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Definition: Small peptides are an important component of the vertebrate immune system. They are
important molecules for distinguishing proteins that originate in the host from proteins derived from
a pathogenic organism, such as a virus or bacterium. Consequently, these peptides are central for
the vertebrate host response to intracellular and extracellular pathogens. Computational models
for prediction of these peptides have been based on a narrow sample of data with an emphasis
on the position and chemical properties of the amino acids. In past literature, this approach has
resulted in higher predictability than models that rely on the geometrical arrangement of atoms.
However, protein structure data from experiment and theory are a source for building models at scale,
and, therefore, knowledge on the role of small peptides and their immunogenicity in the vertebrate
immune system. The following sections introduce procedures that contribute to theoretical prediction
of peptides and their role in immunogenicity. Lastly, deep learning is discussed as it applies to
immunogenetics and the acceleration of knowledge by a capability for modeling the complexity of
natural phenomena.
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1. Background on Immunological Peptides

The adaptive immune system of vertebrates is a system that includes cells and
molecules whose role is to distinguish self from the outside world (non-self). Therefore, a
vertebrate host has the potential for detecting and clearing pathogenic organisms from its
organ systems. A major component of adaptive immunity involves a linear chain of amino
acids: the small peptides [1]. The small peptide is of interest since the host immune system
relies on it as a marker for a determination on whether a protein originates from itself or
instead of a foreign source, such as a virus or bacterium [2]. This system can also identify
its own cells as foreign if they are genetically altered by a process that causes production of
unfamiliar molecules [3,4].

These peptides of interest are formed by cleavage of proteins in cells of the host, and
they form the basis for the cellular processes of immune surveillance, and identification of
pathogens and cells that operate outside their normal genetic programming [3,5–7]. When
adaptive immunity falsely identifies a peptide derived from a protein that is essential
to the individual as not originating from that individual, a phenomenon referred to as
autoimmunity occurs [8–11]. A generalized example of autoimmunity is where a subset
of T cells [12,13], a name that references their development in the thymus [14,15], falsely
detects small peptides as presented on the surface of cells as originating from non-self and
subsequently signals the immune system to eliminate these cells in the host [16–18].

The mechanism for peptide detection is reliant on molecular binding between the
peptide and a major histocompatibility complex (MHC) receptor that is expressed in the
majority of cells of a vertebrate [19–21]. Nearly all cells of the canonical vertebrate express
MHC Class 1 cell surface receptors that are capable of presenting peptides of an intracellular
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origin, while a subset of cell types of the immune system express MHC Class 2 cell surface
receptors for presentation of peptides of an intercellular origin.

Furthermore, the mechanism described above is refined by training the T cells to
perform as specialists so that they disfavor any attack on normal cells, while favoring
the proliferation of the T cells that have developed to attack non-self [14,21]. This is not a
deterministic process, however. The dictates of probability are present in biological systems,
including: (1) the generation of genetic diversity across the various MHC receptor types,
(2) the cleavage process for generation of small peptides from a protein, (3) the timeliness
of the immune response to molecular evidence of a pathogen, (4) the binding strength of
peptides to an MHC receptor, and (5) the requisite sample of peptides for detection of a
pathogen. This system is in contrast to a human designed system (engineered) in which the
structure and function originate from an artificial design and a low tolerance for the prior
mentioned variability.

The aggregate of past collections of immunological peptide data is not representative
of the total space of these peptides [3,21]. For example, only a small proportion of MHC
molecules have been studied for their association with small peptides. This sampling
problem is related to the allelic distribution of the MHC molecules. While there are about a
dozen genetic loci in clusters that code for a MHC protein receptor, the number of alleles
among these loci is very high as compared to the other genetic loci in the typical vertebrate
genome. In the human population, the expected number of alleles for the MHC loci is
estimated in the thousands [3,22]. Correspondingly, these loci are active genetic sites of
evolutionary change and generation of diversity, and—unlike the other regions of the
genome—this genetic diversity has been undiminished at the genetic level by the putative
bottleneck that reduced our effective population size to mere thousands of individuals [23].
Likewise, the study of immunological peptides has generally been restricted to that of the
human population and animal models that serve as a proxy in the study of biomedicine
and livestock [21].

Moreover, there is a preference for MHC class type as a result of model feasibility.
The MHC Class 1 receptor is generally favored over that of Class 2 in modeling the
MHC-peptide association, partly because in MHC Class 1, some of the amino acids of the
peptide are confined in pockets of the MHC receptor [1,3,24,25]. This has led to predictive
models of MHC-peptide (pMHC) binding that parameterize the position and chemical type
of the amino acids of these peptides [21,26]. These models have exceeded the predictiveness
as compared to models based solely on geometrical data of the atomic arrangements [3].
However, the geometrical features are expected to contribute to insight on pMHC binding
and models for predicting an adaptive immune response.

Recently, artificial neural networks and related machine language approaches have
led to advances in knowledge of protein structure and the potential for modeling the
association between proteins and other molecules [21,26–29]. These methods are capable of
highly predictive models that incorporate disparate kinds of data, such as in the use of both
geometrical and chemical features in estimating the binding affinity for an MHC receptor
with a peptide [21]. Moreover, they are highly efficient in the case where modeling is
dependent on a very large number of parameters, as commonly observed in the interactions
of biological molecules. Consequently, the deep learning approaches have shown success
in the prediction of protein structure across a broad sampling of the clades of living
organisms [30]. These approaches are complemented through the analysis of metrics,
preferably with a level of interpretability, that are capable of estimating the geometrical
similarity among proteins [31–33].

As a whole, the study of immunogenetics relies on collecting data and building models
as expected in the pursuit of knowledge [21,34]. Deep learning is applicable to these goals,
for which the data collection is extensive and there is a theoretical basis for the system of
interest. Ideally, this kind of scientific practice is expected to lead to a meaningful synthesis
that is unmired by a collector’s fondness for naming schemes and ungrounded collations
of terms and studies [35]. The latter perspective resembles the practice of creating images
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of science, akin to an art form, that sometimes occur in the disciplines of natural science
while not achieving the aim of extending knowledge through the purposeful modeling of
natural phenomena [36].

2. Metrics of Peptide Structure Similarity

There are a large number of methods for quantifying the geometrical similarity among
proteins [37]. In particular, one method is by the template modeling score (TM score),
which is based on an algorithm, and a performant implementation in computer code, for
measuring the similarity between any two protein molecules (Figure 1) [31]. Furthermore,
the compiled program from this open source code computes a root mean-square deviation
(RMSD) metric, a similar measure to the TM score, but, where the latter method is less
sensitive to the non-local interactions in a molecular topology, along with the advantage
of model invariance to the size of the protein. However, the RMSD metric is also an
interpretable metric.

Given any cellular protein, there is empirical support for a range of TM scores that
are meaningful as a description of protein structure similarity, and, likewise, for dissimi-
larity. A value above 0.5 is regarded as a significant result of similarity, while a value less
than 0.17 represents a comparison that is essentially indistinguishable from a randomly
selected comparison [38]. The values of this metric are further bounded by 0 and 1.
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Figure 1. Ribbon diagrams of the 3D atomic structure of an MHC Class 1 receptor as bound to a
peptide [39]. These protein structures appear mostly identical, so a score based on their 3D similarity
is expected be high in value [31]. (A) This panel shows the bound peptide AH1 (6L9M). Adapted
from [40]. (B) In this case, the bound peptide is A5 (6L9N). Adapted from [41].

Furthermore, the TM score is applicable to the analysis of small peptides. For instance,
it is possible to sample protein structure data [30], select all unordered pairs of proteins
for comparison, and then find an empirical distribution of values for this metric. This
procedure may be used to establish values of significance for this metric. Appendix A
describes a procedure for obtaining and verifying data for biological proteins [42], including
any subsequent prediction of their three-dimensional structure.

3. Peptide Structure Analysis in Immunogenetics
3.1. Significance Levels for TM Score

The TM score metric is a powerful tool for measuring structural similarities among
proteins [31]. This metric can be applied to the study of small peptides. However, in the
case of small peptides, the significance levels are not yet established for the TM score metric.
However, these levels can be empirically estimated through computational analysis of
randomly selected pairs of small peptides, such as in a sliding window analysis based on
the residues in protein structure data, or, alternatively, by generation of sequence data via
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simulation. These findings would establish a baseline for the analysis of small peptides as
derived from clinical and other data—such as from an emergent pathogen—leading to an
expectation of the numbers and types of amino acid changes that lead to adaptation for
evasion of host immunity. Note that these procedures are based on the sampling of linear
peptides by a host immune system, as in its detection by a type of T cell, but the role of the
B cell in immunity is a separate problem wherein the effective sampling of polypeptides
by the immune system is often dependent on geometric proximity of amino acid residues
and is therefore, not reliant on a linear arrangement of amino acids for the detection of
non-self molecules.

3.2. Local versus Global Factors of Protein Structure

A complementary approach is to survey the world of possible peptides as sampled
from protein structure data and subsequently test whether their geometric structure is
mainly shaped by physical factors at the local level or at the global level of the molecule
(Figure 2). The null hypothesis would be that any two small peptides with the same amino
acid sequence, yet sampled from different non-homologous proteins, would not show
similarity in their protein structure as measured by the TM score [31]. However, this test
is based on the prior assumption that the TM score has a known level of significance for
rejecting this null hypothesis, while this assumption may be met by the procedure as in
other sections. Another assumption is on the availability of small peptide data. For a
sequence of 9 amino acids, where there are 20 types of amino acids, a naive probability
of finding any two randomly selected matching peptide pairs is 1 in 20 to the 9th power,
which resolves to 1 in 520 billion pairs. However, the sampling of peptides with shorter
lengths and fewer residues is expected to lead to finding identical pairs of peptides in a
large database of protein structures. Moreover, this procedure depends on the reliability of
the TM score metric as applied to cases with the above peptide length. If local factors of
protein structure are in fact predictive of the structure of a small peptide, then it is possible
to apply this knowledge to prediction of immunogenic peptides in Nature and therefore,
the geometric distance between a known peptide and a predicted peptide is potentially
quantifiable and meaningful.
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Figure 2. Ribbon diagram of the 3D atomic structure of an avian hemoglobin molecule (1HV4).
Adapted from [43,44]. It is a visualization of the hypothesis on whether the strength of atomic
interactions at the local scale is equal to that at the global scale.

4. Recognition of Peptides by T Cells

As described in the Introduction, predictive models of immunological peptides are
dependent on position and chemical type of each amino acid: largely a consequence of their
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linear structure, a restriction on peptide length, and the molecular interactions that form an
association with an MHC receptor (pMHC). Further, it has been reasonably established that
the formation of the pMHC is dependent on the upstream pathways that restrict the length
of these peptides [21]. However, this is descriptive of the peptide-MHC association [45],
but not of the subsequent downstream pathway of T cell recognition [21,46]. However, it
is known that the probability is very low for a peptide, as presented on the cell surface
by an MHC receptor, to lead to an immune response. Therefore, the expectation is that
most peptides, as presented on the cell surface by an MHC receptor, do not lead to an
immune response.

As covered by Nielsen et al. [21], the problem is not in the robustness of models of
pMHC binding, but in predicting that a peptide as presented on the cell surface is truly
immunogenic [47]. For detection of these immunogenic peptides, a model must show high
accuracy [48,49]. Given a model where the error rate from false negatives is set to a low
value—~1 percent so that the number of potential epitopes is large and few candidates are
absent—there is a concomitant increase in the false positive error rate for these predictions,
leading to a limitation in detection of the set of true epitopes [21,50,51]. Given this rarity of
immunogenicity in a sample of peptides, and the factors that lead to this rarity, modeling
this phenomenon is limited [48], while the parameterization of the model is additionally
hindered by the presence of unknown factors. With an informative data set, this is a kind
of problem that is suitable for a deep learning approach, where the higher order features
are captured by the model, including that of the atomic structure.

Gao and colleagues [52] developed a method and procedure in their article “Pan-
Peptide Meta Learning for T cell receptor-antigen binding recognition”. It is based on
meta learning principles and a neural Turing machine. In the case of zero-shot learning,
where the potential for immunogenicity of peptides is not dependent on prior data during
inference, the authors applied a procedure to validate their method in a T cell receptor–
antigen dataset from a COVID-19 study [53]. Their method, PanPep [53], showed a model
performance of ~0.7 (ROC-AUC analysis) [52,54]. They further showed that previous
models do not discriminate better than a model of random chance. However, their model
performance of ~0.7 was not evaluated as sufficiently robust, although this is a result for
zero-shot learning, while they expect a higher predictiveness with the inclusion of prior
data (few-shot learning). Additionally, PanPep [53] is capable of assessing the structural
relationship between peptide and T cell receptor by simulation of an alanine substitutional
analysis (an established technique in experimental biology) even though their data is
solely based on sequence data [52], and the authors describe a “contribution score” for this
relationship at each residue along the CDR3 region of the T cell receptor [52,55,56], a region
of very high diversity [57,58] that is central to its pMHC interaction and any subsequent
immune response. Therefore, this method is applicable for investigating a shift in the
population of peptides as sampled from a pathogen and its impact on host immunity.

5. Model of T Cell Receptor Structure
5.1. Overview of the ImmuneBuilder Method

Since recognition of pathogenic peptides is dependent on T cells and their receptors,
it is of interest to model the protein structure of these receptors. These models, such as
AlphaFold [30], are expected to yield insight into peptide immunogenicity and emergent
pathogen evolution.

While AlphaFold depends on a deep learning method for prediction of protein struc-
ture, it is not specifically adapted to the molecules of immunity. Therefore, Abanades
and others developed ImmuneBuilder [59], a set of deep learning models specific to the
hypervariable molecules of adaptive immunity. It includes a software component known
as TCRBuilder2, which codes for a model to predict the protein structure of a T cell receptor.
Further, the authors showed that their method is over 100× more performant than the
AlphaFold approach. This higher performance in the generation of protein structure is also
reflective of a high efficiency in the computation, so that this software is applicable for use
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in a computer workstation. Since TCRBuilder2 is specific to prediction of a restricted set
of protein structures, it has removed any dependency on a prior that consists of multiple
sequence alignments. This is in contrast to AlphaFold-Multimer [60], which is dependent
on this since it is designed as a general model of protein structure.

The model weights of TCRBuilder2 are publicly available [59], and the model is
based on a curated set of 704 T cell receptor variable domains [61]. Of these, a sample
set of 50 records was used in a validation step and therefore excluded in the training of
the model [59].

The RMSD metric [62], as described in an above section, is a measure for compar-
ing the quality of predictions of protein structure, such as generated by TCRBuilder2 or
AlphaFold-Multimer. In this case, the survey of methods showed similar levels of pre-
dictveness of the structure of T cell receptors [59]. For example, in the CDR (hypervariable
complementarity-determining-regions) of the TCR alpha and beta chains, the mean RMSD
metric values, as expressed in angstroms, are typically less than 2.0, while the values are
nearer to 2.0 in the specific case of CDR3. In this case, the lower RMSD values indicate a
closer correspondence between the structure of the prediction and that of the expectation
for the protein structure, while a value of zero represents that a pair of proteins are identical.

In particular, CDR3 is an example of a highly hypervariable region, a distinct region as
compared with the other regions of the T cell receptor. Therefore, in general, it is expected
that the hypervariable regions require an increased sample size for yielding higher model
predictiveness. This suggestion is based on achieving an expected level of robustness in
modeling the more variable and widely distributed data source.

Interpretation of the RMSD values is dependent on knowledge of other factors at the
molecular level, such as the sample size of amino acid residues. The TM score metric [31]
has fewer assumptions to meet and is helpful in validating the values as generated by the
RMSD metric. However, it is not uncommon to interpret a mean RMSD value of less than
two angstroms as suggestive of structural similarity between two protein molecules. To
further interpret the results of the TCRBuilder2 study, and for the purpose of disentangling
the parameters of the model of protein structure, the authors examined measurements
of error in the reconstruction of the six angles between the alpha and beta chains (ABan-
gles) [63], the four torsion angles of the side chain (potentiality for peptide binding) [64],
and solvent accessibility of amino acid residues [59]. Overall, their analysis of proteins
by region is supportive of a robust interpretation of model performance against that of
competing methods.

5.2. Usage of TCRBuilder2

The source code of ImmuneBuilder is available at GitHub [65]. The code includes
instructions for an analysis that is based upon command line operation. Their repository
also includes a Colab Notebook for testing TCRBuilder2. Furthermore, this software
depends on several Python libraries which are in active development. A large number
of library dependencies is common in projects that involve deep learning, so commonly
used algorithms and code are relegated to a library for reuse. Since these dependencies
are in active development, I made modifications to the Colab Notebook file for usage
of TCRBuilder2 at Google Colab, such as modifications related to updates in the library
dependencies [66]. The modified file of self-documenting code is shown in Appendix C.

The software generates an output file in PDB format that encodes the 3D structure
of the protein. The RasMol software [67] can use an PDB formatted file to display this
3D structure, including in the form of a ribbon diagram of the arrangements of atoms in
the molecule, but the export function to save a 3D image is not necessarily expected to
work on recent versions of Microsoft Windows. In this case, the image may be captured
by the simultaneous pressing of two keys on the keyboard, the “Alt” key and the “Print
Screen” key, leading to a copy image operation. The captured image can then be inserted
into a document by the simultaneous pressing of the “Ctrl” key and the “V” key, a paste
image operation.
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5.3. Verification of the TCRBuilder2 Model

As described below, the TCRBuilder2 can generate a 3D protein structure from the
input consisting of protein sequences that correspond to the two TCR polypeptide chains,
such as the complement of alpha and beta chains. In the following example, the input is a
protein complex from the RCSB database [68]: PDB record 5d2l (rcsb.org/structure/5d2l),
which includes an empirically determined protein structure, a potential benchmark for
measuring the quality of the protein prediction by TCRBuilder2. The empirical data for
5d2l are exportable as a PDB-formatted file. This data file appears to correspond to an
empirical analysis of a quaternary crystal structure of a protein. To further examine their
empirical analysis, the PDB record was referenced to find any literature associated with the
record. An article is associated and entitled “Structural Basis for Clonal Diversity of the
Public T Cell Response to a Dominant Human Cytomegalovirus Epitope” [69]. It has the
following relevant details:

“The corresponding r.m.s.d. for the four C7·NLV·HLA-A2 complexes ranged
from 0.50 to 0.83 Å. Based on these close similarities, the following descriptions
of TCR-pMHC interactions apply to all complex molecules in the asymmetric
unit of the C25·NLV·HLA-A2 or C7·NLV·HLA-A2 crystal”.

“Three complex molecules in the asymmetric unit were located first; the fourth
was found according to non-crystallographic symmetry”.

To validate the above statements, a method is described below to confirm that the
record 5d2l is composed of four empirically derived samples corresponding to the same
protein complex. First, the empirical data (in this case, PDB formatted) are processed
for collating the alpha and beta chains of the TCR receptor, along with their amino acid
sequences. Comparisons of the data samples by chain type show that they are identical or
nearly identical at the amino acid residue level. Therefore, the data are expected to truly
contain four separate models that are based on four empirical samples of the crystallization
of a single protein complex. Third, there is a REMARK section in the file with descriptions
of 4 BIOMOLECULE(S).

The PDB formatted file of record 5d2l is annotated with information on the individual
polypeptide chains. For this case, the relevant data fields are identified by the prefix name
COMPND:

COMPND 12 MOL_ID: 3
COMPND 13 MOLECULE: C7 TCR ALPHA CHAIN
COMPND 14 CHAIN: I, K, O, E
COMPND 16 MOL_ID: 4
COMPND 17 MOLECULE: C7 TCR BETA CHAIN
COMPND 18 CHAIN: J, L, P, F
The alpha and beta chains of the TCR are annotated with letter assignments that

correspond to the four empirical models. The alpha chain is represented in the data file as
I, K, O, and E; likewise, the beta chain is represented as J, L, P, and F. In the file, there are
also fields that list the amino acid residue sequence of each of these polypeptide chains.
This data can be extracted by searching for the data fields containing a prefix of SEQRES
and a letter that signifies the polypeptide chain of interest. For viewing these amino acid
sequences and their residue similarity, a sequence alignment software is an appropriate
tool, such as ClustalW [70]. An amino acid sequence alignment of the TCR beta chain is
shown in Figure 3 (confirming the identity of the four beta chains in the 5d2l data record).

In this record, the corresponding pairs of TCR alpha and beta chains are shown by
viewing the data fields with a prefix name BIOMOLECULE, revealing that polypeptide
chains I and J are of the same sample and therefore correspond to the alpha and beta
chains of the TCR, respectively. These PDB formatted files can then be used to create
PDB-formatted files specific to each of the chains I and J. The predictions by TCRBuilder2
are presented in PDB format, so comparisons are possible between it and the 3D protein
structure stored in the PDB database. Next, the PDB data fields that are prefixed with
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the label name ATOM of the TCR alpha chain are aligned (by visual inspection) and then
trimmed so that the amino acid residues of the sequences are comparable and orthologous
between the PDB record and that generated by TCRBuilder2. This procedure was repeated
for the beta chain. The goal is to have a comparison between data that represents aligned
amino acid residues, where each residue is orthologous between the comparisons. Last,
the index value of the amino acid residues (data fields for residues have the prefix name
ATOM) was reset as described in another section on use of the TM score metric.
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Figure 3. A protein sequence alignment of the T cell receptor beta chain (PDB record 5d2l).

Next, TM score is used to compute the TM score values [31]. The command line
below is an example of this procedure. The “seq” parameter may be appended to align
the sequence data via the software, but this practice is not foolproof, and—if used—the
sequences should be verified by inspection of the output file. Instead, it may be preferable
to construct the alignments beforehand.

tmscore 5d2l_prediction_A.pdb 5d2l_ChainA-I.pdb > 5d2l_A_RMSD.out
tmscore 5d2l_prediction_B.pdb 5d2l_ChainB-J.pdb > 5d2l_B_RMSD.out

The output of the TCR alpha chain comparison (the first line above) reports an
TM score value of 0.9539 across 98 residues. For the beta chain, the TM score value is
0.9426 across 110 residues. This verifies that TCRBuilder2 is constructing models of protein
structure that closely resemble the empirical models in the PDB record.

Furthermore, TM score has an option to compute the superposition data for viewing
protein structure similarity (the “seq” parameter may be appended, if needed):

tmscore 5d2l_prediction_A.pdb 5d2l_ChainA-I.pdb -o 5d2l_A_SUP
tmscore 5d2l_prediction_B.pdb 5d2l_ChainB-J.pdb -o 5d2l_B_SUP

RasMol can display a tube diagram of the two superimposed protein structures
(Figures 4 and 5) [67]. The figure legends have further details.

./RasMol/raswin.exe -script 5d2l_A_SUP

./RasMol/raswin.exe -script 5d2l_B_SUP
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record 5d2l) [69] (thin red strand) and that predicted by TCRBuilder2 [59] (thick blue strand). Both 

Figure 4. Three-dimensional protein structure of the TCR alpha chain as empirically modeled
(PDB record 5d2l) [69] (thin red strand) and that predicted by TCRBuilder2 [59] (thick blue strand).
Both these models are shown in the image as a tube diagram so that they are superimposed and
overlapping in geometric space [31,67]. Thus, the two models of protein structure can be qualitatively
compared to assess their similarity. It is apparent that both models are nearly identical in their spatial
arrangements, but there are small regions of spatial difference. These regions of spatial difference can
be observed by comparing the thick blue strand with any nearby thin red strand; otherwise, the red
strand is overlapping with the blue strand and is not visible to the eye.

Encyclopedia 2024, 4, FOR PEER REVIEW 10 
 

 

these models are shown in the image as a tube diagram so that they are superimposed and overlap-

ping in geometric space [31,67]. Thus, the two models of protein structure can be qualitatively com-

pared to assess their similarity. It is apparent that both models are nearly identical in their spatial 

arrangements, but there are small regions of spatial difference. These regions of spatial difference 

can be observed by comparing the thick blue strand with any nearby thin red strand; otherwise, the 

red strand is overlapping with the blue strand and is not visible to the eye. 

 

Figure 5. Three-dimensional protein structure of the TCR beta chain as empirically modeled (PDB 

record 5d2l) [69] (thin red strand) and that predicted by TCRBuilder2 [59] (thick blue strand). The 

two models of protein structure can be qualitatively compared to assess their similarity. See Figure 

4 for further interpretation of the image [31,67]. 

5.4. Comments on TCR Modeling by Deep Learning 

Even though ImmuneBuilder is competitive with the more generalized model of Al-

phafold-Multimer, it is of interest to expand deep learning models that are specific to one 

that is applicable to a greater set of problems. For example, generalization is preferred to 

achieve a broader parameterization of 3D protein structures and for capturing the rarer 

patterns of atomic arrangements. However, at this time, the specificness of the Im-

muneBuilder approach is reasonable since it shows very good performance during the 

inference and generation of 3D protein structures. Another goal of interest is in expanding 

the collection of TCR data so that a model has the potential to sample data more broadly. 

Collectively, these goals, and others, contribute to increased performance in these deep 

learning approaches and converge on the possibility of meaningful analysis of the shift in 

protein structure of an T cell receptor that is associated with changes in peptide binding 

and, therefore gain an eventual insight into the proximate mechanisms of adaptive im-

munity at the host population level. 

The field of deep learning is expanding on techniques with applicability to TCR mod-

eling, such as in the use of a large language model to “perform evolutionary optimization 

over reward code” and the use of “the resulting rewards... to acquire complex skills via 

reinforcement learning” [71]. This approach refers to an example that was applied to the 

field of robotics, but the methodology is applicable to other tasks and in automation of 

trial-and-error experimentation, such as in an informatics pipeline for identification of im-

munogenic peptides and their putative association with an MHC receptor and subse-

quently its downstream effects on immune surveillance by the T cell receptor repertoire. 

Figure 5. Three-dimensional protein structure of the TCR beta chain as empirically modeled (PDB
record 5d2l) [69] (thin red strand) and that predicted by TCRBuilder2 [59] (thick blue strand). The
two models of protein structure can be qualitatively compared to assess their similarity. See Figure 4
for further interpretation of the image [31,67].

5.4. Comments on TCR Modeling by Deep Learning

Even though ImmuneBuilder is competitive with the more generalized model of
Alphafold-Multimer, it is of interest to expand deep learning models that are specific
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to one that is applicable to a greater set of problems. For example, generalization is
preferred to achieve a broader parameterization of 3D protein structures and for capturing
the rarer patterns of atomic arrangements. However, at this time, the specificness of the
ImmuneBuilder approach is reasonable since it shows very good performance during the
inference and generation of 3D protein structures. Another goal of interest is in expanding
the collection of TCR data so that a model has the potential to sample data more broadly.
Collectively, these goals, and others, contribute to increased performance in these deep
learning approaches and converge on the possibility of meaningful analysis of the shift in
protein structure of an T cell receptor that is associated with changes in peptide binding and,
therefore gain an eventual insight into the proximate mechanisms of adaptive immunity at
the host population level.

The field of deep learning is expanding on techniques with applicability to TCR mod-
eling, such as in the use of a large language model to “perform evolutionary optimization
over reward code” and the use of “the resulting rewards. . . to acquire complex skills via
reinforcement learning” [71]. This approach refers to an example that was applied to the
field of robotics, but the methodology is applicable to other tasks and in automation of
trial-and-error experimentation, such as in an informatics pipeline for identification of
immunogenic peptides and their putative association with an MHC receptor and subse-
quently its downstream effects on immune surveillance by the T cell receptor repertoire.
This type of automatability in deep learning is akin to an outer loop that has control over
an inner loop, which codes for the world of possible predictions, so the overall system is
recursive in its operation and has the potential for planning and application to the practice
of experimentation. This kind of perspective and approach is seen in deep learning by
the intelligent processing of input and verification methods for assessing model output.
Related approaches that apply to immunogenetics are expanded upon below (Section 7).

6. Molecular Signature of Peptide Immunogenicity

With a sufficiently large and broad sampling of data, the deep learning approaches
are generally applicable in modeling the immunological pathways, particularly where
traditional approaches, based on a set of fewer interpretable parameters, are inadequate.
More specifically, since the small peptides are a major determinant of adaptive immunity
in the jawed vertebrates, it is essential to collect a broad set of empirical data to represent
and parameterize the elements of immunogenicity [21]. Without these models, there is an
expectation of low predictiveness for any model of pathogen evolution, and, therefore, the
practitioners of this science may tend toward the excesses of reductionism [72] and misper-
ceptions about the true model, which relates to the inner workings of adaptive immunity.

The above is a view based on making predictions about immunogenic peptides as
sampled and derived from a pathogen of interest. However, another approach is to compare
the evolution of a specific pathogen against generated data from the highly accurate
peptide–MHC binding models [21,45]. This suggestion is for simulation of changes in
the genome of the pathogen and subsequent identification of the changes that putatively
weaken the binding association between peptide and MHC receptor. The distribution of
amino acid substitutions in these simulations may be compared against prior knowledge
of the evolution of a pathogen and its response to host immunity. The comparisons would
provide insight into the numbers and types of amino acid changes that are characteristic
of an evolutionary response of a pathogen, including a predictiveness on novel variants
and their potential for evasion of host immunity. The assumption of this comparative
approach is that the peptide-MHC association is a vulnerable pathway to the evolution
of a successful pathogen. Another potential strategy is for the pathogen to target the host
pathway that cleaves and forms peptides prior to an association with an MHC receptor.
Third, a pathogen may evolve so the resultant peptides in the host are no longer identified
as immunogenic by the downstream pathways of host immunity, although it is presumed
that all three pathways are potential targets by the pathogen in its evolutionary search for
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success in the host-pathogen interaction. However, the relative utilization of each of these
strategies by pathogens is not well understood.

This approach is confounded by the feasibility of identification of the specific amino
acid substitutions that are associated with an evolutionary response by a pathogen to a
host, as substitutions may be caused by other factors, and the genomic signature of the
host response may have been subsequently erased by evolutionary changes. It is possible
to discriminate between these evolutionary changes based on their association with the
forces of natural selection. For example, nucleotide substitution methodology is available
to predict when a genomic region shows a signature of positive selection, and the signature
is measured by comparison of the rates of nonsynonymous to synonymous substitutions
(Figure 6) [73]. A nonsynonymous change is specifically defined as a nucleotide change
that leads to an amino acid change, while a synonymous change is a silent substitution
at the amino acid level. This approach is limited by a confidence in the measurement of
the rate of synonymous change, such as cases in which nucleotide sites have undergone a
high number of synonymous changes and the corresponding error rate is high. The regions
which are confidently identified as having undergone evolution by positive selection are
ideal candidates for further study on the evolutionary response of a pathogen to a host.
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Figure 6. The two nucleotide sequences code for a protein. They are represented as codons, where
each codon codes for an amino acid. The topmost sequence is the parent, while the sequence below is
the evolutionary descendant. The bottommost letters [N, S, -] represent the type of codon change,
whether it leads to an amino acid change [N] or does not [S]. The third possibility is no change in the
codon, so no change in the amino acid [-]. There are reports of models of evolution for calculating
a nonsynonymous and synonymous substitution rate from sequence data with the above types of
substitutions along with a control for the bias at each codon in its potential in leading to the kinds of
substitutions that can occur at the nucleotide level [73].

Last, the immune response by a host is not dictated by any single peptide and T cell
receptor type, but by a process based on combinations of different peptides and T cell
receptor types [74]. This population level perspective of peptides and their associations
with T cell receptors is illustrative of an applicable approach to a robust modeling of the
host immune response to a pathogen at the level of the individual. It further conforms
to the mathematics of a sampling process, so the immunological system is, on average,
reacting to a true molecular signal of a pathogen and not a spurious sample based on a low
sample size of signals at the molecular level. It also dampens the error that results from a
false signaling of the presence of a pathogen, as in the cross-reactivity of the MHC receptor
to non-pathogenic peptides [10]. Moreover, the biological systems, as often documented
in the science of animal development and a testament to the forces of evolution [75,76],
are an interplay between the intrinsic error of biological pathways and compensatory
processes that regulate and canalize for a desired outcome. The robust sampling process
by the host immune system is an example of this kind of regulation, so a costly immune
response to non-pathogens is minimized, and detection of a true pathogenic infection
is maximized. An error in the biological pathways remains, but the mere evolutionary
history of vertebrates [77] is supportive that this evolved system is robust and that their
populations are competitive in an evolutionary context.
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7. Deep Learning and Immunogenetics
7.1. Deep Learning Architectures

Deep learning is applicable to the biological sciences where the data are representable by
a sequence of tokens, such as a nucleotide sequence of a gene or the linear encoding of the
structure of a protein [30,78–80]. Ideally, the architecture of a deep learning model is provided
with an adequately large data set for use in its training procedure, which then leads to some
capacity for generating predictions, such as in the case of ESMFold [81], a transformer-based
model that robustly learns the higher order structural elements of proteins from training on
prior data. Moreover, the transformer is an ideal architecture for use across the natural sciences
since it is frequently tested during use by engineers and scientists. For the immunological
pathways, there is more than one approach in the use of the transformer.

In the case of a pathogen that is genetically responding to a host, an approach to
modeling this phenomenon is by collecting genetic and environmental data, including
the interactions between pathogen and host. The sequence-based transformer model is
adaptable for learning from this kind of data set and some subsequent capability in making
predictions on the evolutionary response by the pathogen. However, the data requirements
are high for robust predictiveness on the evolution of a pathogen.

Another method, as described in an above section, is to focus on a part of an immuno-
logical pathway, such as the probability of the formation of a protein complex between
MHC and small peptides, given this association is robustly modeled. In this case, deep
reinforcement learning is also applicable, particularly where both the method of deep
learning and of reinforcement learning are applied [82,83]. In a reinforcement learning
method, an agent learns a policy by taking an action and receiving a reward. This is a useful
approach to highly complex biological systems, where there is a dependence on a large
space of possible states and quantifiable parameters as seen in the areas of genetics and
cellular biology. In the case of the evolution of a pathogen, it is possible to train a model in
which the genetic sequence of the pathogen is the agent, genetic substitution is the action,
and the MHC-peptide model determines the reward for any genetic modification [84].

A third approach is to rely on advanced prompting methods in deep learning [85].
A diversity of deep learning models can serve as modules where the connections between
them are written in the form of computer code, such as in Python. One module may
be designated to run a program for computing the probability of the formation of an
MHC–peptide complex. Another module could generate the sequence data for input,
while a third module could serve as a database that receives, processes, and stores the
results. This chain of models and modules are functioning as an informatics pipeline of
programs and data [86]. It is both an extensible and kind of recursive learning process,
where each module has a unique role, including in the form of decision-making or the
running of an external tool or program [87]. A mechanism to connect these modules
is by use of Python code, a computer language adapted for modifying and testing new
procedures in an informatics pipeline. The code serves as an essential “glue” that binds the
modules together. This approach also allows for integration between local and remotely
accessible models, an efficient scheme where each model is specific to a purpose and
computing resources are distributed across geographical locations.

The modular approach to deep learning is somewhat similar to the mixture of experts
model (MoE) in deep learning [88]. MoE is expected to depend on a gating neural network
that routes data among the other networks, where each network learns a specialized
task or tasks. An advantage of the modular approach is that models can be assigned to
evaluate and validate the output from the other modules in a process that allows for an
increase in interpretability of the system of modules. Overall, the approach offers a flexible
methodology for recursive learning and a path to achieving a meta-learning approach.

7.2. Meta-Learning Systems

Recent advances in large language models have resulted in better predictiveness and
interpretability [89,90]. These advances are dependent on the transformer architecture [78,91],
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hardware for large scale parallel computing [92], and extensive collection and curation of
data. The curated data is first transformed to a tokenized format, which, in this case, is words
and subwords, while the transformer is the engine for discovery of the associations in a
sequence of tokens and leads to a model that predicts the next token based on a sequence
of prior tokens [80]. These large language models are often fine-tuned for interactions in
the form of common dialog [93]. Further, these models have been extended to include data
for providing assistance in the practice of natural science [94]. However, these models have
shown a deficit in the use of higher-order concepts, a probable reference to general reasoning,
although prompting methods have had success in mitigating these shortcomings [95–97]. This
is the gap between a statistical model that predicts the next word and any robust process of
general reasoning [98]. A capability of general reasoning is expected to lead to models with
a greater automation of scientific practice, notwithstanding that deep learning models have
already contributed to knowledge across the natural sciences [30,59,99].

The automation of a deep learning system may be referred to as meta-learning, an
iterative and recursive approach to validating and improving predictions. This kind of
technique has been applied to board games [100], where it is possible to assign a policy and
value function so that the system can plan and identify the best action for maximizing a
reward that is dependent on the subsequent set of states of the game board. This model is
ideal in modeling the processes of general reasoning, but in a language model, the rewards
are not as easily quantified. However, prompting methods have led to a capability of
general reasoning in the use of large language models [96,97]. These methods also depend
on strategies, such as reduction of a complex problem to a set of tractable subproblems,
along with a system for validation of a response.

This deep meta-learning approach is akin to a compression of the total states possible
for a given subproblem, so the dimensionality of the overall problem is lowered. This is
expected from fundamental theory [101] and studies in neuroscience [102,103]. A compres-
sion of information is expected to lead to better feature detection for the goal of robust
construction of the higher-order associations as mirrored in the act of conceptualization and
higher cognition. The prompting methods cited earlier are examples of iteratively querying
the model to constrain and compress the pathways in a search for the best possible output.
Therefore, in the cases where this approach is required and successful, then the model is
capable of finding the correct answer, given correctness is possible, but without this ap-
proach, the dimensionality of the search space may extend beyond what is computationally
feasible. Various prompting methods also can compress the search space by transforming
queries into a lower dimensional form (pseudocode) [97,104], which may lead to a value
function that is applicable for a particular task [105].

It seems reasonable that large language models can add to their capacity for general
reasoning by a reduction of a problem to a set of subproblems, reduction of statements to
any lower dimensional format, and the ability to assign a reward to the model’s successes.
A related optimization is that of data quality and structure enhanced by the use of what is
referred to as synthetic data [106]. Altogether, these approaches involve data compression,
validation of output, and automated iteration in the search for reliable results [107] within
a meta-learning framework.

7.3. Interpolation and Extrapolation in Deep Learning

Another problem in deep learning is whether learning from high dimensional data
is dependent on interpolation or extrapolation [108]. LeCun and colleagues define these
terms within a geometrical framework and subsequently infer that high dimensional data
is frequently learned by extrapolation in the case of “state-of-the-art algorithms” rather
than a stricter dependence on interpolation [108]. Therefore, in the case of problems in
biology, it may be inferred that deep learning architectures are capable of learning from
data that exceeds that expected if a model is only capable of interpolation.

The capability for these models to generalize is seen in the processing of natural
language. It is possible to fine-tune a large pre-trained model for a specific task when
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the prior training step has achieved a capability for generalization across the space of
all possible tasks [109]. This is a relevant idea with applicability to peptide structure
and problems in immunology. These are systems of high dimensionality, so the use of
“big data” approaches that incorporate data from disparate sources is informative. For
example, analysis of the binding between T cell receptor and peptide are a product of
atomic interactions, and, therefore, a general model of protein structure is expected to
increase the applicability of a deep learning model to molecules of the immune system.
This approach would reduce the reliance on any deficit of data in modeling the structures of
molecules of immunity, such as in the modeling of the TCR–peptide–MHC interactions that
extends beyond the role of the CDR3 beta chain of the T cell receptor [48,52] and inclusion
of priors that parameterize the MHC receptor by type [22,52].

8. Conclusions

Small peptides are crucial to the functions of the immunological pathways in verte-
brates. Their dynamical interactions with other molecules occur in three-dimensional space,
but, in the case of its association with the MHC Class 1 receptor, the linear peptide may be
modeled by amino acid position and property. Otherwise, peptide structure at all scales is
crucial for an accurate modeling of immunological pathways, such as in the detection of
pathogenic peptides by the pathway involving the pMHC and its surveillance by a T cell
receptor. Although protein sequence and structural data are ideally plentiful, particularly
in application for deep learning modeling, there are other approaches to modeling these
systems, such as in isolating the tractable pathways, where one example is in the forma-
tion of the peptide–MHC complex. Since these pathways are complex systems, high in
dimensionality, and not well understood, it is worthwhile to employ deep learning models
and related machine learning architectures [52] for advancement in modeling the major
pathways of immunobiology and for prediction of the evolution of pathogens in response
to a vertebrate host.

Lastly, general models of immunobiology should incorporate a population level
perspective and avoid a narrow viewpoint that merely centers on the atomic arrangements.
This is a suggestion to view the system at the scale of a population. The peptides of a
pathogen that are generated by host immune processes are essentially a population of
potentially immunogenic peptides. An evolution of the pathogen can be considered a
“shift” [110] in the population of peptides. This shift in this population may or may not
correspond to a change in immunogenicity in the overall peptide population. Furthermore,
the immunogenicity of peptides is largely a function of its association with an MHC receptor
and detection by a T cell receptor and can lead to a downstream immune response in the
host. The collection of these singular responses at the cellular level are a population of
events, and a host immune response is dependent on the occurrence of a sufficiently
large number of events. Where the pathogen is in interaction with the adaptive immune
system of a vertebrate host, it responds to these events by evolution, presumably by
natural selection. This evolution is also a population-level phenomenon. Likewise, at the
cellular level, the adaptive immune system of a host is or has undergone genetic changes
by recombinational and mutational processes, leading to novel populations of cells that
function in this system [111,112]. Both the evolution of the pathogen and the adaptation for
immunity in the host population, are important elements in modeling the spatiotemporal
dynamics of the pathogen–host interaction.
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Appendix A

Appendix A.1 Peptide Structure Data

Predictions of protein structure in PDB formatted files are available across the many di-
visions of cellular life: https://alphafold.ebi.ac.uk/download (accessed on 10 March 2024)
(Figure A1). These files are stored as an archival file type (.tar), so the “tar” program is
useful in extracting the set of files contained within the greater archival file. The archive file
sizes are generally large in this case, so an alternative to a conventional web-based retrieval
is to use the “curl” program at the command line, which is capable of resuming from a
failure in the file transfer process as can occur from network connection loss. An example
is below for obtaining a relevant sample of mouse data:

curl –O https://ftp.ebi.ac.uk/pub/databases/alphafold/latest/UP000000589_10090_MOUSE_v4.tar
(accessed on 10 March 2024)

The above archive file (tar file format) has both PDB and mmCIF formatted file types
per protein. A command line is shown below for restricting the file extraction process to
the PDB file type:

tar –xvf UP000000589_10090_MOUSE_v4.tar *.pdb.gz

As follows from use of the “gz” file extension in the above example, each PDB format-
ted file had been compressed to a smaller file size in a binary format (gzip file format), so a
decompression operation would lead to a plain text file with the PDB protein structure data.
To decompress these files in a single operation, the “gzip” program is commonly used:

gzip –d *.gz
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Figure A1. Sample of a PDB formatted file that describes the 3d atomic structure of a hemoglobin
protein from an avian species (1HV4) [43]. This format is described online: https://www.cgl.ucsf.
edu/chimera/docs/UsersGuide/tutorials/pdbintro.html (accessed on 10 March 2024). For this
sample, the description of each row is in the first, fourth, fifth, and last columns. The first column
is a key name for the layout of the row and its data. In this case, it is the key word ATOM which
refers to the data type in the row. In this case, it is atomic level data. The last column is a one-letter
abbreviation for the chemical element that corresponds to the atomic level data in the row. Lastly, the
fourth column lists the three-letter abbreviation of the amino acid molecule that is the parent of the
atomic element, and the fifth column lists the identifying name of the protein chain. The seventh,
eighth, and ninth rows correspond to the X, Y, and Z coordinates of the atom, respectively, and its
position in three-dimensional space.

https://alphafold.ebi.ac.uk/download
https://ftp.ebi.ac.uk/pub/databases/alphafold/latest/UP000000589_10090_MOUSE_v4.tar
https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html
https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html
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Since the tar-based archive file itself is not compressed, but the data files contained
within the archive are compressed, the unarchival operation to extract these files to a
directory will use disk space similar to that of the original size of the archive file. However,
decompression of the individual compressed data files (gzip file format) will occupy a much
larger space on the storage device because each of these data files is expected to uncompress
to four times of its original file size. Therefore, if the uncompressed data files of interest
occupy four gigabytes of disk storage, then the decompression operation is expected to
result in the use of 16 gigabytes of disk space. Since this example corresponds to a single
organism and its protein structure data files, the disk storage requirement is consistent with
the capabilities of a desktop computer. However, extending a study to other organisms, or
inclusion of protein structure prediction data across the Swiss-Prot database, would lead
to a very large use of disk space. In this case, another requisite is that the file system show
robustness in the handling of a very large number of data files, since the above method can
generate from a few thousand to greater than a million files on the disk.

Appendix A.2 Parsing the PDB Data Files

The PDB formatted data files are expected to conform to the standardized format as
described at the site below:

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html (accessed on
10 March 2024)

As a rule, each PDB formatted data file can contain more than one model per protein
structure. It may also describe more than one protein chain per model. To help enumerate
these features, in Appendix B there is Python computer code for parsing the PDB data file
by these both these features, which then prints out the names of the models and polypeptide
chains of the protein [42].

Other code samples are at a GitHub web site for processing PDB data files [42],
including a template for splitting a PDB data file into multiple data files, where each split
file represents a window of nine amino acid residues. For this case, the window is shifted
by one residue per newly created file, so the procedure is equivalent to sliding a window
along the sequence of amino acid residues of a protein and writing that data to a file that
corresponds to the window of nine amino acids and the associated protein structure data.
However, this procedure leads to disk space usage that is orders of magnitude greater than
the disk space occupied by the original PDB data files. The count of files likewise increases
by the same factor, while the Python code is not a performant language in processing these
kinds of file operations, given the expectation it is processing the code in a single thread,
and furthermore, the code in this example is not necessarily translated by the Python
code interpreter to a form of highly efficient machine code, as in a low-level programming
language which is adapted for efficiency in the processing of machine instructions.

Appendix A.3 Format of Data Files for TM Score

Appendix B has a second code sample. In this case, it resets the amino acid residue
number—an index of each PDB data file—since by default, the TM score expects that the
sequence of residues in each of the two input data files are beginning with the same index
numbering scheme.

Appendix B

This section has two samples of Python code for processing PDB formatted data files
(note that this code is formatted for a publication standard that does not retain the original
indentation scheme or the original usage of special characters). These files are expected to
conform to the standardized format as described at the following web site:

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html (accessed on
10 March 2024)

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html
https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html
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Each PDB data file can describe more than one three-dimensional model of the one or
more polypeptide chains of a protein and its structure. Below is code for parsing each PDB
data file by these two features, which then displays the names of the model and the amino
acid chains of the protein [42]:

import glob
from Bio.PDB.PDBParser import PDBParser

# assign functions
parser = PDBParser()

# input file
for file in glob.glob(‘./*.pdb’):
print(“file: “, file)

# retrieve PDB structure
structure = parser.get_structure(file, file)

# iterate over models and chains in file
for model in structure:
print(“model: “, model)
for chain in model:
print(“chain: “, chain)

Below is the second code sample. In this case, the procedure resets the amino acid
residue number, an index, of each PDB data file, since by default TM score expects that
the amino acid sequences in the input data files are annotated with the same index-based
numbering scheme:

import os

directory = ‘C:/Peptide3d/data’
files = os.listdir(directory)

for file in files:
if file.endswith(‘pdb’):
print(file)
pdb_file = file

with open(pdb_file, ‘r’) as f:
lines = f.readlines()

current_residue = None
start_residue = 1
current_residue_number = start_residue − 1

for i, line in enumerate(lines):
if line.startswith(‘ATOM’):
residue = line[22:26]
if residue != current_residue:
current_residue = residue
current_residue_number += 1
lines[i] = line[:22] + str(current_residue_number).rjust(4) \
+ line[26:]

if line.startswith(‘TER’):
residue = line[22:26]
if residue != current_residue:
current_residue = residue
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lines[i] = line[:22] + \
str(current_residue_number).rjust(4) + line[26:]

with open(pdb_file, ‘w’) as f:
f.writelines(lines)

Appendix C

The Python code below is in the form of a Colab Notebook. It is modified source
code to access TCRBuilder2 and is available at a GitHub site [42]. The code is organized as
two separate blocks of code.

Step 1. Install TCRBuilder2 library dependencies:

# Edit sequence_1, sequence_2, filename—the input data for prediction of 3d structure
# The Colab runtime may report a crash from an expected restart during installation of a library

# Comment out this line to enable verbose output
%%capture

!pip install ImmuneBuilder # use Python installer to install ImmuneBuilder (TCRBuilder2)
!pip install -q condacolab # google colab-compatible access to conda

import condacolab, sys # import modules to access their functions
condacolab.install_mambaforge() # use of mamba to install conda modules

!mamba install openmm # install openmm (toolkit for molecular simulation; refine prediction)
!mamba install pdbfixer # install pdbfixer (fix problems in PDB formatted files)
!conda install -y -c bioconda anarci # install anarci module from bioconda distribution

Step 2. Install TCRBuilder2 and run the model:

# Delete and restart Colab runtime to avoid unexpected errors in the following code

# Comment out this line to enable verbose output
%%capture

!pip install -q ImmuneBuilder # use Python installer to install ImmuneBuilder (TCRBuilder2)

protein_type = “TCR”
from anarci import number # github.com/oxpig/ANARCI; aligns sequence to canonical protein
from ImmuneBuilder import TCRBuilder2 # prediction of 3d structure

# Select model
predictor = TCRBuilder2() # “TCRBuilder2” or “ABodyBuilder2” model

# Inspect that TCR sequences are annotated as TCR alpha and beta chains
# Below is sequence data from www.rcsb.org/structure/5d2l (accessed on 10 March 2024)
sequence_1 = ‘MILNVEQSPQSLHVQEGDSTNFTCSFPSSNFYALHWYRWETAKSP\
EALFVMTLNGDEKKKGRISATLNTKEGYSYLYIKGSQPEDSATYLCAFITGNQFYF\
GTGTSLTVIPNIQNPDPAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDK\
CVLDMRSMDFKSNSAVAWSNKSDFACANAFNNSIIPEDTFFPSPESS’
sequence_2 = ‘MGAGVSQSPSNKVTEKGKDVELRCDPISGHTALYWYRQRLGQGLE\
FLIYFQGNSAPDKSGLPSDRFSAERTGESVSTLTIQRTQQEDSAVYLCASSQTQLWET\
QYFGPGTRLLVLEDLKNVFPPEVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSW\
WVNGKEVHSGVCTDPQPLKEQPALNDSRYALSSRLRVSATFWQNPRNHFRCQVQF\
YGLSENDEWTQDRAKPVTQIVSAEAWGRAD’
sequence_1 = ““.join(sequence_1.split()) # Remove whitespace
sequence_2 = ““.join(sequence_2.split()) # Remove whitespace
filename = ‘output.pdb’ # output file name as PDB formatted file (viewable in RasMol)

www.rcsb.org/structure/5d2l
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# Anarci will reject the sequence if it is not an expected match to the immunoprotein
_, chain1 = number(sequence_1) # set key for chain 1 to input sequence
_, chain2 = number(sequence_2) # set key for chain 2 to input sequence

input = dict() # initialize hash table of key-value pairs
if chain1:
input[chain1] = sequence_1 # add sequence value to key for hash table
if chain2:
input[chain2] = sequence_2 # add sequence value to key for hash table

predictor.predict(input).save(filename) # run 3d prediction of TCR, save to file
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