such as
50 kHz, can still capture the trajectories of particles moving in straight lines, but they
may not capture inter-particle collisions and complex particle motion. The velocities
presented in this study were calculated without considering out-of-plane motion, so these
numbers represent minimum ejection velocities [56]. Zhao et al. utilized X-ray imaging to
demonstrate the direction and trajectories of particles in the PBF-LB process in Figure 6a,b,
respectively. Figure 6c and d display statistics on particle ejection speed and direction
under two laser power conditions in PBF-LB processes. When comparing laser powers
of 340 W and 520 W, the former ejects fewer particles from the powder bed and exhibits
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a lower maximum particle speed (12.3 m/s for the lower power case vs. 14.9 m/s for
the higher power case), indicating less intense particle motion at lower laser power. The
angular distribution of ejection (ϕ) around ϕ = 90◦ (vertical direction) is expected to be
symmetrical if a sufficient number of melting events are counted. However, the dynamic
flow of the melt pool affects the distribution, resulting in an asymmetric distribution of
ejection angles. A subtle difference between the two laser power cases is observed, with
340 W displaying a more symmetrical angular distribution, suggesting a less turbulent
melt pool flow [65].
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strates that the stability of the melt pool surface is affected by fast-moving particles, par-
ticularly when the laser beam spot size, and thus the melt pool dimension, is smaller com-
pared to the particle size. This leads to deformations and surface roughness. These find-
ings emphasize the significance of considering powder characteristics and process control 
in order to achieve the desired outcomes in DED builds [5]. 

Figure 6. Powder motion tracking during the Ti-6Al-4V laser powder bed fusion process. (a) Dynamic
X-ray pictures taken at various times, with red arrows denoting the velocity of each powder particle.
In this scenario, the laser power and beam size are 520 W and ~220µm (1/e2), respectively. The
particle size ranges from 5 to 45 µm, and the powder layer thickness is 100 µm. (b) Moving trajectories
of five distinct particles, P1–P5, denoted in (a) by blue dashed squares, and each picture in (a) has
the same dimensions. The vertical and horizontal blue dashed lines indicate the laser beam position
and the top surface of the powder bed, respectively. Insets in (b) depict a particle merger process.
The scale bars in (a,b) are 100 µm. (c,d) Powder movement velocity statistics are shown. Blue and
red colors represent distributions of (c) ejection speed and (d) ejection angle of particles outside the
powder bed at laser powers of 340 W and 520 W, respectively [65].

In another study, Wolff et al. utilized X-ray imaging to gain insights into the complex
dynamics of the melt pool in directed energy deposition (DED) additive manufacturing.
Figure 7 presents raw and differential X-ray sequences from the DED process. The parame-
ters used were a laser power of 200 W, scan speed of 100 mm/s, and powder flow rate of
320 mg/s. The differential images enhance the contrast of the melt pool, revealing dynamic
surface variations indicated by red arrows in the raw photos. The study demonstrates
that the stability of the melt pool surface is affected by fast-moving particles, particularly
when the laser beam spot size, and thus the melt pool dimension, is smaller compared
to the particle size. This leads to deformations and surface roughness. These findings
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emphasize the significance of considering powder characteristics and process control in
order to achieve the desired outcomes in DED builds [5].
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Figure 7. Raw (top row) and differential (bottom row) sequences of X-ray pictures from large-scale
DED. The following parameters were used: laser power of 200 W, scan speed of 100 mm/s, and
powder flow rate of 320 mg/s. In each bottom frame, the border of the melt pool is indicated by
white arrows, and the changing surface of the melt pool is highlighted by red arrows. To enhance
the contrast of the melt pool, the bottoms row of images is divided by the preceding frame. The
differential photos reveal bright and dark patches on the surface, indicating rapid variations in the
surface, as represented by the red arrows in the raw images [5].

3. Combined Use of In Situ Acoustic Measurement Techniques with X-ray Imaging

In Section 2, it is noted that various physical phenomena can occur at different speeds,
extending up to 10 MHz (or 100 ns). Therefore, it is crucial to consider time synchronization
when using multiple measurement techniques simultaneously to gain a comprehensive
understanding of the underlying physical processes. Acoustic emission during laser ma-
terial interactions can provide a unique acoustic signature of different melting regimes
(conduction, stable keyhole, unstable keyhole) [66–68]. At the same time, X-ray imaging
allows for real-time observation of the melt pool and keyhole during the PBF-LB process.
However, there are two main reasons why acoustic emission is not widely used in in-
dustrial laser processing: First, the signals are highly susceptible to background noise;
secondly, establishing a correlation between the AE signal and the actual occurrences is
extremely challenging [38]. Nevertheless, researchers have been able to visualize the entire
dynamic process of laser material interactions by using high-speed X-ray imaging com-
bined with AE measurements. This allows them to simultaneously acquire AE signals and
determine different regimes by applying the softmax function [69] for discrimination [24].
This approach is helpful for defect detection, such as pore formation, and offers valuable
in situ monitoring for quality control and efficiency improvement in PBF-LB [24]. Some
studies have used AE signals to detect anomalies and defects in additive manufacturing
processes [66–68]. For example, Tempelman et al.’s study focused on identifying keyhole
pores by synchronizing the acoustic signal with the laser position at each moment, which
facilitated accurate labeling of defect locations [70].

Typically, two categories of emissions arise within the laser processing zone: structure-
borne acoustic emission (SBAE) and air-borne acoustic emission (ABAE) [71]. They can be
considered contact and non-contact types, respectively. SBAE sensors require direct contact
with the material, while ABAE measurements can be performed remotely without physical
contact. Therefore, SBAE and ABAE sensors are referred to as contact and non-contact
types of AE sensors, in that order. In ABAE recording, standard membrane microphones
are commonly used, while in SBAE, piezoceramic transducers are mostly utilized. There
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are different detection principles between these two types of AE, including the nonlinear
behavior of acoustic waves in solids and the linear propagation of acoustic signals in
air. Due to higher damping in air than in solids, SBAE supports a broader frequency
spectrum [72]. The widespread use of SBAE in laser welding for quality control is hindered
by the challenging reproducibility of sensor coupling to the workpiece, which requires
quick sensor reattachment when the workpiece changes [73].

AE relies on the detection and analysis of acoustic emissions that occur when internal
stress is released within a material. Contact-type acoustic techniques rely on the nonlinear
behavior of acoustic waves to detect and characterize defects, while non-contact techniques
are based on the linear propagation of acoustic signals and are suitable for remote sensing
applications. In contact AE sensing, nonlinear parameters such as wave distortion and
harmonic generation are often used to detect and characterize defects or structural changes
within the material [74,75]. These nonlinear effects occur due to the interaction between
stress waves and material properties [76]. The detection of SBAE signals is also based on the
nonlinear behavior of acoustic waves, allowing for the identification of specific phenomena
related to material damage or deformation [77]. SBAE techniques typically require direct
contact with the material or structure being investigated to detect mechanical vibrations or
acoustic waves traveling through solids. This enables SBAE techniques to provide insights
into the dynamic behavior of materials, including the initiation and propagation of defects
such as cracks or microfractures [78].

In this section, we will review acoustic measuring techniques combined with X-ray
imaging. We will discuss two types of acoustic sensors that are used for acoustic emission
spectroscopy with X-ray imaging. Furthermore, we will review the progress of multi-
sensors used in combination with other measurement techniques for these two methods
(AE sensor and X-ray imaging).

3.1. Non-Contact (ABAE) Type Acoustic Emission Sensor Combined with X-ray Imaging

Wamster et al. [38] were pioneers in combining X-ray imaging with AE signal analy-
sis for laser manufacturing processes. They used a piezo acoustic sensor, specifically an
SBAE sensor, that was not in direct contact with the sample but rather with the sample
holder. Therefore, this approach falls under the category of ABAE type, which does not
directly capture acoustic waves from the sample during the laser process. Their study
utilized a signal processing technique called wavelet packet transform (WPT) to analyze
non-stationary AE signals. WPT divides the time-frequency space of the acquired AE
signals into a finite number of narrow frequency bands, allowing for a more detailed
analysis of how the signal’s frequency content changes over time. By selecting only the
relative energies of specific frequency bands (from the third to the seventh decomposition
levels), they were able to exclude noise from the experimental setup and surrounding
environment. After pre-processing the data, the gradient boost technique is applied for
machine learning classification, completing both pre-processing and classification within
30 ms. Nasab et al. [24] successfully synchronized X-ray imaging with an optical micro-
phone positioned 100 mm away from the processing area of the build plate. Figure 8a
illustrates stochastic regime transitions during the laser processing of 316 L stainless steel,
highlighting variations in the melt pool. Figure 8b displays time-evolving AE signals and a
spectrogram for keyhole phases, aiding in the identification of different regimes. This inte-
grated setup efficiently captured air-borne acoustic emissions ranging from 10 Hz to 1 MHz
during the manufacturing process. X-ray imaging provided real-time insights at a rapid
frame rate of 100 microseconds (10 kHz). They optimized regime discrimination in PBF-LB
monitoring, which is crucial for real-time PBF-LB/laser melting monitoring, and enhanced
the synchronization of X-ray imaging with AE signals using image processing techniques.
These techniques include time-windowing for laser tracking, denoising with median filters
(with a 7 × 3 × 3 footprint where the first dimension is time and the other two are pixels’
2D spatial position), and a strip removal algorithm [79] to eliminate diagonal lines caused
by the constant speed of texture. Additionally, edge detection using polar coordinates is
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employed. These techniques improve data quality, aiding in real-time PBF-LB monitoring
and control.
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Figure 8. (a) Stochastic regime instabilities and the transition from conduction to stable and unstable
keyhole regimes during laser processing of 316 L stainless steel. It presents images of variations in
melt pool morphology under constant laser parameters, along with normalized and filtered acoustic
signal plots. Vertical lines indicate significant events, such as transitions from conduction to stable
keyhole, stable keyhole back to conduction, conduction to unstable keyhole, and unstable keyhole
back to conduction. Resultant pores in the unstable keyhole regime are highlighted by green circles.
The yellow and white dashed lines represent the solid–liquid (melt pool) and gas-liquid (depression
zone) boundaries, respectively [24]. (b) Time evolution of an AE signal using X-ray videos for
annotation. The spectrogram on the right represents the signal power spectral density. The orange
signal on the left denotes the keyhole regime (1) and conduction (0) as the ground truth. During
the keyhole regime, most of the signal energy falls within the 35–105 kHz frequency range. The
vertical dotted lines in yellow (or red) on the right chart indicate the initiation (or termination) of the
keyhole phases. The spectrogram is generated by segmenting the AE signal into 1024 data points with
512-point overlaps, applying a Hanning window, and computing the spectrum for each segment [24].

The sudden increase in amplitude of the AE signal is associated with the phenomenon
of evaporation and the creation of a microjet. This microjet is the main factor in generating
acoustic waves during the keyhole melting process. Acoustic waves in laser-based man-
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ufacturing detect changes in gas momentum that result from various phenomena, such
as metal vaporization, microjet formation, capillary oscillation, surface tension gradients,
liquid collisions, microjet penetration, pore formation, and periodic overheating explosions.
These events collectively lead to periodic oscillations of the keyhole within a frequency
range of 20–50 kHz. These oscillations can be detected using AE sensors (see Figure 8b) [24].

De Foranoir et al. (Nasab’s co-worker) [80] developed a method for in situ pore
healing using operando X-ray imaging to understand the mechanisms of pore elimination.
They also demonstrated the potential of AE as a monitoring technique for porosity healing
during laser remelting by aligning AE signals with X-ray images without relying on
machine learning algorithms. Figure 9 provides an overview of time-domain AE signal
analysis during laser irradiation. This includes visualizing raw signals, shifting the time
axis, superposing AE signals with video events, and highlighting a specific pore removal
event. To synchronize X-ray imaging with the corresponding AE signal in the time domain,
the start of the laser processing, denoted as “tstart”, was determined by identifying the first
significant increase in signal intensity. The time shift t − tstart was then applied to the time
axis of the AE signal (Figure 9), allowing for the AE signal to be aligned with the X-ray
video (which started with laser triggered control). Similar to determining tstart, the end of
the laser process (tend) can be determined based on signal characteristics. It is important
to note that the estimation of the start time can be prone to error. However, due to the
different frequencies (2 MHz for acoustic, 10 kHz for X-ray), a 100-point error (for example)
in identifying the laser start (tstart) has minimal impact on aligning acoustic signals with
X-ray images. This error is only half the duration of one X-ray frame.
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ference in AE sensors. Conventional capacitive and piezoelectric microphones are suscep-
tible to electromagnetic interference from surrounding industrial noise, and their band-
width is limited to 100 kHz. These limitations may explain why acoustic process monitor-
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to 1 MHz in air. Figure 10 illustrates the optical microphone’s Fabry–Pérot cavity, which 

Figure 9. Overview of the time-domain AE signal analysis: (a) visualization of the raw signal, marking
the start and end of laser irradiation; (b) shifting of the time axis t’ = t − tstart; (c) superposition of the
AE signal with the pore removal events identified in the video (represented by discontinuous lines);
and (d) a typical example of a pore removal event, occurring at t = 10.5 ms, highlighted in orange in
part (c). The boundaries of the melt pool are indicated by dotted white lines, determined based on
variations in grey level [80].

The synchronization accuracy can be affected by reverberation time and noise interfer-
ence in AE sensors. Conventional capacitive and piezoelectric microphones are susceptible
to electromagnetic interference from surrounding industrial noise, and their bandwidth
is limited to 100 kHz. These limitations may explain why acoustic process monitoring
is not widely used in industrial production. In contrast, an optical microphone (shown
in Figure 10) is immune to electromagnetic interference and can have a bandwidth of up
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to 1 MHz in air. Figure 10 illustrates the optical microphone’s Fabry–Pérot cavity, which
uses interference to detect density changes, ensuring high sensitivity and compact size.
Furthermore, reverberation times in industrial environments are typically longer for audio
frequencies, often in the hundreds of milliseconds, making it challenging to accurately
monitor rapid acoustic events. It is virtually impossible to achieve reverberation times
shorter than 10 ms up to 100 kHz. To address this issue and improve temporal preci-
sion, it is imperative to monitor ultra-high acoustic frequencies beyond 100 kHz, where
shorter reverberation times are possible, especially in environments with acoustically
reflective surfaces [81].
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Figure 10. Principle of operation for the optical microphone. The shift in the refractive index of a
Fabry–Pérot etalon enables the optical detection of ultrasonic waves [81].

In studies that use X-ray imaging in synchronization with AE signals, there is a lack of
attention given to the significance of accounting for the time-lag effect in acoustic signals.
This observation holds true even when AE is combined with other measurement techniques,
such as CCD cameras, IR cameras, and pyrometers, as discussed in references [82–84]. The
time-lag effect is caused by various factors, including the distance between the microphone
and the laser–material interaction zone, as well as the characteristics of the medium through
which the signals travel. It is crucial to carefully consider this aspect to ensure the accurate
interpretation and practical application of AE data in laser manufacturing processes, while
also avoiding misinterpretations when connecting underlying process phenomena to AE
signal signatures.

3.2. Contact (SBAE) Type Acoustic Transmission Sensor Combined with X-ray Imaging

The application of contact or SBAE-type ultrasound sensors in monitoring laser man-
ufacturing processes can be affected by the geometry of the melt pool, including width
and depth. However, these sensors are unable to provide precise information about the
dynamic behavior of the melt pool. Therefore, synchronized measurements are necessary
to determine how the dynamics of the melt pool impact the ultrasonic response [85].

Gillespie et al. conducted a study on laser–material interaction using synchrotron
X-ray imaging and two ultrasound transducers immersed in water (see Figure 11a). They
adjusted the angle of the ultrasound transducer so that the refracted shear wave in the
aluminium sample was directed towards the heat-affected zone (HAZ) (Figure 11b). It is
known that shear waves passing through solid-to-liquid media exhibit highly scattering
behavior, which helps distinguish the signal from different melt pool states. By utilizing
a pair of transducers, the researchers had the option to perform either pulse-echo (PE)
assessments, where a single transducer functions as both the transmitter and receiver,
or pitch-catch (PC) evaluations, where one transducer sends the signal while the other
captures it [27].
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Figure 11. (a) The fixture for holding the ultrasonic transducers and sample. (b) A schematic
illustrating the pathways of the incident and refracted rays [27].

In order to achieve a high time resolution in ultrasound signals (and therefore a high
time resolution of corresponding physical events), a higher pulse rate frequency (PRF) is
required. However, it is essential to note that the PRF is restricted by the time it takes for
the ultrasound to travel from the melt pool, scatter, and then be received by the transducer.
This is referred to as the time-of-flight [27]. A dual-channel ultrasonic pulser-receiver (JSR
DPR-500) controls transducer excitation and reception with a 10 ns duration pulse at a
user-set PRF to ensure precise synchronization between ultrasound and X-ray imaging.
The received ultrasound data is filtered and sent to a digitizer card (NI PXIe-5162), initiated
by another trigger pulse from the pulser-receiver, ensuring exact timing. Simultaneously, a
high-speed camera (Photron FastCam SA-Z) captures X-ray images at 28.503 kHz, perfectly
synchronized with the ultrasonic PRF. This allows for the precise capture of an image when
the ultrasound scatters from the melt pool at a specific time interval, providing accurate
alignment of physical events and ultrasound signatures for analysis [27]. Figure 12 displays
the synchronized X-ray imaging alongside the ultrasound signal, capturing the events
before, during, and after laser activation using two pitch-catch (PC) and pulse-echo (PE)
configurations. As the melt pool deepens, the ultrasound’s time-of-flight decreases. This
can be seen around time slices 4.25, 5.09, and 5.65 ms in the PC configuration (Figure 12a)
and 2.21, 3.89, and 4.84 ms in the PE configuration (Figure 12b) [27].
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provides a visual representation of the welding process. LBR and AE signals respond dif-
ferently during welding, reflecting distinct physical phenomena. LBR signals exhibit 
sharp changes at the start and end of the welding process, measuring the reflected laser 
energy. In contrast, AE signals show a slight increase in amplitude at the beginning, likely 
related to the size of the melt pool, and gradually decrease as the melt pool shrinks to-
wards the end. The combination of LBR, AE, and X-ray imaging provides a comprehen-
sive understanding of laser welding, enabling defect detection and real-time control (Fig-
ure 13). 

The study examines two types of defects, blowout and pore, along with three com-
mon categories, namely, conduction, stable keyhole, and unstable keyhole. While LBR can 
detect blowout by measuring frequency attenuation, AE cannot. This approach is also ef-
fective in distinguishing between stable and unstable keyhole states, which is crucial for 
preventing defects in laser welding. The method can detect pore formation and removal 
and improve classification accuracy by combining LBR and AE features in real-time weld-
ing defect reduction [43]. X-ray phase contrast imaging is used to enhance sensitivity, par-
ticularly at phase boundaries (solid, gas, and vapor), where X-ray beam refraction is most 
noticeable. Both the AE sensor and LBR are triggered by laser control, and wavelet packet 
transform (WPT) is employed to generate unique signatures for physical events. WPT of-
fers several advantages, including reducing data size, denoising signals by selecting spe-
cific frequency bands, and enabling the interpretation of signals over time based on chosen 

Figure 12. The time history of ultrasound and X-ray frames selected from the (a) PC and (b) PE
configurations. The laser was active for a duration of 1 to 6 ms. The video results can be found in the
supplemental files [27].
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3.3. Multi Sensors (Three Sensors or More) Combined with Acoustic Emission Sensor and
X-ray Imaging

Some studies have utilized multiple sensors, including XRI and AE sensors, along with
other measuring techniques, to provide information from various and complementary aspects.

Shevchik et al. [43] combined laser back-reflection (LBR) and AE signals with X-ray
imaging to monitor laser welding in real time. Figure 13a displays X-ray images of alu-
minum during a 10 ms laser pulse, showing different phases and events. Figure 13b
presents the pixel intensity of the keyhole channel. Figure 13c and d show the LBR and
AE signals, along with their wavelet spectrograms, for laser welding. LBR detects surface
behavior, while AE captures dynamic changes in the melt pool and keyhole, and X-ray
imaging provides a visual representation of the welding process. LBR and AE signals
respond differently during welding, reflecting distinct physical phenomena. LBR signals
exhibit sharp changes at the start and end of the welding process, measuring the reflected
laser energy. In contrast, AE signals show a slight increase in amplitude at the beginning,
likely related to the size of the melt pool, and gradually decrease as the melt pool shrinks to-
wards the end. The combination of LBR, AE, and X-ray imaging provides a comprehensive
understanding of laser welding, enabling defect detection and real-time control (Figure 13).
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constant speed of 1.5 mm/s relative to the laser beam. A scale bar, located at the bottom right of
the images, shows a distance of 200 µm. Specifically, at the 5 ms mark, the images were marked
with colored arrows: red, orange, blue, and black. These arrows, respectively, denoted the gas phase,
liquid phase, solid phase, and the boundary between the liquid and solid phases. Subsequently, red
arrows were used at 6 ms and 9 ms to illustrate the expulsion of molten material during a blowout
and the creation of a pore during an unstable keyhole, respectively. Finally, during the time interval
of 10–10.5 ms, black arrows were employed to indicate the formation of a pore resulting from the
rapid collapse of the keyhole at the end of the laser irradiation. (b) The pixel intensity profile of the
keyhole channel reveals that regions with increased brightness are associated with lower-density
areas. (c) LBR signals (at the top) and AE signals (at the bottom) for the laser welding process.
(d) Tensors include three photodiodes (back reflection, visible, and infrared) along with the wavelet
spectrograms for the LBR signals (top) and the AE signals (bottom). Red rectangle with dashed and
solid lines denotes window, framing two consecutive patterns within. Ref. [43].

The study examines two types of defects, blowout and pore, along with three common
categories, namely, conduction, stable keyhole, and unstable keyhole. While LBR can
detect blowout by measuring frequency attenuation, AE cannot. This approach is also
effective in distinguishing between stable and unstable keyhole states, which is crucial
for preventing defects in laser welding. The method can detect pore formation and re-
moval and improve classification accuracy by combining LBR and AE features in real-time
welding defect reduction [43]. X-ray phase contrast imaging is used to enhance sensitivity,
particularly at phase boundaries (solid, gas, and vapor), where X-ray beam refraction is
most noticeable. Both the AE sensor and LBR are triggered by laser control, and wavelet
packet transform (WPT) is employed to generate unique signatures for physical events.
WPT offers several advantages, including reducing data size, denoising signals by selecting
specific frequency bands, and enabling the interpretation of signals over time based on
chosen frequency bands. The wavelet spectrogram enhances precision by revealing specific
frequency patterns in both signals during different welding phases.

In order to achieve highly accurate classification of various regimes within metal-based
PBF-LB processes, Pandiyan et al. [25] have introduced an innovative hybrid deep learning
model that merges convolutional neural networks (CNNs) with long short-term memory
(LSTM). This achievement is based on data gathered from four sensors, including three
photodiodes (back reflection, visible, and infra-red) along with a structure-borne AE sensor.
The efficacy of in situ monitoring for PBF-LB processes is further substantiated through
X-ray imaging. Figure 14a depicts the mini-SLM configuration with an AE sensor and
optical detectors, while Figure 14b shows schematics of the heterogeneous sensing system
featuring an AE sensor and photodiode detectors. During the experiment, a fixed focus
collimator is positioned at a 30-degree angle, 5 cm from the HAZ (as seen in Figure 14a),
to collect optical emissions from the melt pool. These emissions are divided into three
channels using various optical filters to isolate specific wavelengths. The BR Si photodiode
primarily captures reflected laser light at 1070 nm, providing insights into the absorption
and utilization of laser energy in the process [86]. The InGaAs photodiode (PDA20CS2) can
detect light in the 800–1700 nm range, utilizing a low-pass optical filter for wavelengths
exceeding the laser radiation. The Si photodiode captures visible and NIR light using
a short-pass optical filter. The AE sensor (PICO HF-1.2, Physical Instruments, Physical
Acoustics, MISTRAS Group, NJ 08550, USA) with a frequency range of 500–1850 kHz serves
as a structure-borne sensor, mounted at the base’s bottom and recorded at a sampling rate
of 3 MHz to adhere to the Nyquist Shannon theorem. Signal acquisition automatically
begins for all channels via a photodiode detector, triggered by a substantial increase in light
intensity near the laser’s wavelength upon interaction with the powder bed, resulting in an
analog voltage. Crucially, all four channels simultaneously initiate acquisition, ensuring
default synchronization [25]. In this way, the authors comprehensively assess various
aspects of the PBF-LB process, enabling more informed decision-making within the process
regime by receiving a wider range of radiated wavelengths.
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and opens the high-speed shutter. However, there is a predetermined delay of approxi-
mately 5 ms before the shutter opens. As a result, the laser control signal, which includes 
the power signal enabling laser irradiation and the gate signal controlling camera record-
ing and sensor acquisition timing, is passed through an FPGA. After applying the neces-
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Figure 14. (a) The mini-SLM configuration includes an AE sensor and optical detectors.
(b) Schematics of the heterogeneous sensing system, which includes an AE sensor and photodi-
ode detectors [25]. The red arrow shows 25% of the original signal directed to a Si photodiode by
a 25:75 multi-mode fiber splitter and the other 75%, specified by red dashed arrow, is split by a
50:50 splitter. The green arrow and green dashed arrow are connected to InGaAs (PDA20CS2) and Si
(PDA100A2) photodiodes, respectively.

To detect defects and correlate them with the exact time of formation, Martin et al.
used X-ray imaging in combination with a diagnostic sensor suit. This improved the
understanding of the process and quality control in PBF-LB. Figure 15a displays the layout
of the in situ diagnostic system, which records thermionic, optical, and acoustic signals
during laser exposure. Figure 15b and c show the schematics and information exchange
for the laser, X-ray imaging, and diagnostic system control. The sensor suit included
a photodiode, aligned with the laser beam, as well as a second dielectric mirror and a
microphone positioned in the chamber (Figure 15b). All of these sensor signals were



Metrology 2024, 4 198

recorded synchronously at 470 kHz using an FPGA-based laser interface module. The
synchronization process for X-ray imaging with diagnostic sensors begins with a command
from the RTC5 control card. This command initializes the position of the laser scan head and
opens the high-speed shutter. However, there is a predetermined delay of approximately
5 ms before the shutter opens. As a result, the laser control signal, which includes the
power signal enabling laser irradiation and the gate signal controlling camera recording
and sensor acquisition timing, is passed through an FPGA. After applying the necessary
programmed delay, this signal is transmitted to the laser (see Figure 15c). This process
ensures that the high-speed camera captures images in sync with the diagnostic sensor data,
achieving remarkable synchronization with a precision of 2.1 microseconds (at a frequency
of 470 kHz) [87].
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Figure 15. (a) A simplified layout of the in situ diagnostic system set up to record thermionic (current
preamplifier), optical (photodiode), and acoustic (microphone) signals while being exposed to laser
light. (b) Breadboard schematic for the laser and diagnostic optics. (c) A diagram illustrating the
information exchange between the laser, X-ray imaging, and diagnostic system. The arrow illustrates
the direction of information exchange. The ScanLab RTC5 scan controller card inside the PC and
the external NI FPGA interface module receive their commands via the Labview-based control
software. The FPGA controls the timing of X-ray imaging, laser power commands, and the recording
of diagnostic signals, ensuring synchronized data gathering at 470 kHz [87].

4. Conclusions and Future Directions

The development of AE measurement synchronized with X-ray imaging over time is
summarized in Table 1.
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Table 1. Setup characteristics of synchronized AE and X-ray imaging related to research works over the years.
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X-ray source setup
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Synchrotron facility Beamline ID19 of
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X-ray detector
characteristics
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250 µm-thick

Ce-doped
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European
Synchrotron (ESRF)

100 µm-thick
YAG:Ce (Crytur)
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Pixel - 896 × 776 pixels - 896 × 776 pixels 1024 × 672 pixels 2016 × 2016
CMOS Imaging

Pixel size 11 µm 1.923 µm 11 µm 1.923 µm 2 µm 11 µm

Frame rate 28,000 to 36,000 fps 28.503 kHz 28,762 fps 28.503 kHz 20 kHz 10 kHz

Exposure time - - 30 µm - 45 µm 95 µm

Laser characteristics

Type

Single-mode
fiber laser source star
fiber 150 P (fiber laser

star fiber
150 P/300 P)

fiber laser

Single-mode
fiber laser

source star fiber
150 P (Coherent Inc.,
Belp, Switzerland)

Fiber laser

Single-mode CW
Yb-fiber laser (IPG

Photonics,
YLR-500-AC-Y14)

Pulsed mode

Wavelength 1070 nm 1070 nm 1070 nm 1070 nm 1070 nm 1070 nm

Spot diameter 30 µm 120 µm 30 µm 120 µm 73–135 µm 13.75 µm

Maximum Power - 477 W 1.5 kW 477 W 500 W 500 W
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It can be observed in Table 1 that the development of using a combination of X-ray
and AE analysis has progressed gradually, but it still requires improvement in order to
achieve higher resolution, a deeper understanding of phenomena, and faster recognition.
For instance, the frequency range of the AE sensor has been expanded (10 Hz–1 MHz),
which has facilitated the study of remelting and pore removal (refer to Table 1). The smaller
melt pool resulting from the use of a smaller beam diameter (13.75 µm) has been examined
using a facility with higher resolution. By enhancing the exposure time, it becomes possible
to investigate time-related phenomena, such as the formation of melt pools and defects.
These studies are valuable for process control and enhancing the quality of components
during laser processing. However, considering the inherent specificity of acoustic signals,
such as the time-lag effect, would allow for more-accurate synchronization of AE signals
with X-ray images in future studies. This would aid in interpreting the AE signal in
greater detail, which can be applied in machine learning and artificial intelligence for
automatic detection. Furthermore, it is evident that multi-sensor systems provide more
comprehensive information on defect formation and enable real-time monitoring.
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