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Abstract: The paper concerns the dynamics and stability of double-walled carbon nanotubes con-
veying fluid. The equations of motion adopted in the current study to describe the dynamics of
such nano-pipes stem from the classical Bernoulli–Euler beam theory. Several additional terms are
included in the basic equations in order to take into account the influence of the conveyed fluid, the
impact of the surrounding medium and the effect of the van der Waals interaction between the inner
and outer single-walled carbon nanotubes constituting a double-walled one. In the present work, the
flow-induced vibrations of the considered nano-pipes are studied for different values of the length
of the pipe, its inner radius, the characteristics of the ambient medium and the velocity of the fluid
flow, which is assumed to be constant. The critical fluid flow velocities are obtained at which such a
cantilevered double-walled carbon nanotube embedded in an elastic medium loses stability.

Keywords: dynamics; stability; double-walled carbon nanotubes; van der Waals interaction;
flowinduced; vibrations; critical fluid flow velocities; divergence instability

1. Introduction

Scientific and technological progress in the last thirty years has led to the rapid
development and study of mathematical models outlining the path to creating micro- and
nanoelectromechanical systems (MEMS/NEMS) using various carbon allotropic forms:
graphene, fullerenes and carbon nanotubes (see, e.g., [1–7]). All these objects are nano-
sized, but the use of continuum mechanics in modelling their mechanical behaviour is
surprisingly efficient, although, as noted by Yakobson et al. [8], “its relevance for a covalent
bonded system of only a few atoms in diameter is far from obvious”. Among others,
different types of models based on continuum mechanics have been proposed and used
to describe the dynamic behaviour of structural components of nano-devices such as
carbon nanotubes (CNTs) conveying fluids—the nanomechanical systems whose dynamic
behaviour (vibration and stability) is the main subject of study in the present paper.

The investigation of the effects of fluid transport in CNTs is recognised to be of
significant interest both for designing nanofluidic devices or CNT-based water purification
membranes [9–11] and for testing, at the nanoscale, classical one- or two-dimensional
continuum mechanics models concerning the dynamics of the investigated structures.
Notably, the fluid flow rates in CNTs have been found to be extraordinarily fast, four to
five orders of magnitude faster than that observed in classical pipe systems [12–14]. As
pointed out in [9], when designing nano-devices incorporating CNT components conveying
fluid (liquid or gas), the motion of both the fluid and the tube must be taken into account
since the fluid–structure interaction greatly affects the dynamics of the entire mechanical
system. Therefore, regardless of whether a particular model of such a mechanical system is
based on one or another rod or shell theory, it necessarily takes into account the influence
of the fluid flow inside a single- or multi-walled carbon nanotube (MWCNT) and the van
der Waals interactions between the individual single-walled carbon nanotubes (SWCNTs)
composing a multi-walled one (see, e.g., [15–28]).
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Here, among the plethora of beam-like and shell-like models proposed and developed
for describing the dynamics of CNTs conveying fluid, we focus on those based on the
classical Bernoulli–Euler beam theory. They belong to the most popular, acknowledged
and well-studied mathematical models used in structural mechanics, where the vibration
of pipes conveying fluids has been extensively studied in the past 80 years after the seminal
works by Bourrières [29], Niordson [30], Benjamin [31] and Gregory and Païdoussis [32].
The interested reader can find more details on this research in the comprehensive books by
Païdoussis [33,34].

To the best of our knowledge, Yoon, Ru and Mioduchowski [15,16] were the first
to apply such a model to describe the vibration and instability of a nano-sized pipe—a
single-walled carbon nanotube conveying fluid in an elastic medium. They considered
cases in which such a fluid-conveying carbon nanotube is simply supported (pinned),
clamped at both ends [15] or cantilevered [16]. Using the same governing equation in
which, however, the influence of the ambient medium is neglected, Reddy et al. [17,18]
studied the effect of fluid flow on the free vibration (natural frequencies) and instability
of fluid-conveying SWCNTs. They estimated the mass flow rate of the fluid into SWCNTs
and the elastic, Coriolis and centrifugal forces generated by the flow during the vibration.
The critical fluid flow velocities for clamped boundary conditions were obtained, too.

Later on, in 2008, Wang, Ni and Li [19] proposed, extending the approach developed
by Ru, Yoon and Mioduchowski [15,16,35,36], a model describing the dynamic behaviour
of DWCNTs conveying fluid, which is studied in the current work (see Section 2). The
suggested model was built on the basis of the linear Bernoulli–Euler beam theory and takes
into account the influence of the surrounding medium in the simplest possible way—as
a Winkler-like elastic foundation characterised by a relevant spring constant. In their
paper, the authors investigate the natural frequencies of a pipe under the assumption that
it is simply supported at both ends, i.e., pinned–pinned. Analysing the corresponding
dispersion relations for different values of the slenderness ratio and spring constant, they
obtain the critical fluid flow velocities at which buckling instability occurs.

Within the framework of the model introduced in [19], in the subsequent two articles,
He et al. [20] and Lolov and Lilkova-Markova [37] study the stability, respectively, of
DWCNTs conveying fluid that are clamped at both ends and simply supported. In [20],
the critical flow velocities of a nano-pipe clamped at both ends are found to increase very
fast with a decrease in the ratio of the length of the tube to its outer radius. The van der
Waals interaction between SWCNTs constituting a DWCNT is found to stabilise the system.
The results presented in [37] show that the critical fluid flow velocity reduces when the
density of the fluid increases and that longer pipes are less stable. Comparing the pipes
of different cross-sections investigated in their study, the most stable among them is that
with the largest inner radii of the two SWCNTs forming the respective DWCNT. Notably,
all the critical velocities obtained in this paper correspond to the loss of stability of the tube
not through flutter, i.e., by performing oscillations of increasing amplitude, but through
divergence. Let us recall that divergence instability (or static bifurcation) means that the
structure passes from stability to instability at zero frequency or, in other words, through a
static solution of the respective equations of motion (see [16,38] for a detailed explanation
of this matter). It should be remarked that the boundary-value problems investigated
in [20,37] are solved using Galerkin’s method.

In the context of the present study, it is worth mentioning another model, quite similar
to that presented in [19] as far as the respective equations of motion are concerned. It
was developed, based on the classical Bernoulli–Euler beam theory by Elaikh et al. [39] to
describe the free vibration and stability of two micro pipes conveying fluid that are coupled
continuously via elastic springs. The stability analysis of such mechanical structures subject
to cantilever boundary conditions is performed utilising Galerkin’s method in [39] and
in the subsequent work by Lolov and Lilkova-Markova [40] where the interconnection
between the tubes is modelled as Pasternak’s elastic foundation.
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Finally, let us also remark that L. Wang [21] and Tounsi et al. [22] extended, using the
nonlocal elasticity theory, the model of Ref. [19] to take into account small-scale effects. An
important conclusion drawn in Wang’s paper [21] is that the local theory provides a reliable
estimation of the critical fluid flow velocities of the pipe, i.e., in this aspect, the small-scale
effects can be neglected. It is beyond the scope of the current article to review the models
accounting for the effects of nonlocal elasticity. For a more detailed discussion of models
of this type used in fluid-conveying CNTs, the interested reader is referred to the recent
review [28].

As already mentioned, in the present paper, we focus on the mathematical model
introduced in Ref. [19]. The corresponding equations of motion and boundary conditions
are given in Section 2. Then, in Section 3, we describe the specific Galerkin procedure used
to solve the investigated boundary-value problem. Some important peculiarities of the
numerical implementation of the suggested approach are discussed in Section 4. In the
following Section 5, we first specify the geometric, material and van der Waals interaction
characteristics of the considered DWCNTs, and then, present the main results of the study.
Section 6 contains some concluding remarks.

2. Equations of Motion and Boundary Conditions

In the model proposed in [19], a DWCNT is assumed to consist of two SWCNTs,
with one nested into the other. The inner tube is assumed to convey an inviscid ideal
fluid flowing with constant mean velocity U, while the outer tube is in contact with the
surrounding elastic medium (see Figure 1). The corresponding equations of motion of such
an initially straight nano-pipe read as follows:

EI1
∂4w1

∂x4 + MU2 ∂2w1

∂x2 + 2MU
∂2w1

∂x∂t
+ (M + ρA1)

∂2w1

∂t2 − c(w2 − w1) = 0,

EI2
∂4w2

∂x4 + ρA2
∂2w2

∂t2 + kw2 + c(w2 − w1) = 0,
(1)

where E and ρ are the Young’s modulus and mass density of the tubes, respectively, which
are assumed to be identical for both nanotubes; M is the mass density of the fluid; c
is the intertube interaction coefficient due to the van der Waals interaction between the
tubes; k is a Winkler-like spring constant determined by the material properties of the
surrounding elastic medium; x is the axial coordinate; t is the time; Iα, Aα and wα (α = 1, 2)
are the moments of inertia (let us remark that in engineering, moment of inertia commonly
refers to the area moment of inertia; see [41]), the cross-section areas and the transverse
displacements of the inner (α = 1) and the outer (α = 2) tube, respectively.

Figure 1. Schematic representation of an initially straight DWCNT of length L conveying fluid
flowing with constant velocity U and geometric characteristics of its cross-section. Here, h is the wall
thickness of the tubes, δ = h is the initial distance between them, and R1 and R2 are the inside radii
of the inner and outer tubes, respectively.
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Upon introducing the dimensionless variables

z =
x
L

, τ =
t

L2

√
EI1

M + ρA1
, u1 =

1
L

w1, u2 =
1
L

w2, (2)

and parameters

v = UL

√
M

EI1
, β1 =

M
ρA1 + M

, β2 =
ρA2

ρA1 + M
I1

I2
, γ1 =

L4

EI1
c, γ2 =

L4

EI2
c, κ =

L4

EI2
k, (3)

where L is the length of the tube, the system of Equation (1) takes the dimensionless form

∂4u1

∂z4 + v2 ∂2u1

∂z2 + 2v
√

β1
∂2u1

∂z∂τ
+

∂2u1

∂τ2 − γ1(u2 − u1) = 0,

∂4u2

∂z4 + β2
∂2u2

∂τ2 + κu2 + γ2(u2 − u1) = 0.
(4)

In what follows, the investigated DWCNTs are assumed to be of the cantilever type
(clamped at z = 0 and free at the other end z = 1), i.e.,

uα(0, τ) =
∂uα(0, τ)

∂z
= 0,

∂2uα(1, τ)

∂z2 =
∂3uα(1, τ)

∂z3 = 0, (α = 1, 2). (5)

3. Approximate Solutions

In this study, we utilise Galerkin’s method to analyse the dynamic behaviour of
the investigated nano-pipes (for more details about this approach, see, e.g., [42]). The
application of Galerkin’s method enables us to determine sufficiently well the natural
frequencies of the investigated system, which fully characterise its free vibration, and to
draw reliable conclusions about its stability/instability.

Approximate solutions to the boundary-value problem (4), (5) are sought in the form

u1 = δijWi(z)Tj(τ), u2 = δijWi(z)Qj(τ). (6)

Here and in what follows, δij is the Kronecker delta symbol, Latin indices have the range
1, 2, . . . , N, where N is a given natural number, and the usual summation convention over
repeated indices is assumed, unless explicitly stated otherwise. The functions

Wi(z) = Ai

[
sin µiz − sinh µiz −

sin µi + sinh µi
cos µi + cosh µi

(cos µiz − cosh µiz)
]

, Ai, µi ∈ R (7)

(no summation is assumed over the repeated index i here) are used as trial/test functions
in Galerkin’s procedure. They are solutions to the equation

d4Wi

dz4 − µiWi = 0, (8)

and meet the clamped–free boundary conditions

Wi(0) =
dWi(0)

dz
= 0,

d2Wi(1)
dz2 =

d3Wi(1)
dz3 = 0, (9)

provided that
cos µi cosh µi + 1 = 0. (10)

The constants Ai are assumed to be such that(
Wi, Wj

)
= δij. (11)
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Hereafter, ( f , g) denotes the inner product in the vector space V of real-valued smooth
functions whose domain of definition is the closed interval [0, 1], which is determined here
as usually occurring in the following manner

( f , g) =
1∫

0

f (z)g(z)dz, f , g ∈ V. (12)

Substituting the expressions (6) into the left-hand sides of the Equation (4) one obtains the
residual functions

R1 = δijWiT̈j + 2v
√

β1δijW ′
i Ṫj + δij

(
W ′′′′

i + v2W ′′
i + γ1Wi

)
Tj − γ1δijWiQj, (13)

R2 = β2δijWiQ̈j + δij
[
W ′′′′

i + (κ + γ2)Wi
]
Qj − γ2δijWiTj, (14)

where the primes and the dots indicate differentiation with respect to the variables z and t,
respectively. Then, taking into account the relations (11), it is easy to see that

(R1, Wk) = T̈k + 2v
√

β1akjṪj + ckjTj + v2bkjTj + γ1Tk − γ1Qk, (15)

(R2, Wk) = β2Q̈k + ckiQi + (κ + γ2)Qk − γ2Tk, (16)

where
akj =

(
Wk, W ′

j

)
, bkj =

(
Wk, W ′′

j

)
, ckj =

(
Wk, W ′′′′

j

)
. (17)

According to the standard Galerkin’s procedure, the unknown functions Ti(τ) and Qi(τ)
are to be determined from the equations

(R1, Wk) = 0, (R2, Wk) = 0. (18)

Now, from the Equation (15), one can express the functions Qi trough the functions Ti
and their derivatives as follows:

Qi = γ−1
1

(
T̈i + 2v

√
β1aijṪj + cijTj + v2bijTj + γ1Ti

)
. (19)

After that, upon substituting the relations (19) into the Equation (16), one obtains the
following system of equations for the functions Tj:

β2δij
....
T j + 2v

√
β1β2aij

...
T j

+
[
(β2 + 1)cij + v2β2bij + (κ + γ1β2 + γ2)δij

]
T̈j + 2v

√
β1

[
cikakj + (κ + γ2)aij

]
Ṫj

+
[
cik

(
ckj + v2bkj

)
+ (κ + γ1 + γ2)cij + (κ + γ2)v2bij + κγ1δij

]
Tj = 0. (20)

Thus, given an initially straight nano-pipe whose dynamic behaviour is described
by the system (4), its small transverse vibration obeying the boundary conditions (5) is
approximated by the functions of form (6), where Wi(z) are of the form (7), Ti(τ) are the
solutions of the system (20), and Qi(τ) are determined via the relations (19). The conver-
gence of this approximation to the exact solution when N tends to infinity is guaranteed
since, as is well known (see [43]), the trial functions {Wi(x)}∞

i=1 form a complete set of
orthonormal functions in the space of smooth functions of z in the interval [0, 1], which
satisfy the boundary conditions (9).

Once the number N is chosen, an N-term Galerkin approximation of the considered
problem is obtained. In this case, (20) becomes a system of N fourth-order linear ordinary
differential equations of constant coefficients. Therefore, its general solution is expressed
in terms of the roots λ1, λ2, . . . , λ4N of the characteristic polynomial P[λ] = det(χij) of the
characteristic λ-matrix
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χij = β2δijλ
4 + 2v

√
β1β2aijλ

3

+
[
(β2 + 1)cij + v2β2bij + (κ + γ1β2 + γ2)δij

]
λ2 + 2v

√
β1

[
cikakj + (κ + γ2)aij

]
λ

+
[
cik

(
ckj + v2bkj

)
+ (κ + γ1 + γ2)cij + (κ + γ2)v2bij + κγ1δij

]
(21)

associated with the system (20).
Knowledge of the natural frequencies of the investigated mechanical structure, i.e., the

roots λ1, λ2, . . . , λ4N of the characteristic polynomial of the system (20), is sufficient for the
stability analysis of the considered nano-pipe. Namely, if for a certain set of parameters, v,
β1, β2, γ1, γ2, and κ, the polynomial P[λ] has multiple roots or a root with a non-negative
real part, then the system (20) has at least one non-trivial solution that is either time-
independent (static), periodic or constantly increasing with time, and hence, the respective
pipe is unstable; otherwise, the pipe is stable. In the first of the cases mentioned above, the
system loses stability through divergence, while in the other two cases, the loss of stability
is through flutter.

4. Numerical Implementation

The procedure for the determination of N-term approximate solutions of the inves-
tigated boundary-value problem (4), (5) was implemented analytically and numerically
for N = 20 using Mathematica® [44]. It should be noted that a vast number of preliminary
calculations led us to the conclusion that the 20-term Galerkin approximation gives reliable
results in the sense that the differences between the critical flow velocities obtained using
N − 1 and N-term approximations are sufficiently small. At this relatively high level of
approximation, these differences are less than 3%.

Once the level of approximation was fixed, the first 20 solutions of Equation (10), the
coefficients Ai in (7) and the values of aij, bij and cij in (17) were computed numerically
using the routines FindRoot and NIntegrate, with the WorkingPrecision set to 200 digits;
otherwise, the functions W1, . . . , W20 did not meet the boundary conditions (5) sufficiently
well and the numerical values of the coefficients of the characteristic polynomial P[λ],
which, in this case, was of the 80th degree, were not computed precisely enough for
the upcoming calculation of its roots. For similar reasons, the roots of the characteristic
polynomial P[λ], i.e., the natural frequencies of the pipe, corresponding to a given set of
values of the parameters v, β1, β2, γ1, γ2 and κ were calculated by numerically solving
the equation

P[λ] = det(χij) = 0. (22)

using the routine NSolve with the same WorkingPrecision → 200.

5. Results and Discussion

In the present work, we limited our study to cantilevered DWCNTs with the
following characteristics.

5.1. Geometric and Intertube Interaction Characteristics

• Wall thickness of the tubes h: 0.34 nm = 0.34 × 10−9 m;
• Initial distance between the tubes δ: 0.34 nm = 0.34 × 10−9 m;
• Inside radius of the inner tube R1: 5.00 nm = 5.00 × 10−9 m;
• Inside radius of the outer tube R2: 5.68 nm = 5.68 × 10−9 m;
• Length of the tubes L: 10−8 m ÷ 2 × 10−7 m.

The cross-section areas A1 and A2 of the inner and outer tubes, respectively, are given
by the formulas

A1 = π(R1 + h)2 − πR2
1 and A2 = π(R2 + h)2 − πR2

2. (23)
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The area moments of inertia I1 and I2 of the inner and outer tubes, respectively, are
determined as follows:

I1 =
π

4

[
(R1 + h)4 − R4

1

]
and I2 =

π

4

[
(R2 + h)4 − R4

2

]
. (24)

For a DWCNT of inner radius R1 = 5 nm, such as those considered here, the value
of the van der Waals interaction coefficient c is evaluated to be 1 TPa (see [35]). Valuable
comments about the ways of determining this parameter as related to the vibrations of
DWCNTs can be found in the recent paper by Strozzi [45].

5.2. Material Characteristics

• Young’s modulus of the SWCNTs E: 1 TPa ÷ 4 TPa;
• Mass density of the SWCNTs ρ: 2.3 × 103 kg/m3;
• Mass density of the fluid M: 103 kg/m3.

5.3. Critical Flow Velocity versus the Ratio of the Tube Length L to Its Inner Radius R1

The assumptions presented above about the geometric and material characteristics of
the investigated DWCNT conveying fluid entirely determine the values of the parameters
I1 and I2 via the Formula (24) as well as β1 and β2 through the Equation (23) and the
respective relations in the Equation (3). The latter equations also imply that γ2 = γ1(I1/I2).
Moreover, the expression for γ1 in the Equation (3) implies that this parameter depends
only on the pipe length L and Young’s modulus E, since the value of the parameter c is
fixed at 1 TPa. Thus, only four parameters are free. These are L, v, E and κ.

In the current study, for three values, 0, 50 and 100, of the spring constant κ charac-
terising the impact of the surrounding elastic medium, and two values, 1 TPa and 4 TPa,
of Young’s modulus E, we vary the length of the nano-pipe L from 10−8 m to 2 × 10−7 m
and look for the corresponding critical fluid flow velocities. The latter are obtained as the
lowest values of the parameter v at which the respective characteristic polynomial P[λ] has
multiple roots or a root with a non-negative real part.

The results of our computations are plotted in Figure 2. In both cases, E = 1 TPa
and E = 4 TPa, and for all the considered values of the parameter κ, it is observed (see
Figure 2a,c) that as the length of the nano-pipe L increases, so does the critical flow velocity,
although upon reasoning through analogy with the conventional pipe theory [33], one
expects just the opposite to occur. The explanation for this circumstance is that as this
parameter increases, the parameter γ1 also increases very fast—see Figure 2b,d. Since the
effect of the van der Waals interaction between the inner and the outer tubes is similar
to the effect of an elastic Winkler foundation, it is not surprising that the increase in the
parameter γ1 stabilises the system and, actually, this is what is observed. In the context of
the results obtained in structural mechanics [33], it is not surprising that the critical fluid
flow velocity also rises with the rise in the spring constant, as can be seen in Figure 2a,c.

Here, we should remark that the values 50 and 100 of the (dimensionless) spring
constant κ are chosen to illustrate more clearly the tendency arising as this parameter
increases rather than to accurately reflect a realistic physical situation. Actually, they
correspond to a very stiff elastic medium. Thus, for instance, the value of the Winkler
constant of a polymer matrix is estimated to be k = 1 G Pa (see [15]). Bearing in mind that
κ =

(
L4/EI2

)
k and taking into account the characteristics of the CNTs considered, this

means that, in this case, κ barely differs from zero.
The profiles of the critical flow velocities of a fluid-conveying DWCNT cantilever with

Young’s modulus E = 1 TPa and one with Young’s modulus E = 4 TPa are depicted in
Figure 3 by solid and dashed lines, respectively, for two values of the spring constant κ,
namely κ = 0 (left) and κ = 100 (right). The comparison between the respective profiles
shows that the pipe with a higher Young’s modulus loses stability at a smaller critical flow
velocity. However, for L/R1 > 20, the difference between the compared critical velocities
becomes negligible.
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Figure 2. The critical flow velocity vcritical of an initially straight cantilevered DWCNT conveying
fluid for three values, 0, 50 and 100, of the spring constant κ, and two value of Young’s modulus E
of the pipe: E = 1 TPa (a) and E = 4 TPa (c). The evolution of the intertube interaction coefficient
γ1 with the ratio L/R1 of the length of the nano-pipe L to the inside radius of the inner tube R1 for
E = 1 TPa (b) and E = 4 TPa (d).

Figure 3. Profiles of the critical flow velocities of two fluid-conveying DWCNT cantilevers with
Young’s moduli of E = 1 TPa and E = 4 TPa represented by solid and dashed lines, respectively, in
cases when the impact of the ambient elastic medium is characterised by spring constants of κ = 0
(left) and κ = 100 (right).

Our numerical simulations also reveal that the critical fluid flow velocity almost
does not change for L/R1 > 20 in all considered cases. Thus, for instance, in the case
when E = 1 TPa and κ = 0, the difference between the critical fluid flow velocities
corresponding to L/R1 = 20 and L/R1 = 100 is about 10−6. It is worth noting that similar
results are reported in [20] for clamped (at both ends) DWCNTs conveying fluid whose
dynamic behaviour is governed by the same equations of motion (4). All these findings
demand reasonable elucidation. However, despite our best efforts, we have not yet found a
satisfactory explanation for such behaviour.

6. Concluding Remarks

In the present paper, we analysed the stability of double-walled carbon nanotube
cantilevers conveying fluid in an elastic medium. It is assumed that the dynamic behaviour
of the investigated nano-pipes is described by the system of equations of motion (4) sub-
jected to boundary conditions (5). It should be noted that until now, this boundary-value
problem has not been studied in the current literature on the subject. Here, for that purpose,
we use Galerkin’s method. The method of its implementation is described in detail in
Sections 3 and 4.

Critical fluid flow velocities are obtained at which a cantilevered nano-pipe with the
characteristics given in Section 5 loses stability. The results of the numerical simulations



Dynamics 2024, 4 230

are depicted in Figure 2. In all the considered cases, we observe the following: (1) the pipe
losses stability through divergence; (2) the critical fluid flow velocity increases with an
increase in the length L of the pipe; (3) pipes with a higher Young’s modulus lose stability
at smaller critical flow velocities; (4) the critical fluid flow velocity almost does not change
for L/R1 > 20.

Finally, we should note that models derived via the Bernoulli–Euler beam theory, such
as the one considered here, are only suitable for describing the dynamics of beams with
relatively large length-to-diameter ratios. Moreover, they neglect to account for the effects
of the transverse shear deformation and rotary inertia of the beams. As a first step toward
more adequate modelling, these shortcomings are overcome partly by using Timoshenko’s
beam theory. Probably, the earliest attempts in this direction were made by Yoon, Ru and
Mioduchowski [46] and Wang et al. [47] as far as the dynamics of CNT-based structures
is concerned. In the light of the above remarks, we intend to extend the current research
by including double Timoshenko beam models (local and nonlocal) and, following the
approaches of Liu et al. [48,49], to deepen our research in the field of the dynamics and
stability of cantilevered DWCNT pipes embedded in an elastic medium.
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