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Abstract: The long-term, large-scale behavior in a problem of stochastic nonlinear dynamics cor-
responding to the Abelian sandpile model is studied with the use of the quantum-field theory
renormalization group approach. We prove the multiplicative renormalization of the model including
an infinite number of coupling parameters, calculate an infinite number of renormalization constants,
identify a plane of fixed points in the infinite dimensional space of coupling parameters, discuss their
stability and critical scaling in the model, and formulate a simple law relating the asymptotic size of
an avalanche to a model exponent quantifying the time-scale separation between the slow energy
injection and fast avalanche relaxation processes.
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1. Introduction

The Abelian sandpile model (ASM) was introduced by P. Bak, Ch. Tang, and K. Wiesen-
feld [1] as an example of a cellular automaton following the Abelian dynamics [2] and
displaying the self-organized criticality (SOC) property [3–9] that is considered to be the
important mechanism contributing to complexity [4,10] in a way that could be linked to
the critical phenomena theory [11,12]. Similarly to the scale-invariant systems being in a
critical state, the SOC models do not possess characteristic scales, and the scaling exponents
characterizing the power law asymptotes of Green functions are rather determined by the
symmetries of interactions in these models [13,14]. However, unlike critical phenomena,
the “critical states” in SOC models are the attractors of the automaton dynamics that
are achieved without the tuning of any control parameters [15]. Criticality is character-
ized by the scale-invariant fluctuations referred to as a special state between order and
chaos [16], and the self-tuning to criticality was reported in many disciplines as diverse
as seismology [17,18], the percolation of gels [19], neuroscience [16,20–23], high-energy
astrophysics [24,25], forest fires [26–28], sociology [29–31], data analysis [32], and the study
of consciousness [33,34].

The effect of noise on the SOC dynamics was noticed a long time ago [35]. Although
various models of noise lead to the same scaling exponents, the observed universality
class is sensitive to noise, as the different assumptions about correlations of random forces
injecting energy into the system give rise to different critical behavior [35]. Renormalization
techniques [36] that are used to eliminate the singularities arising in long-term, large-scale
asymptotic behaviors by altering the values of parameters and fields to compensate for
the effects of their self-interactions seem to be an efficient approach to explore the problem
in question. The critical state and the scale-invariant dynamics in sandpile models was
studied with the use of a “real-space renormalization group” by introducing coarse-grained
variables [37,38] and with a “dynamic renormalization group” by an elimination of the
fast short-wave-length modes and the rescaling of the remaining modes in a truncated
equation keeping a single cubic interaction term [39] as early as in 1994. Both approaches
predicted a single attractive fixed-point, although their critical exponents differed. The
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application of renormalization group methods (RGs) to SOC models was continued with
varying conclusions in [40–43] just to mention a few manuscripts. The current state of
discussion on the RG applications to SOC [44–47] may be accurately summarized by
the following words excerpted from a title of one of the mentioned papers: “dimensional
transmutation and nonconventional scaling behavior” in SOC.

In our work, we consider the original ASM [1]; formulate it as a problem of stochastic
nonlinear dynamics following [39,41] whilst keeping all infinite numbers of interaction
terms in the equation; prove the multiplicative renormalization of the model, including an
infinite number of coupling parameters; calculate an infinite number of renormalization
constants following the technique proposed in [48,49]; find a plane of fixed points in the
infinite dimensional space of coupling parameters; discuss their stability and critical scaling
in the model; and formulate a simple law relating the asymptotic size of an avalanche to a
model exponent quantifying the time scale separation between the slow energy injection
and fast avalanche relaxation processes in the ASM. The obtained law resembles the famous
“four-thirds” phenomenological law of Richardson known in turbulent transport [50–52].

This paper is organized as follows. In Section 2, we formulated a stochastic differential
equation for the ASM with the separation of the time scales related to energy injection
and avalanche relaxation. In Section 3, we provided the functional integral formulation
and introduced the Feynman diagram technique for the ASM. We proved that the related
quantum-field theory is multiplicatively renormalizable and requires an infinite number of
renormalization constants, each one corresponding to an individual term in the power series
expansion describing nonlinear interaction in the model in Section 4. We demonstrated that
all the terms in the power series expansion are equally important for UV renormalization
(for the long-term, large-scale behavior), and therefore, the series cannot be truncated at any
order of the expansion parameters, as was assumed beforehand [35,41]. In Section 5, we
calculated an infinite number of renormalization constants in the one-loop order of diagram
expansion, in the minimum subtraction scheme. Furthermore, in Section 6, we formulated
the RG-equations for the ASM. The model allows for an entire two-dimensional plane of
fixed points featured by two major expansion parameters in an infinite dimensional space
of coupling constants associated with an infinite number of nonlinear interaction terms, as
can be seen in Section 7. We also investigated the IR-stability of fixed points obtained at the
previous step and conclude, in particular, that both energy injection assumptions on white
noise and the “frozen” configuration of random forces that are particularly “popular” in
the literature are IR-unstable, in a sense that the corresponding correlation functions do not
have any stable long-term, large-scale asymptotes (Section 7). In Section 8, we discussed
the critical scaling in the ASM corresponding to the different models of energy injection
and calculated the asymptotic size of an avalanche. We conclude in the last section.

2. Stochastic Differential Equation for the ASM with the Time-Scale Separation
between Energy Injection and Avalanche Relaxation

The microscopic rules of ASM are defined on a finite grid, L ⊂ Zd, in which each
site i ∈ L has an associated value that corresponds to the slope of the pile, usually called
energy [53]. This slope builds up as “grains of sand” δE > 0 are randomly placed onto the
pile until the local slope value exceeds a specific threshold value Ec at which time that site
becomes active and collapses, transferring all energy (sand) to the adjacent sites, increasing
their slope. The amount of energy perturbing the system is fixed at δE = Ec/q, where q is a
coordination number, and the amount of energy transferred to neighbors from an active
site is also fixed at Ec [1,14,41]. As a result, an avalanche that will affect many sites may
emerge, as the neighboring sites can also be activated due to their energy further exceeding
the threshold value Ec and transfer energy, until it is absorbed by the open boundary
E∂L(t) = 0, and all sites reached a value of energy smaller than Ec. The random placement
of sand grains on the grid only resumes when the avalanche is terminated.
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The ASM microscopic evolution rules can be written in the following form invariant
under spatial translations, rotations, reflections, and parity transformation of the order
parameter E→ −E [14,41]:

Ei(t + 1)− Ei(t) =
Ec

q ∑
j∼i

θ
(
Ej(t)

)
− θ(Ei(t)) + ζi(E, t), (1)

in which Ei(t) exceeds the energy over the critical value Ec. The external noise function, viz.,

ζi(E, t) =
Ec

q
δi,n(t) ∏

j∈L

[
1− θ

(
Ej(t)

)]
, (2)

acts at a slow time scale when there are no active sites in the lattice. The random vector
n(t) points at the site of random placement of sand grains δE = Ec/q. In comparison
with the slow dynamics of random placements, and avalanches governed by the rules (1)
evolve incomparably fast (as sand grains are added to the grid only after the avalanche is
terminated) [14].

2.1. Stochastic Differential Equation for the Coarse-Grained ASM

For an appropriate choice of the lattice spacing a, the time step, and the coordination
number q, the stochastic problem (1) and (2) is considered a coarse-grained version of the
following stochastic differential equation for the scalar field E(r, t) [14,41]:

∂E(r, t)
∂t

= A0Ec∆θ(E(r, t)) + f (r, t), (3)

with a single dimensional parameter A0 > 0, [A] = L2T−1. The stochastic Equation (3)
describes the diffusion of energy in Zd issued from a source defined by f (x), x ≡ r, t. The
function f (x) in (3) is a sum of the multiplicative slow time scale external noise describing
the energy injection into the system and the internal noise that appears due to the elimination
of microscopic degrees of freedom and dissipation of energy at the lattice boundaries, as en-
ergy is pumped into the system when f (x) > 0 but disappears whenever f (x) < 0 [14]. In
a stable sandpile configuration, ⟨ f (x)⟩ = 0, as both processes are balanced to correspond to
an assumption of random boundaries defined on an infinite lattice with energy dissipation
for each toppling site, instead of transferring it to neighbors.

The unit step function θ(E) in (3) is then regularized at zero, allowing for a power
expansion with an infinite radius of convergence, viz.,

θ(E) = lim
Ω→∞

1 + erf(ΩE)
2

(4)

where erf(x) = π−1/2
∫ x
−∞ exp[−y2] dy is the error function, and Ω is a regularization

parameter. Expanding the regularizing function (4) into the powers of E in (3), we obtain
the following stochastic differential equation:

∂E(r, t)
∂t

= A0Ec

∞

∑
n≥1

νn0

n!
∆En(r, t) + f (r, t), νn0 = lim

M→∞
Mnθ(n)(0), n ∈ N (5)

where θ(n)(0) is the n−th order derivative of the regularizing function (4) at zero. In (5),
all even coupling constants vanish, as θ(2n+2)(0) = 0. Although νn0 → ∞, as M → ∞,
the series in (5) converges. In the previous studies related to the renormalization of the
ASM [41], the series in (5) was truncated at the third term, and then an attempt to study
long-term, large-scale asymptotic behavior in a truncated model was made. However,
the detailed analysis of UV-divergences in the integrals of the perturbation series and the
multiplicative renormalization given in the forthcoming sections following [14] suggests
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that all interaction terms A0Ecνn0∆En(r, t)/n! are equally important, and therefore, none of
them can be omitted.

In Equation (5) and throughout the paper, we shall mark the bare, unrenormalized
parameter A0 and the coupling constants νn0 with the “0”-index to distinguish them from
their renormalized analogs, which we shall denote in forthcoming sections as A and νn,
respectively. In what follows, we include the threshold value Ec into the coupling constants
νn0 to simplify the notation.

2.2. Co-Variance of Random Forces with Time-Scale Separation

While, in the slow time scale of energy injection, the random dynamics can be taken
into account as white noise F(x), x ≡ r, t [14], viz.,

⟨F(x)⟩ = 0, DF ≡
〈

F(x)F(x′)
〉
= 2Γδd(r− r′)δ(t− t′) (6)

where Γ is the Onsager coefficient, the fast time scale dynamics of avalanche relaxation
can be modeled by the linear Langevin equation driven by the slow time-scale white noise
F(x) [14], viz.,

∂ f (x)
∂t

+R f (x) = F(x), R(k) ≡ ϱ0A0k2−2κ . (7)

Without loss of generality, we assume in (7) that the anomalous diffusion can be described in
Fourier space by a pseudo-differential operator R characterized by the exponent 2κ > 0 and
the coupling constant ϱ0 > 0 related to the reciprocal correlation time tc(k) = k2κ−2/ϱ0A0
at wave number k [14]. As usual, the “0”-index denotes the bare, unrenormalized values of
the parameters. The unrenormalized coupling constant ϱ0 corresponds to the microscopic
degrees of freedom omitted from Equation (3) in the course of the coarse-graining of the
microscopic rules (1), and therefore, it is related to the UV momentum scale (of energy
injection) as ϱ0 ≃ Λ2κ [14]. The coefficient of anomalous diffusion 2− 2κ is related by
κ = d/2(1− τ) to the Lyapunov spectrum with a universal exponent τ < 1 describing the
energy transport in the lattice [8].

The covariance of the slow time scale random force (6) is modeled in Fourier space by
the following power law asymptotics at large k:〈

F(k, ω)F(−k, ω′)
〉
≡ DF(k) ∝ ϱ0A

3
0k6−d−2ϵ−2κ . (8)

The physical dimension [⟨FF⟩] = LdT−3 is built in the power law model (8) from A0 and
k, which is the only dimensional parameter in the problem. However, the white noise
assumption (6) requires that DF should be constant in Fourier space, and therefore, we
need a regularization parameter ϵ > 0 quantifying the departure of the physical model
from the logarithmic theory (when ϵ = 0), similarly to the well-known ε = 4− d expansion
parameter in the critical phenomena theory [11,13,14], although 2ϵ in the model (8) is
not related to the space dimension d. Finally, although the spectral density of the energy
injection is independent of the correlation time tc(k) at any given wave number k, the
slow time scale random force covariance (8) should be proportional to a dimensionless
coupling constant ϱ0k−2κ , which is a small formal parameter of the perturbation theory [14].
The exponents 2κ and 2ϵ in (8) are the parameters of double expansion in the {κ − ϵ}
plane around the origin κ = ϵ = 0, with the additional convention that ϵ = O(κ), and
their physical values are taken such that 6− d = 2(κ + ϵ), for the case of random force
uncorrelated in space, DF(k) ∝ Const [14].

Then, it follows from (7) that the covariance of the fast time-scale random force f
should be consistent with the model (8) [14], viz.,

D f (ω, k) =
DF(k)

ω2 + [ϱ0A0k2−2κ ]2
∝

ϱ0A
3
0k6−d−2ϵ−2κ

ω2 + [ϱ0A0k2−2κ ]2
. (9)
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The model (9) has a formal resemblance with the models of random walks in a random
environment under long-range correlations. On the one hand, in the rapid-change limit
ϱ0 → ∞, the covariance model (9) takes the form D f (ω, k)→ A0k2−d−2ϵ+2κ/ϱ0 that reduces
to the uncorrelated white noise model (6) with Γ = A0/2ϱ0 for ϵ− κ = 1− d/2. On the
other hand, in the limit of “frozen” configuration, ϱ0 → 0, the external random force acts
continuously in time, and the covariance (6) is static, viz., D f (ω, k)→ πϱ0A

2
0k4−d−ϵδ(ω).

3. Functional Integral Formulation and Feynman Diagram Technique for the ASM

A stochastic dynamics problem is equivalent to a quantum field theory of the doubled
set of fields, E and E′ (each basic field acquires an auxiliary field) [13,14,54–56], in the
sense that the statistical averages ⟨. . .⟩ of the dynamic quantities over the ensemble of
configurations in the stochastic problem can be identified with the functional averages taken
with weight exp S(E, E′) for some action functional S(E, E′).The generating functional of
full Green functions for the stochastic problem (5) can be represented by the following
functional integral [14]:

G(A) =
∫
DE DE′ exp

[
S(E, E′) +

∫
dx
(

AE(x)E(x) + AE′(x)E′(x)
)]

(10)

with the action functional

S(E, E′) =
1
2

∫
dx
∫

dx′ E′(x)D f (x, x′)E′(x′) +
∫

dx E′(x)

[
−∂tE(x) +A0

∞

∑
n≥1

νn0

n!
∆En(x)

]
(11)

where x ≡ r, t, and the arbitrary sources AE(x) and AE′(x) can be interpreted as the non-
random external forces, so that the Green function ⟨E(x)E′(x′)⟩ of the model (11) coincides
with the simplest response function ⟨δE(x)/δ f (x′)⟩ of the original stochastic problem (5).
All possible boundary conditions and the trivial asymptotic conditions for the fields E(x)
and E′(x) at infinity are included in the domain of the functional integration DE DE′ over
E and E′ [14].

The standard Feynman diagram representations for the functional integral (10) are
common to all models of stochastic nonlinear dynamics [13,14,54] and comprise the directed
lines corresponding to the delayed (

←−
∆ ) and advanced (

−→
∆ ) propagators, viz.,

←−
∆ ≡< EE′ >0= (−iω +A0ν10k2)−1,

−→
∆ ≡< E′E >0=< EE′ >∗0 , (12)

and the undirected line corresponding to the pairwise propagator of the major field E,
viz., ∆ ≡< EE >0=

←−
∆ D f (k, ω)

−→
∆ . The pairwise propagator of the auxiliary field E′,

< E′E′ >0= 0. In the diagrammatic expansion, there is an infinite number of (n + 1)-
leg interaction vertices E′∆En proportional to the factors A0νn0/n! playing the role of
expansion parameters. In Fourier space, these interactions are ∝ k2, that is, they factored
out to each external line E′ in the Feynman diagrams, reducing the degree of UV superficial
divergences in the 1-irreducible Green’s functions [14]. Furthermore, as the delayed
and advanced propagators (12) in the time representation are proportional to the unit
step function θ(t − t′), all diagrams for the 1-irreducible Green functions (without E′),
all vacuum loops, as well as all connected functions < E′ . . . E′ > (without E) vanish
identically, because of their diagrams contain the closed cycles of delayed propagators. We
also assume that θ(0) = 0, so that the self-contracted lines Tr[

←−
∆ ] and Tr[

−→
∆ ] vanish, and all

Feynman graphs that do not arise in the iterations of the perturbation theory.
Correlation functions ⟨E(x1) . . . E(xk)⟩, x ≡ r, t of the field E(x) and response func-

tions ⟨δm[E(x1) . . . E(xk)]/δ f (x′1) . . . δ f (x′m)⟩ expressing the system response to an external
perturbation are represented by the infinite sums of Feynman-like graphs with n-line
vertices and two types of lines, ∆ and

←−
∆ [14]. In Figure 1, we drew the one-loop order
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diagram expansions for the pairwise correlation function ⟨EE⟩ (as can be seen in Figure 1a)
and the simplest response function ⟨δE/δ f ⟩ (see Figure 1b).

(a)

(b)

Figure 1. The one-loop order diagram expansions for the simplest response function ⟨δE/δ f ⟩ and the
pairwise correlation function ⟨EE⟩.

The diagram expansions shown in Figure 1 are typical for the stochastic nonlinear
dynamics problems [12–14,54–56]. In particular, the first graphs of the diagram expansions
(presented in Figure 1) coincide with the Wyld diagrams obtained for the stochastic Navier–
Stokes equation in the theory of fully developed turbulence [57], although they differ in the
orders with two or more loops [14].

The diagram expansions like those shown in Figure 1 are stable if small perturbations
decay with time, i.e., the singularities of diagrams in the frequency domain ω lie in the
lower half-plane of the complex plain. For the bare response functions, stability is ensured
by the correct sign of the A0k2 > 0 [14]. The exact response function given by the Dyson
equation, viz.,

< EE′ >=
[
−iω +A0ν10k2 − ΣEE′(ω, k)

]−1
, (13)

where ΣEE′(ω, k) is an infinite sum of 1-irreducible graphs of the diagram expansion [14].
In the one-loop order (shown in Figure 1a), the only 1-irreducible diagram corresponds to

< EE′ >≃1−loop −
∫ dω′

2π

∫ dp
(2π)d

∆(ω′, p)
−i(ω + ω′) +A0ν10(p + k)

, (14)

where p ≡ |p|, and the bare propagator ∆(ω, k) ≡< EE >0 in the (k, ω)−representation
has the form [14]

∆(ω, k) =
ϱ0A

3
0k6−d−2ϵ−2κ

(ω2 + [ϱ0A0k2−2κ ]2)
(
ω2 +A2

0ν2
10k4

) . (15)

Integrating (14) over ω′ results in

< EE′ >≃1−loop −
A2

0
2ϱ0

∫ dp
(2π)d

p2−d−2ϵ

−iω +A0ν10(p + k)2 + ϱ0A0k2−2κ
. (16)

Within the order of perturbation theory, the self-energy term ΣEE′ is proportional to
the small parameter ∝ ϱ−1

0 and therefore cannot compete with the bare contributions
∝ A0ν10k2 [14]. However, if the integral (14) diverges as k, ω → 0, the IR-singularities

would compensate the smallness of the coupling constant, so that the entire series ΣEE′

should be summed to ensure the diagram expansion validity. The integral (14) is IR-
divergent if either κ < 0, ϵ > 0 or κ > 0, ϵ > κ. For the rest of the (ϵ − κ)-plane, the
leading term governing the long-term, large-scale asymptotic behavior is trivial since it is
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dominated by the bare contribution ∝ A0ν10k2, while other contributions ∝ νn0, n > 1 are
negligible [14].

The strength of IR-singularities in the diagrams increases with the number of loops
and decreases for small ϵ and κ, vanishing at ϵ = κ = 0, i.e., at a logarithmic point
corresponding to the interaction-free and linearized problem. However, we cannot set
ϵ = κ = 0, because of the UV divergence of the integrals at this point. Diagrams in ΣEE′

are UV-divergent when κ > 0, ϵ < 0 and κ < 0, ϵ < κ, and therefore require a UV- cutoff
at k ≃ Λ. The elimination of these singularities from all diagrams is performed by the
standard procedure of UV-renormalization [13,14,36].

4. Multiplicative UV-Renormalization of the ASM

The analysis of UV-divergences in diagram expansion for the ASM is based on the
dimensional counting arguments [13,14,36,54] applied to the action functional (11)—each
term in that should be “dimensionless” with respect to the scaling transformations of space
and time.

Theorem 1. The Abelian sandpile model is multiplicatively renormalizable with a countably infinite
number of renormalization constants.

Proof of Theorem 1. With respect to the scaling transformations of momentum and fre-
quency, any quantity Q in the problem in question is characterized by dk[Q] and dω [Q],
the relevant momentum and frequency canonical dimensions, respectively. Assuming that
dk[k] = dω [ω] = 1, dk[ω] = dω [k] = 0 and noting that ω ∼ k2 (as ∂t ∼ ∆ in the linearized
equation of the model), one can introduce a total canonical dimension of a quantity Q as
d[Q] = dk[Q] + 2dω [Q] in the model [14]. In particular, d[k] = dk[k] + 2dω [k] = 1, and
d[ω] = dk[ω] + 2dω [ω] = 2. The canonical dimensions of the fields and parameters in the
ASM are given in Table 1 and ( adopted from [14]). As usual, the unrenormalized values of
parameters are denoted in Table 1 by the “0”-index.

Table 1. Canonical dimensions of the fields and parameters in the ASM.

Q E E′ νn0 νn, ϱ A,A0 ϱ0

dk −ϵ d + ϵ (n− 1)ϵ 0 −2 2κ
dω 0 0 0 0 1 0
d −ϵ d + ϵ (n− 1)ϵ 0 0 2κ

Due to the nonlinear interactions in the model apart from the logarithmic point, the
canonical dimension of the frequency d[ω] is replaced in the long-term and large-scale
asymptotes with a critical dimension of frequency, ∆[ω] = 2 + γω, in which γω is some
anomalous dimension of frequency [13,14,54]. Similarly, apart from the logarithmic point, the
canonical dimension of a quantity d[Q] changes in the long term and large-scale asymptotes
to the corresponding critical dimension [14], viz.,

∆[Q] = dk[Q] + ∆[ω] · dω [Q] + γQ, (17)

where γω is some anomalous dimension of Q. The formal degree of UV divergence of a
correlation function G comprising NE fields E and NE′ fields E′ is given by the following
divergence index [13,14,54]:

δG = d + 2−
(

NEd[E] + NE′d[E
′]
)

(18)

where d is the dimension of space. All diagrams (integrals) contributing to the same
correlation function are characterized by the same divergence index (18). The diagrams
correspond to the divergent integrals and therefore require compensating counter-terms
in the course of UV-renormalization present in the correlation functions G, for which
δG is a non-negative integer [13,14,54]. As we have already mentioned, all correlation
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functions that only contain the major fields E (without E′) vanish and, consequently, do not
require counter-terms [13,14,54]. It is also important to mention that the actual degree of
divergence δ′G may be smaller than the formal divergence degree δG defined in (18) if the
correlation function G contains derivatives that can be factored out of the diagram loop
integral onto the external E′-field [14]. For example, the Laplace operator ∆ can be moved
onto the field E′ by the integration by parts in the diagrams for each interaction vertex
E′∆En, so that δ′G = (d + 2)(1− NE′), although δ = (1− NE′)d + 2. We conclude that, for
any space dimension d, the superficial (logarithmic) UV divergences can only exist in the
1-irreducible diagrams corresponding to the functions < E′E . . . E > comprising a single
auxiliary E′ field (NE′ = 1) and an arbitrary number NE of the major field E, for which
δ<E′E...E> = 2, but δ′<E′E...E> = 0, and therefore all relevant counter-terms must have the
form E′∆En [14].

The inclusion of required counter-terms compensating the superficial (logarithmic)
UV divergences in the model is reproduced by the multiplicative renormalization of the
bare parameters A0, ϱ0, νn0 and fields E, E′ as follows [14]:

A0 = AZA, ϱ0 = ϱµ2κZϱ, νn0 = νnµ(n−1)ϵZνn , E = ERZE, E′ = E′RZE′ (19)

where µ is the renormalization mass parameter (dk[µ] = 1, dω [µ] = 0, d[µ] = 1) ex-
pressing the non-uniqueness of the UV-renormalization procedure, ER and E′R are the
renormalized analogs of the fields E and E′, and ZQ are the particular renormalization
constants of the corresponding quantities Q. As all the terms of the renormalized ac-
tion functional are dimensionless with respect to the scaling transformations of space
and time, the particular renormalization constants should be related to each other as
follows: ZE = ZA, ZE′ = Zϱ = Z−1

A , and the renormalized action functional free of the
UV-divergences takes the following form [14]:

S(ER, E′R) =
1
2

∫
dx
∫

dx′ E′R(x)D f (x, x′)E′R(x′) +
∫

dx E′R(x)

[
−∂tER(x) +A

∞

∑
n≥1

Znµ(n−1)ϵνn

n!
∆En

R(x)

]
, (20)

in which the renormalization constants Zn ≡ Zn
EZνn = Zn

AZνn that are directly calculated
from the diagrams of perturbation theory expansion.

5. Calculation of an Infinite Number of Renormalization Constants in the ASM

Following [14], we calculate an infinite number of the renormalization constants
Zn in the one-loop approximation in the minimal subtraction scheme using the method
developed in relation to the problem of turbulent convection of a passive scalar impurity
and the problem of growing phase boundary [48,49].

Theorem 2. In the minimal subtraction scheme, in which only the poles are subtracted from the
divergent integrals, in the one-loop approximation, the renormalization constants Zn have the
following form:

Zn = 1− 1
2d−1πd/2Γ(d/2)

∞

∑
ℓ=0

(−1)ℓ
ϱ2ℓ

νn

n

∑
m=0

(
Xmn

ℓm

2ϵ + 4κℓ
+ Ymn

ϱℓm

2ϵ + 2κ(2ℓ+ 1)

)
(21)

where Xmn and Ymn are the polynomials of the variables νk/ν1, k ≤ n.

Proof of Theorem 2. The generating functional of 1-irreducible Green functions Γ(E),
E ≡ {E, E′} of the field theory (11) is defined by the Legendre transform of the connected

Green functions W(A) (10) with respect to the source fields AE (x) [14], viz.,

Γ(E) = W(AE )−∑
E

∫
dx[AE (x)E(x)], E ≡ E, E′. (22)
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The one-loop order contribution Γ(1)(E) to (22) is given by [14]

Γ(1)(E) = −1
2

Tr log
(

KEEK−1
0

)
, KEE ≡

(
KEE KEE′

KE′E KE′E′

)
, K0 ≡

(
0
←−
∆

−→
∆ ∆

)
(23)

where

KEE = −A ∑
n>1

νnµ(n−1)ϵ

(n− 2)!
E(n−2) ∆E′, KEE′ = −∂t −A ∑

n≥1

νnµ(n−1)ϵ

(n− 1)!
E(n−1) ∆, (24)

KE′E′ = −D f , KE′E = K⊤EE′ . (25)

We are interested in the linear terms in the auxiliary field E′(x) only, as others do not diverge.
Moreover, we can consider the functions ∆E′(x) and E(x) to be constants, neglecting
their inhomogeneity in x, as the actual UV-divergence degree is δ′ = 0, and therefore,
we need estimations for divergent parts at zero external momenta, k = 0. Using the
relation δ(Tr log K) = Tr(K−1δK), we obtain the following expression for the one-loop
order contribution [14]:

Γ(1)
∣∣∣
E′−linear

= −A
∫

dx [K−1]EE ∑
n>1

νnµ(n−1)ϵ

(n− 2)!
E(n−2)∆E′ (26)

where

[K−1]EE =
∫∫ dω dk

(2π)d+1

D f (ω, k)

ω2 + [Ak2V ]2
, V ≡ ∑

n≥1

νnµ(n−1)ϵ

(n− 1)!
E(n−1). (27)

Integrating (27) over the frequency variable ω, viz.,

[K−1]EE =
∫ dk

(2π)d
k−d−2ϵ

ϱ2(µ/k)4κ + V2

[
1 +

ϱ(µ/k)2κ

V

]
, (28)

and expanding the result in powers of ϱ2, we obtain [14], viz.,

[K−1]EE = − Sd

2πd
m−2ϵ

V2

∞

∑
ℓ=0

(−1)ℓ
[

ϱ(µ/m)2κ

V

]2ℓ( 1
2ϵ + 4κℓ

+
1
V

ϱ(µ/m)2κ

2ϵ + 2κ(2ℓ+ 1)

)
(29)

where Sd ≡ 2πd/2/Γ(d/2) is the surface area of a unit sphere in d−dimensional space.
Substituting the result (29) back into (26), we arrive at the following expression for the
one-loop order contributions [14]:

Γ(1)
∣∣∣
E′−linear

≃ ACd
m2ϵ

∞

∑
ℓ=0

(−1)ℓ
[

ϱ
( µ

m

)2κ
]2ℓ( V ′

V2ℓ+2
1

2ϵ + 4κℓ
+
V ′
V2ℓ+3

ϱ(µ/m)2κ

2ϵ + 2κ(2ℓ+ 1)

)
∆E′, (30)

where V ′ is the derivative of series V (27) with respect to E. The quotients of series,
V ′/V2ℓ+2 and V ′/V2ℓ+3, in (30). can be expressed in the form of the following double
expansions [14], viz.,

V′(E)
V2ℓ+2(E)

=
∞

∑
n=0

n

∑
m=0

µϵ(n+1) Xmnℓm

n!
En,

V′(E)
V2ℓ+3(E)

=
∞

∑
n=0

n

∑
m=0

µϵ(n+1) Ymnℓm

n!
En, (31)

where Xmn and Ymn are the polynomials of the variables (νk/ν1), k ≤ n that can be
calculated using (31) as the generating functions. The first three polynomials are as follows:

X00 =
ν2

ν1
, X01 =

ν3

ν1
− 2 ν2

2

ν1
2 , X02 =

1
2

ν4

ν1
− 3 ν3 ν2

ν1
2 +

3 ν2
3

ν1
3 . (32)
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Y00 =
ν2

ν1
, Y01 = −3

ν2
2

ν1
2 +

ν3

ν1
, Y02 =

1
2

ν4

ν1
+

6 ν2
3

ν1
3 −

9
2

ν2 ν3

ν1
2 . (33)

From (30) and (31), in the minimum subtraction scheme, in the one-loop order, for the
renormalization constants Zn = 1− Γ(1)

∣∣∣
E′−linear

, we obtain the required result (21).

6. RG-Equations for the ASM

The requirement of eliminating the divergences from the Feynman diagrams of pertur-
bation expansion does not determine the relations between the renormalized parameters,
E ≡ {A, ϱ, νn}, n ≥ 1, and their bare values, E0 ≡ {A0, ϱ0, νn0}, n ≥ 1, uniquely [14]. The
remaining arbitrariness is expressed by the dimensional renormalization mass µ, dk[µ] = 1,
d[µ] = 1. The differential operator Dµ ≡ µ ∂/∂µ|E0

for the fixed values of bare parameters
E0 applied to the renormalization identity of the connected Green functions, WR

n = Z−n
E Wn,

yields the basic RG equation [14], viz.,

[DRG + nγE]WR
n (E , µ, κ, ϵ) = 0, γE ≡ Dµ log ZE, (34)

in which the RG-differential operator is defined as follows [14]:

DRG ≡ µ
∂

∂µ

∣∣∣∣
E0

+ ∑
E={A,ϱ,νn}

µ
∂E
∂µ

∣∣∣∣
E0

∂

∂E (35)

with summation over all renormalized parameters E . The coefficients DµE in the RG-
differential operator (35) known as β−functions [14], viz.,

βϱ ≡ Dµϱ, βn ≡ D̃µνn, (36)

do not have poles neither in κ nor in ϵ. The γ−functions, γE (34) and γE ≡ Dµ log ZE are also the
analytic functions in κ and ϵ. As ZE = ZA, ZE′ = Zϱ = Z−1

A , Zn ≡ Zn
EZνn = Zn

AZνn , it follows
that there are the following relations between the β−functions and γ−function [14], viz.,

βϱ = ϱ[−2κ + γA], βn = νn[−(n− 1)ϵ− γνn ],
γE = −γE′ = γA, γνn = γn − γA,

(37)

and therefore, in the one-loop approximation, the RG-differential operator takes the follow-
ing form convenient for calculations:

D̃µ

∣∣∣
1−loop

≃ −2κϱ∂ϱ − ϵ
∞

∑
n=1

(n− 1)νn∂νn . (38)

Applying the RG-differential operator (38) to the general expression of renormalization
constants given by (21), we obtain the following formula for the γ−functions [14]:

γn =
a

νn

∞

∑
ℓ=0

(−1)ℓϱ2ℓ
n

∑
m=0

(Xmn + ϱYmn)ℓ
m =

a
νn

n

∑
m=0

(Xmn + ϱYmn)Pm(ϱ2)

(1 + ϱ2)m+1 , n ∈ N, (39)

where a ≡ 1/(2d−1πd/2Γ(d/2)), and the first few polynomials Pm(x) are: P0 = 1, P1 = −x,
P2 = x(x − 1), P3 = −x(x2 − 4x + 1), P4 = x(x3 − 11x2 + 11x − 1), P5 = −x(x4 −
26x3 + 66x2 − 26x + 1), P6 = x(x − 1)(x4 − 56x3 + 246x2 − 56x + 1), etc. Consequently,
following [14], we obtain

βn = νn

[
−(n− 1)ϵ− a

νn

n

∑
m=0

(Xmn + ϱYmn)Pm(ϱ2)

(1 + ϱ2)m+1

]
. (40)
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Moreover, as γA = a(X00 + ϱY00)(1 + ϱ2)−1 and X00 = Y00 = ν2/ν1 [14], we obtain

γA = a
ν2

ν1

1 + ϱ

1 + ϱ2 , βϱ = ϱ

[
−2κ + a

ν2

ν1

1 + ϱ

1 + ϱ2

]
. (41)

The zeros of β−functions correspond to the fixed points of an RG-Equation [12–14].

7. Plane of Fixed Points in the ASM

Possible regimes of critical scaling in a renormalizable model are associated with
the IR-stable fixed points {ϱ∗, νn∗} of the corresponding differential RG equation [13,54],
such that

βϱ(ϱ∗, νn∗) = βn(ϱ∗, νn∗) = 0, (42)

and the Jacobian matrix Jik = ∂βi/∂νk is positively defined, i.e., when the real parts of all
its eigenvalues are positive, for small κ > 0, ϵ > κ, and 0 < ϱ < 1. It then follows from the
explicit expressions (40) and (41) that the two parameters, ν1∗ and ν2∗, can be chosen to be
arbitrary, and then all other ’coordinates’ of the fixed points, ϱ∗ and νk∗, k > 2, are directly
found from the Equation (42) [14], e.g.,

ϱ∗1 = 0, ϱ∗2,3 =
a

4κ

ν2∗
ν1∗
± i

√(
ν2∗
ν1∗
− 4κ

a

)2
+ 2
(

ν2∗
ν1∗

)2
, (43)

and furthermore

ν3∗ =
ν2

2 ∗
ν1∗

2+3ϱ2
∗+ϱ3

∗
(1+ϱ2∗)(1+ϱ∗)

,

ν4∗ = − ϵ
κ ν2

1∗ +
1
2

ν3
2 ∗

ν2
1 ∗

5ϱ6
∗+11∗ϱ5

∗+15∗ϱ4
∗+43ϱ3

∗+28ϱ2
∗+36ϱ∗+18

(1+ϱ2∗)2(1+ϱ∗)2 , etc.
(44)

Therefore, the RG-Equation (34) possesses a two-dimensional plane of fixed points spanned
with the parameters ν1∗ and ν2∗ in an infinite dimensional space of coupling constants
{ϱ, νk} [14].

The detailed analysis of the IR-stability of fixed points on the {ν1∗, ν2∗}-plane in an
infinite dimensional space seems an impossible task. Below, we only discuss the important
special cases of the model, such as the “white noise” and “frozen” configurations of
stochastic forces fostering energy pumping into the system.

1. If there were no time-scale separation in the ASM (zero correlation time tc(k) = 0 for all
wave numbers k), i.e., for the “white noise” model of energy injection uncorrelated in
space and time, viz., 〈

f (x) f (x′)
〉

= 2Γδd(r− r′)δ(t− t′), (45)

we have ϱ∗ → ∞, and κ = 0, so that all Jnm ≈ −(n− 1)ϵδmn < 0 where δmn is the
Kronecker symbol. Therefore, there are no IR-stable fixed points in the ASM. The time
scale separation is important for the existence of critical scaling regimes in the ASM.

2. In the opposite case of the “frozen” configuration of stochastic force, the first, trivial
solution ϱ∗ = 0 comes into play, and therefore Jnm = −(n− 1)ϵδnm < 0. Therefore,
there are no IR-stable fixed points in the ASM in this case.

In general, as the Jacobian matrix Jnm has a block-triangular form, its eigenvalues
coincide with the matrix diagonal entries [14], viz.,

Jnn = (1− n)ϵ + a
n

∑
m=0

∂νn(Xmn + ϱYmn)Pm(ϱ2
∗)

(1 + ϱ2∗)m+1 . (46)
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These eigenvalues are positive, e.g.,

J00 = −aϱ∗
ν2∗
ν1∗

ϱ2
∗ + 2ϱ∗ − 1
(1 + ϱ2∗)2 > 0, J11 = − 2a

ν2
1∗(1 + ϱ2∗)

(
ν3∗ −

ν2
2∗

ν1∗

5 + ϱ2
∗

1 + ϱ2∗

)
> 0, etc. (47)

whenever
ϱ3
∗ + 3ϱ2

∗ − 2− 4ϱ∗
(1 + ϱ∗)(1 + ϱ2∗)

< 0,
2ϱ2
∗ − 3− 5ϱ∗

(1 + ϱ∗)(1 + ϱ2∗)
< 0, etc. (48)

Although both inequalities in (48) are always true for 0 < ϱ∗ < 1, others may not be.
The IR-stability domains of the fixed points in the ASM are ultimately defined by the
existence and exact location of the roots in the interval 0 < ϱ∗ < 1 for an infinite number
of polynomials in ϱ∗ that can split the {ν1∗, ν2∗}-plane of fixed points into a number of
IR-stable and unstable regions [14]. It is also important to note that, even if the IR-stable
fixed points of an RG equation exist in a model with multiple coupling-constants, the
actual RG-trajectory of the system starting from the particular initial conditions may not
achieve any of them. In our case, the RG-trajectory evolves from the bare parameters
{ϱ0, νk0} in the infinite dimensional space of coupling constants {ϱ, νk}, none of which can
be neglected [14]. The RG-trajectory can leave the stability domain by breaking the scaling
behavior that is often interpreted in the critical phenomena theory as the first-order phase
transition [11–14].

8. On the Critical Scaling in the ASM

Nevertheless, let us suppose that there exists an IR-stable domain in the {ν1∗, ν2∗}-
plane of fixed points in the ASM. Then, the leading terms of the long-time large-scale
asymptotic of the renormalized connected Green functions WR

n satisfy the RG-equation
(34) at the IR-stable fixed points ϱ∗, νn∗, n > 2. It is worth mentioning that the correspond-
ing value of the anomalous dimension γA∗ defined in (41) is exact, requiring no further
corrections neither in ϵ, nor in κ, viz.,

γA∗ = 2κ, (49)

and, therefore, the critical dimensions of all quantities under the scaling of x ≡ t, r at the
fixed values of µ, A, ϱ and νn can be readily calculated. The equation of critical scaling for
the renormalized connected Green functions WR

n comprising nE renormalized fields E and
nE′ renormalized fields E′ takes the following form [14]:

[−Dx + ∆[t]Dt − nE∆E − nE′∆E′ ]W
R
n = 0 (50)

where the coefficients and the critical dimensions of time and fields are given by

∆[t] = −∆[ω] = −2 + γA∗ = −2 + 2κ, ∆[E] = 2κ − ϵ, ∆[E′] = d + ϵ− 2κ. (51)

The critical dimension of time ∆[t] = −2+ 2κ corresponds to the dimension of the reciprocal
correlation time tc(k) ∝ k−2+2κ in the power injection model (7). The critical dimensions
of fields E and E′ for the different assumptions on energy injection in the ASM are given
following [14] in Table 2.

In Section 2, we discussed that, for the random force uncorrelated in space, DF(k) ∝
Const, and therefore, the ‘real’ value of the expansion parameter ϵ should satisfy
6 − d − 2ϵreal − 2κ = 0, or ϵreal = 3 − κ − d/2. Under the “white noise” assumption,
it should be considered that ϵreal = 1− d/2 + κ, although the corresponding fixed points of
RG-transformation are not IR-stable for the lack of time-scale separation between the energy
pumping and relaxation processes. Finally, ϵreal = 4− d, for the “frozen” configuration of
random force that is also not IR-stable.
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Table 2. The critical dimensions of the fields E and E′ for the different assumptions on energy injection
in the ASM [14].

Assumption on Random Force ϵreal ∆[E] ∆[E′] IR-Stability

Uncorrelated in space 3− κ − d/2 d/2 + 3(κ − 1) d/2 + 3(1− κ)
Domain-
wise

“White noise” 1− d/2 + κ d/2 + κ − 1 d/2 + 1− κ No
“Frozen” configuration 4− d 2κ − 4 + d 4− 2κ No

For example, similarly to the famous Kolmogorov −5/3-law for the energy spectrum
in fully developed turbulence, we can say that the leading long-term, large-scale asymp-
totic renormalized Green function < EE >R for the ASM acquires the following scaling
representation in Fourier space (k-representation) [13,54], viz.,

⟨E(−k, 0)E(k, t)⟩ ≃k→0 k2∆[E]−d+∆[t]H
(

tk∆[t], kL, k/µ,Aϱk2−2κ , {νn}∞
n=1

)
(52)

where ∆[E] and ∆[t] are the critical dimensions of energy E and time t, andH is a scaling
function of the dimensionless arguments that is not determined by the RG-equation [13].
The critical dimension of < EE >R for the different assumptions on energy injection
enlisted in Table 2 is given by

∆
[
< EE >R

]
= 2∆[E]− d + ∆[t] =


−8 + 8κ, Uncorrelated in space,
−4 + 4κ, White noise (IR− unstable),
d + 6κ − 10, Frozen (IR− unstable).

(53)

For the static Green function,

< EE >R
st (k) =

1
2π

∫
dω < EE >R (ω, k), (54)

the following long-term, large-scale asymptotic is obtained:

⟨E(−k)E(k)⟩st ∝k→0 k2∆[E]−d, (55)

so that

∆
[
< EE >R

st

]
= 2∆[E]− d =


−6 + 6κ, Uncorrelated in space,
−2 + 2κ, White noise (IR− unstable),
d + 4κ − 8, Frozen (IR− unstable).

(56)

The response function ⟨E′(−k, 0)E(k, t)⟩ evaluates the average size of the relaxation process
(an avalanche) arisen in the system as a reaction for a point-wise perturbation occurring at
time t′ = 0. For the long-term, large-scale asymptotic of ⟨E′(−k, 0)E(k, t)⟩, we obtain:〈

E′(−k, 0)E(k, t)
〉

∝k→0 k∆[E′ ]+∆[E]−d+∆[t] = k∆[t] = k−2+2κ , (57)

uniformly for all critical regimes [14]. Finally, we calculate the asymptotic squared effective
radius of an avalanche at time t > 0 started at t′ = 0 at the origin x = 0 [14], viz.,

R2 =
∫

dx x2〈E(x, t)E′(0, 0)
〉
. (58)

As ∆[R] = −1 by convention, and ∆[dR2/dt] = −2−∆[t], we obtain the following equation
for the avalanche size spectrum [14]:

dR2

dt
∝ R2κ (59)
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that is similar to the well-known Richardson “four-thirds” phenomenological law for the
diffusion of passive admixtures in an ambient turbulent flow [50–52], viz.

dR2

dt
≃ R4/3. (60)

The equation dA/dT = KAκ with some constant K for the effective area covered by
an avalanche A(T) ∝ R2(T) as a function of a (sufficiently long) avalanche duration T
corresponding to (59) has the following general solution:

A(T) = (A0 + K(1− κ)T)
1

1−κ ∝ (1− κ)T
1

1−κ (61)

exhibiting a super-linear growth of the avalanche area with a duration in the correlated
energy injection introducing the time-scale separation in the model, as κ > 0. For instance,
A(T) ∝ 3T3, or R(T) ∝ T3/2, for the Richardson law of turbulent transport (60) where
κ = 2/3. The same exponent value is observed for the first-return time statistics of random
walks in the excursions of a time series above some given (arbitrary) threshold [58] and for
an Ornstein–Uhlenbeck process [59]. Under the “white noise” assumption, κ = 0, which
corresponds to a linear size–time relation, R(T) ∝ T, that is typical for the tent-like shape
avalanches observed in crack propagation experiments [60] and for the Barkhausen noise
in amorphous ferromagnetic films [61].

Finally, in many different contexts in applied science and engineering, there are avalanche
phenomena of widely varied duration and sizes. Such avalanches frequently have probability
distributions with a “fat-tail” that fits well with a power-law distribution (61) for different val-
ues of κ. They include but are not limited to the vortices of superconductors [62], Barkhaussen
noise [63], X-ray flares [25], earthquakes [17], rainfall [64], and failures on electrical power
grids [65]. The collection of observed exponents, R(T) ∝ Tκ , where κ ≃ 2 is documented by
empirical means, aligns with the well-known Galton–Watson branching processes [66,67]
and corresponds to κ = 1/2 in the model that seems to be ubiquitous in propagation
dynamics in real-world networking systems [68,69].

9. Discussion and Conclusions

We have studied long-term and large-scale asymptotic behavior in the ASM model
of SOC introduced by Bak, Tang, and Wiesenfeld [1]. This model has been extremely
stimulating, playing a fundamental role in SOC that is somewhat similar to the role played
by the famous Ising model of ferromagnetism in statistical mechanics [9].

In our work, the stochastic problem corresponding to the ASM model is considered in
the bulk, far from boundaries, and energy dissipation occurs at every point. We used the
field theory formulation of the stochastic problem and apply the RG-technique developed
in quantum field theory to investigate the critical scaling in the ASM, with an infinite
number of coupling constants. Our major result is the proof of the multiplicative UV-
renormalization of the ASM and the calculation of an infinite number of renormalization
constants (required for the simultaneous subtraction of all UV-singularities in perturbation
theory) in the one-loop order. We found the critical exponents for all correlation functions
of energy field E, as well as all response functions, both in dynamics and statics, for the
different assumptions on the energy injection. We have proven that the simplest “white
noise” assumption on the covariance of stochastic force pumping energy into the model
does not correspond to the stable long-time, large-scale asymptotic behavior due to lack
of time-scale separation between the slow energy injection and fast avalanche relaxation
processes. The random force covariance characterized by the correlation time tc(k) ∝ k−2+2κ

scales at a wave number k with some phenomenological parameter 2κ > 0 seems more
realistic, as restoring the time-scale separation that appears in the original models [1],
demonstrating the self-organized critical behavior.

The RG-transformation of ASM takes place in an infinitely dimensional space of
coupling constants corresponding to the competing terms of the power series expansion
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reflecting a threshold nature of relaxation processes. It is worth mentioning that, despite the
values of coupling constants are small, none of these expansion terms can be omitted from
consideration, as their contributions are equally important for the analysis of long-term,
large-scale behavior of the model. Nevertheless, the first two coupling constants play an
important role among others, thus featuring a two-dimensional plane of fixed points of the
RG-transformation. It is important to mention that manifolds of fixed points of the RG
transformation have already been observed in the study of a self-organized critical system.
Namely, a curve of fixed points has recently been discovered [47] in a strongly anisotropic
continuous (coarse-grained) model coupled to an isotropic random fluid environment
introduced in [70,71]. If the IR-stable domains in the plane of fixed points exist, the long-
term and large-scale asymptotic behavior is characterized by critical scaling with the critical
dimensions of the energy field E given in Table 2 for the different models of energy injection
specified by the index 2κ > 0. It is important to note that our results concerning the
critical dimensions enlisted in Table 2 are “exact” in the sense that they do not require
further corrections in terms of the model parameters ϵ and κ. However, the IR-stability
domains on the plane of fixed points of the RG transformation indeed depend on the values
of model parameters. As we have shown, some regimes that arise at certain values of
model parameters may be not IR-stable, although we have also formally calculated critical
dimensions for them.

Further research is needed to focus on the possible modifications of critical behavior
close to the absorbing boundary. For example, Equation (5) can be considered in a half-
space x > 0, with a pseudo-random force acting at the boundary x = 0 to ensure the
dissipation of energy, viz., f |x=0 < 0. The semi-infinite geometry of the modified model
would change the transfer of energy along the boundary that effectively decouples the
critical behavior in the bulk and at the boundary. The lattice topology would also play an
important role, as if the coordination number q of a lattice site is large, the toppled amount
of energy dissipated at the open boundary would be much smaller than that transferred
to other neighbors, so that the perturbation of the behavior risen by the force f |x=0 close
to the boundary would not propagate into the bulk of lattice. Otherwise, a critical slope
can appear at the boundary if the energy dissipation dominates the process of the energy
transfer to the neighboring sites.
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