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Abstract: The popularity of permanent magnet synchronous motors (PMSMs) has increased in recent
years due to their high efficiency, compact size, and low maintenance needs. Calculating iron loss in
PMSMs is crucial for designing and optimizing PMSMs to achieve high efficiency and a long lifespan,
as this can significantly affect motor performance. However, multiple factors influence the accuracy
of iron loss calculations in PMSMs, including the intricate magnetic behavior of the motor under
different operating conditions, as well as the influence of the motor’s dynamic behavior during the
operation process. This paper proposes a method based on particle swarm optimization (PSO) and a
recurrent neural network (RNN) to estimate the iron loss in PMSMs, independent of the empirical
iron loss formula. This method establishes an iron loss calculation model considering high-order
harmonics, rotating magnetization, and temperature factors. Accounting for the multifactor influence,
the model studies the law of loss change under different magnetic flux densities, frequencies, and
temperature conditions. To avoid the deviation problem caused by conventional polynomial fitting, a
multilayer RNN and PSO are used to train and optimize the neural network. Iron loss in complex
cases beyond the measurement range can be accurately estimated. The proposed method helps
achieve a PMSM iron loss calculation model with broad applicability and high accuracy.

Keywords: permanent magnet synchronous motor; iron loss; particle swarm optimization; recurrent
neural network

1. Introduction

Accurately calculating iron loss in permanent magnet synchronous motors (PMSMs)
is critical. Inaccurate calculations can lead to suboptimal motor designs and operations,
resulting in reduced efficiency, increased energy consumption, and higher operating costs.
Moreover, they contribute to overheating issues, insulation failure, premature aging, and
unexpected failures, compromising motor performance and posing safety risks including
potential accidents or damage to equipment and property [1,2]. Therefore, the accurate
estimation of iron loss in PMSMs is crucial for ensuring optimal motor performance, energy
efficiency, reliability, and longevity. It directly impacts the operational efficiency, safety,
maintenance costs, and environmental footprint of systems utilizing these motors [3,4].
Understanding and minimizing iron losses are key to improving the overall efficiency of
PMSMs. Accurate calculation of iron loss informs the design of more efficient PMSMs and
related applications including design optimization, performance prediction and improve-
ment, simulation and control strategy, and energy efficiency improvement.

Several existing methods are employed to estimate iron loss in PMSMs. These meth-
ods include analytical methods, finite element analysis (FEA), experimental testing, and
combined approaches. Traditional analytical methods involve mathematical models and
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equations based on magnetic theories to estimate iron losses. These methods often rely on
empirical formulas and simplified assumptions regarding the motor’s magnetic behavior
under different operating conditions [5–7]. FEA is a numerical simulation technique that
models the motor’s geometry and material properties to simulate magnetic fields and
compute iron losses. It provides more detailed and accurate estimations by considering the
motor’s complex geometry and nonlinear material properties [8–10]. Direct measurement
through experimental tests involves running the motor under controlled conditions while
measuring parameters such as temperature rise, electrical parameters, and loss compo-
nents. However, this method is time consuming, costly and may not cover all operating
scenarios [1].

Accurately calculating iron loss is a challenging issue in the industrial application of
electrical machines due to the impact of saturation on the magnetic circuit and the dynamic
operational modes. The main research focus in terms of PMSMs is developing precise
iron loss models. The iron loss for interior PMSMs has been studied using a variety of
models. There are a number of models that have been proposed that take into consideration
the effect of magnetic properties on temperature, for example, the rotating magnetization
model [11]. In addition, models that consider the influence on magnetic properties have
been proposed, for example, the temperature model [12,13] and the mechanical stress
model [14]. According to the authors in [15,16], calculations have been provided for iron
loss in permanent magnet (PM) motors, considering PWM inverter harmonics as a factor in
the calculation. Furthermore, efforts have been made to optimize motor design and control
strategies to minimize this loss. Accurate calculation of iron loss in PMSMs refers to the
ability to estimate the amount of energy dissipated in the cores due to magnetic hysteresis
and eddy currents with a high degree of precision [17,18].

Currently, the accurate calculation of iron loss in PMSMs presents a formidable chal-
lenge due to several intricate factors. The complex magnetic characteristics of the iron
cores, including magnetic saturation and hysteresis, pose difficulties in modeling these
losses accurately. Furthermore, the dynamic behavior of PMSMs, which varies under both
steady-state and transient conditions, adds to the complexity. The amount of iron loss is
heavily reliant on the characteristics of the core material, including its magnetic perme-
ability and core loss coefficients, which can fluctuate with temperature and manufacturing
variations, introducing uncertainty into the calculations. The strong connection between
iron loss and motor temperature requires consideration of the thermal distribution within
the motor, further complicating the modeling process. Additionally, achieving precise iron
loss calculations often requires specific knowledge about the motor’s design, core material
properties, and manufacturing processes. However, these may not always be readily acces-
sible, especially for custom or proprietary motors. Measuring iron loss directly in PMSMs
is challenging due to the small size and intricate geometry of the motors, making experi-
mental techniques demanding in terms of instrumentation and susceptible to measurement
errors. The absence of standardized testing procedures, coupled with the constant change
in motor behavior during operation, underscores the complexities involved in the accurate
assessment of iron loss [19,20]. Acquiring knowledge about the correlation between the
key factors that influence iron loss, and the actual magnitude of iron loss is a crucial step in
accurately calculating iron loss during the creation of high-efficiency motors. These data
enable the identification and proposal of targeted loss-reduction techniques.

During PMSM operation, the flux density waveform deviates from a pure sinusoidal
shape due to factors such as current harmonics, nonlinear core properties, and spatial har-
monics. These deviations can affect motor efficiency, torque stability, and electromagnetic
compatibility [21–23]. This results in more severe distortion in the magnetic density wave-
form, making it difficult to accurately calculate iron loss using formula-based methods. To
address these challenges, motor designers and control engineers employ various strategies,
including advanced controls and material selection, to optimize motor performance in
real-world scenarios. A time-stepped FEA model of a motor was used to calculate the
iron loss from the stator [8,9]. The coefficient to calculate iron loss is typically obtained by
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fitting it to the measured loss at a particular frequency and magnetic flux density [14,24].
However, a constant-coefficient model can cause a deviation in the calculation. Therefore, it
is essential to investigate an iron loss model with variable coefficients that take into account
alterations in the loss coefficient with magnetic flux density and frequency in order to tackle
this issue [25,26].

Using an FEA model with time stepping to calculate stator iron losses in motors is a
reliable and popular technique that offers a comprehensive understanding of the dynamic
electromagnetic behavior within the motor [9,10]. This method involves a meticulous
process, from the intricate setup of a 3D FEA model, mesh generation, and time-stepping
analysis to the calculation of magnetic fields, eddy currents, and hysteresis losses. By
integrating these losses over time and optionally considering thermal effects, researchers
can gain valuable insights into the motor’s iron loss characteristics under varying operating
conditions. While this approach is effective and powerful, it demands expertise in FEA soft-
ware, such as Ansys Electronics Desktop 2023 R1 and Altair Flux 2022.2, high-performance
computer hardware requirements, electromagnetics, and a profound understanding of
the motor’s design and material properties. The accuracy of the results depends on pre-
cise modeling and data calibration, which may require validation against experimental
measurements.

The two- and three-term variable-coefficient models have been suggested in certain
studies for different silicon steel sheets. The loss coefficients in both models are subject
to variation due to changes in frequency and magnetic flux density. The use of variable-
coefficient models has demonstrated superior accuracy in various scenarios compared to
constant-coefficient models. Variable-coefficient models excel at capturing nonuniformity,
accommodating dynamic systems, addressing complex geometries, and representing phys-
ical processes more realistically. However, their increased complexity and computational
demands should be considered alongside the specific needs of the analysis. The choice be-
tween constant- and variable-coefficient models should be guided by a deep understanding
of the system, available data, and the desired level of precision, as both have valuable roles
in scientific and engineering simulations [27–31]. Despite the fact that variable-coefficient
models express the loss coefficient as a polynomial function of magnetic flux density and
frequency, the numerical fitting process can be ill-conditioned, leading to inaccuracies when
the ranges of frequency and magnetic flux density are extensive.

As part of the process of resolving the challenges related to the variable-coefficient
model, previous studies have shown that when the frequency or magnetic flux density is
high, the eddy current loss increases significantly as well [32–34]. Previous research has
proposed adding an additional term to the Bertotti three-term constant-coefficient model,
namely the high-order magnetic flux density term, in order to counterbalance this increase
in eddy current loss. They have also proposed an iron loss model with an additional
term for the eddy current [35,36]. According to the existing literature, the impact of local
hysteresis loops caused by harmonic magnetic fields on iron loss has been extensively
researched. It has been observed that with increases in the frequency and amplitude of the
harmonic magnetic field, the influence of local hysteresis loops on iron loss also increases
significantly [37,38]. Despite the widespread use of empirical formulas for calculating iron
loss coefficients using polynomial fitting, accurately accounting for multiple factors such as
high-order harmonic magnetic density, frequency, and temperature remains challenging.
In particular, the accuracy of the results is significantly affected when the frequency or
temperature is high, leading to a significant deviation.

Throughout the years, a variety of models have been employed to calculate the iron
loss in PMSMs, including the Steinmetz equation and its improved version, the separation
of hysteresis and eddy current loss, mathematical hysteresis models, and the division of the
magnetizing process loss [39]. The Steinmetz equation is a simple empirical formula that
is easy to use and suitable for basic calculations during the initial design stage. However,
it has limitations in accurately representing complex magnetic materials and geometries.
The Steinmetz model with eddy current loss is an extension of the original Steinmetz
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equation. This model offers improved accuracy by accounting for both hysteresis and
eddy current losses. The Bertotti model is a more advanced mathematical approach that
considers hysteresis and eddy currents in greater detail. It provides greater accuracy and is
well-suited for a wide range of industrial and scientific applications [5]. Ansys Maxwell in
Electronics Desktop 2023 R1 is a powerful FEA software designed for electromagnetic field
simulations. It offers high fidelity, 3D modeling capabilities, extensive material libraries,
and advanced analysis options. It is the tool of choice for professionals and industries where
the utmost precision and comprehensive analysis are required [6]. Iron loss is typically
divided into three distinct categories: hysteresis loss, eddy loss, and excess loss. Advanced
iron loss calculations [7] involve fitting a known interpolation function to the measured
iron loss data, allowing for the analysis of iron loss at any given flux density and frequency.
Table 1 displays the expression and number of parameters of the classic iron loss models.

Table 1. Classic iron loss models.

Loss Model Name Expression No. of Parameters

Steinmetz [39] Pstm = kh f nBm 3
Steinmetz with eddy

current loss Pistm = kh f nBm + kc( f B)2 4

Bertotti [5] PBer = kh f Bα + kc( f B)2 + ke( f B)1.5 4
ANSYS Maxwell [6] PMaxwell = kh f B2 + kc( f B)2 + ke( f B)1.5 3

Improved loss model [7]
Pimp = α1k1 f Bα + α2( f B)2 +

α2α3 f 2Bα4+2 + α5k2( f B)1.5 5

The Steinmetz equation involves three loss coefficients, kh, n, and m. The Bertotti
loss equation, on the other hand, has three loss coefficients, kh, kc, and ke, with α being
the coefficient of hysteresis loss. The magnetic field frequency is denoted by f and the
magnitude of the flux density is represented by B. To improve the accuracy of the prediction
in higher flux density ranges as well as for rotational fields, a model with five parameters
was used. This enhanced model includes k1 and k2, which are calculated based on the
rotational pattern of magnetic induction. The term multiplied by α1 represents the hysteretic
losses, and the term multiplied by α5 represents the excess losses, depending on the method
used for parameterization. The two intermediate terms signify the eddy current component
of the losses. It is evident that the number of parameters in the iron loss calculation formula
increases with an increase in the accuracy of the iron loss calculation.

In recent times, neural network algorithms have gained significant prominence in
the realm of iron loss estimation and computation. A novel neural network dynamic
hysteresis model has been introduced to calculate iron losses effectively within amorphous
magnetic cores in high-frequency transformers, even when subjected to non-sinusoidal
magnetization conditions [40]. There has been some research undertaken to analyze the
specific iron losses in cold-rolled, non-oriented electrical steel sheets, using the combination
of artificial neural networks (ANNs) and genetic algorithms (GAs), covering a wide range
of frequencies and magnetic flux densities [41]. In a separate application, an ANN has
been employed to gauge the machine parameters essential for achieving optimal efficiency
in synchronous reluctance motors. In this comprehensive model, magnetic saturation is
considered, cross-coupling effects are considered, and iron losses are also included [42].

In this study, a particle swarm optimization (PSO) recurrent neural network (RNN)
method is presented to analyze and estimate the iron loss of PMSM without relying on
empirical iron loss formulas. The key contributions of this method can be summarized
as follows:
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• The proposed method integrates PSO and RNN to establish a comprehensive iron loss
calculation model. This model accounts for high-order harmonics, rotating magnetiza-
tion, and temperature factors, capturing multifaceted influences on iron loss.

• By employing multilayer RNN and PSO for training and optimization, the method
overcomes issues associated with conventional polynomial fitting, offering improved
accuracy in estimating iron loss even in complex scenarios beyond traditional mea-
surement ranges.

• The developed model offers broad applicability by accurately estimating iron loss in
PMSMs under diverse and complex conditions, surpassing the limitations of tradi-
tional empirical formulas.

By departing from traditional reliance on empirical iron loss formulas, this research
explores the intricate impact of multiple factors on iron loss patterns. Using intelligence
optimization algorithms and neural network techniques, an innovative iron loss model
based on a PSO–RNN was devised, that is capable of estimating iron loss even in com-
plex scenarios that fall beyond standard measurement ranges. The study showcases the
outcomes of iron loss calculations using the PSO–RNN method. It demonstrates the suc-
cessful development of a highly adaptable and precise PMSM iron loss estimation model,
significantly expanding its applicability range.

2. Impact Factor Analysis of Iron Loss
2.1. Frequencies and Temperatures

Silicon steel sheets are commonly employed as the material for the motor core. How-
ever, their magnetic properties, loss, and magnetization curves are subject to temperature
effects that alter their material characteristics. As a result, these temperature effects can
influence the iron loss calculation and cause deviations in the loss estimation of magnetic
materials. Figure 1 presents the loss curves of a 35WW360 silicon steel sheet from 20 to
200 ◦C for frequencies of 50 Hz and 200 Hz [14,43–45]. At 50 Hz, the unit mass loss is
minimally influenced by temperatures below a magnetic flux density of 1.5T, but is nega-
tively correlated with a temperature above this value. The inflection point occurs at 1.3T,
as shown in Figure 1a,b. The trends in the loss curves are the same for both frequencies.
Additionally, frequency affects the proportion of loss reduction at different temperatures,
with higher frequencies resulting in more significant loss reduction. The maximum ratio of
loss reduction is 18.37% at 50 Hz and 20.56% at 200 Hz. This indicates that frequency plays
a role in determining how temperature affects the loss per unit mass.
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2.2. Polynomial Fitting Error

The traditional method of calculating iron loss necessitates measuring the loss value of
the silicon steel sheet and then adjusting the coefficient of the iron loss calculation equation
based on the empirical formula. However, when the motor is running at a high frequency,
the coefficient fitting results based on the empirical formula will be significantly inaccurate.
This does not meet the requirements of the iron loss calculation for high-speed motors.
As Figure 2 shows, the calculated iron loss results and actual measurement results have a
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considerable discrepancy when the frequency and magnetic flux density increase [14,45].
The measurement of the iron loss of the motor can be calculated by:

pLoss = pin − pcopper − pmech − pout − pstray (1)
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There are two factors that can be used to determine the copper loss Pcopper: phase
current and winding resistance. According to the method described in [46], the mechanical
loss Pmech can be calculated from the output power and the stray loss can be calculated
using the assumption stated in [47] that it represents 1% of the output power.

As is shown in Figure 3a, the fitting surface of the multi-frequency iron loss is pre-
sented. For each given flux density, as the frequency increases from 50 to 400 Hz, the iron
loss generally increases. There is a positive correlation between frequency and iron loss.
For each given frequency, as the flux density increases from 0.1 to 1.8, the iron loss generally
increases. This also suggests a positive correlation between flux density and iron loss. The
nonlinearity between iron loss, frequency, and flux density is evident in Figure 3b. As the
frequency and magnetic flux density increase, the fitting relative error also rises, indicating
a greater discrepancy between the actual value and the fitted results.
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There is a possibility that the magnetic flux density waveform can be distorted due to
the presence of high-order harmonics. Models that take into account the frequency and
amplitude of the motor magnetic field, as well as the degree of distortion of the magnetic
flux density waveform when calculating iron loss, can provide accurate information about
the effect of the motor magnetic field frequency and amplitude on iron loss. By adding
together the iron losses of the fundamental wave and all harmonic components, it is possible
to determine the impact of harmonic flux density on motor iron loss. It is necessary to use
radial and tangential magnetic flux density amplitudes instead of the ones in the traditional
iron loss model in order to consider the effects of rotating magnetization on the magnetic
flux density. It has been shown in Equation (2) that the iron loss expression with multifactor
calculations includes compensation coefficients that are precise in determining how the
frequency of a motor magnetic field, the amplitude of a magnetic flux density waveform
distortion rate, and the distortion rate of a magnetic flux density waveform all affect the
iron loss of a PMSM.

PLoss = kt

6n±1

∑
i=0

 k′h( fi, Bi, BTHD-r)kh f1Bα
1r + k′h( fi, Bi, BTHD-t)kh f1Bα

1t

+k′c( fi, Bi, BTHD-r) f 2
1 Bα

1r + k′c( fi, Bi, BTHD-t) f 2
1 Bα

1t+

k′c( fi, Bi, BTHD-r)ke f 1.5
1 B1.5

1r + k′c( fi, Bi, BTHD-t)ke f 1.5
1 Bα

1t

 (2)

where kt is the temperature coefficient k′h; k′c, and k′e represent the compensation coef-
ficients; i is the order of the magnetic flux density harmonic i = 1, 5, 7, 11, 13 · · · 6n ± 1
(n = 1, 2, 3 · · · ); fi is the i-th order frequency; Bi is the amplitude of the i-th magnetic flux
density harmonic; Bir and Bit are the amplitudes of magnetic flux density for the radial and
tangential components of the i-th harmonic; and BTHD-r and BTHD-t are the magnetic flux
density waveform distortion rates for the radial and tangential components, respectively.

The multifactor iron loss model in Equation (2) is reflected in Figure 4a, which displays
the iron loss fitted result. As the frequency and flux density increase, the fit error also
rises. Iron loss calculation results based on models depend on the precision of polynomial
coefficient fitting and the lack of systematic evaluation criteria for the calculation results.
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3. Iron Loss Estimation Based on the Recurrent Neural Network

To avoid the influence of the fitting coefficient, this study adopted the method based
on PSO and an RNN to learn and train the relationship between input loss parameters and
output iron loss, and establishes an estimation model of iron loss without relying on the
empirical iron loss formula [48]. The logical structure of the system is shown in Figure 5,
which mainly includes data acquisition, model training, result verification, and prediction.
Using the PSO–RNN-based iron loss calculation method, all factors affecting iron loss
are taken as input variables of the neural network, and the output result is the final iron
loss result.
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3.1. Particle Swarm Optimization and the Recurrent Neural Network

In PSO, the behavior of social groups is used as a basis for optimization. Several
particles are involved in the algorithm, which is based on the search for the best possible
solution in a multidimensional space. Throughout the iterative process, the particles adjust
their positions as a result of their own experiences as well as the best solution that has been
found by the collective swarm as a whole. PSO has been widely used in optimization tasks
due to its simplicity and effectiveness in exploring solution spaces. It plays a significant
role in finding optimal parameters for a diverse range of optimization problems, including
applications in machine learning models and engineering designs. RNNs are a class of
neural networks designed to process sequential data by maintaining internal memory or
state. This enables them to capture temporal dependencies in data. Unlike traditional feed-
forward neural networks, RNNs possess loops that allow information to persist, making
them suitable for tasks involving time series, natural language processing, and sequential
data analysis.

In PSO, the optimal solution is determined by Gbest and Pbest. Gbest is referred to
as the global best, while Pbest is the personal best. Every time, particles can be modified
to identify the potential solution in terms of position and velocity vectors. Let Vi and Xi
denote the velocity and position of the i-th particle. The velocity and position of each
particle is then updated as [49]:

Vk+1
i = ωkVk

i + C1r1(Pbesti
k − Xi

K) + C2r2(Gbesti
k − Xi

K)

Xk+1
i = Xk

i + Vk+1
i

ωk = ωmin + ωmax−ωmin
1−iter/itermax

(3)

The PSO algorithm involves the following steps: at each iteration k, the weight of
the inertia ωk is calculated, the velocity of the ith particle Vi is determined, acceleration
factors C1 and C2 are taken into account, uniform random numbers r1 and r2 in the range
of [0,1] are generated, the best position of the ith particle Pbestk

i and the best position of
the group Gbestk

i are taken until iteration k is identified, the position of the ith particle Xk
i
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is determined, the initial and final weights ωmax and ωmin are established, and the total
number of iterations itermax is set. In order to understand how the convergence behavior
of PSO can be influenced by the value of acceleration coefficients and inertia weights, the
sensitivity of the convergence was studied by the authors in [50]. According to the findings
of this research, it is possible to select the PSO parameters in a way that will guarantee
convergence to an equilibrium state. Clerc and Kennedy [51] proposed various constriction
models, and for each one, a specific constriction coefficient can be calculated to ensure
convergence, depending on the chosen value of φ.

If the following criteria are met, then it should be possible to demonstrate that the
path of a particle in an unconfined simplified PSO system with inertia will converge [51]:

1 > ω >
1
2
(φ1 + φ2)− 1 ≥ 0 (4)

and 0 ≤ ω < 1; since φ1 = c1U(0, 1) and φ2 = c2U(0, 1), the acceleration coefficients, c1
and c2 serve as upper bound of φ1 and φ2. Equation (4) can be rewritten as:

1 > ω >
1
2
(c1 + c2)− 1 ≥ 0 (5)

Hence, if ω, c1, and c2 are chosen in a way that satisfies the condition in (5), the system
is ensured to reach a steady state. Table 2 displays the parameters for the PSO algorithm.

Table 2. Parameters of the PSO algorithm.

Name Value

Population size 100
Acceleration constant C1 and C2 1.4

Inertia weight ωmax 0.9
Inertia weight ωmin 0.4
Particle dimension 1

Maximum number of iterations 30

Analysis of the PSO algorithm reveals that the PSO algorithm is capable of optimizing
the weight of the RNN node. Typically, the connection weights of unoptimized RNNs are
randomly set as initial values, which can result in issues such as slow training speed and
convergence to local minima. Allocating space for the initial value in the PSO algorithm not
only improves the model’s training speed, but also significantly lowers the risk of reaching
the local optima.

Combining PSO and RNNs presents a robust and efficient approach to elevating RNN
training and optimization processes. Leveraging PSO’s capabilities, this synergy optimizes
various aspects of RNN architectures and parameters, exploring hyperparameter spaces
effectively to enhance performance significantly beyond conventional methods. PSO assists
in critical areas such as feature selection, weight initialization, and dynamic parameter
adjustments, fostering faster convergence, improved generalization, and resilience against
local optima during training. Moreover, the collaboration facilitates adaptive network
design, refining RNN architectures to suit complex optimization landscapes by determin-
ing optimal layers, nodes, and connections. This integrated approach enhances RNN
performance in tasks relying on accurate hyperparameters or architectural design. In
addition, it accelerates convergence while fortifying models’ robustness and adaptability,
demonstrating promising potential across diverse applications. The synergy between these
methodologies aims to capitalize on the strengths of both techniques:



Magnetism 2023, 3 336

• PSO will optimize the RNN architecture, hyperparameters, or training process to
enhance the accuracy and efficiency of estimating iron loss.

• RNNs will serve as the predictive model, leveraging their ability to capture sequential
dependencies in data for accurate estimation.

When comparing PSO to the whale algorithm and sparrow search algorithm for recur-
rent neural network optimization, PSO has certain advantages that might be considered
superior in certain contexts, such as convergence speed and global exploration, simplicity
and ease of implementation, parameter tuning and flexibility, and exploitation of the global
best solution [52–55].

Figures 6 and 7 show the optimization process of the PSO for RNN parameters and
the RNN structure, respectively. The hidden layer in Figure 7 is represented by s, and the
input and output layers by x and y, respectively. The weight matrix W is in the middle
of the network, U represents the weight matrix between the input and hidden layers, V
represents the weight matrix between hidden layers and output layers, and L represents
the loss function. The model has the following structure formula:

st = tanh(Uxt + Wst−1)
yt = softmax(Vst)

(6)
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Table 3 lists the parameters of an RNN. For the input layer, the flux density, frequency,
and temperature are the input variables. For the output layer, the iron loss estimation value
is the output.

Table 3. Parameters of RNN.

Name Value

Dimension of hidden layer 13
Dimension of output layer 1
Dimension of input layer 1

Number of recurrent layers 3
Number of features in the hidden state 6

Number of input sizes 3

3.2. Proposed PMSM Iron Loss Method

The PMSM control system combined with proposed PSO–RNN iron loss method is
shown in Figure 8. Using the PSO–RNN-based iron loss calculation method, all factors
affecting iron loss are taken as input variables of the neural network, and the output result is
the final iron loss result. The RNN dataset is split into two subsets: training and validation
sets. The training set is used to train the PSO–RNN model, where the model learns the
patterns and relationships between input factors, magnetic flux densities, frequencies,
temperatures, and iron loss. The validation set, on the other hand, is utilized to assess the
model’s performance and generalizability after training. It helps evaluate how well the
model can predict iron losses accurately on unseen data.
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The split between the training and validation sets is crucial to ensure the model’s
effectiveness and prevent overfitting. A representative validation dataset ensures that
the model’s performance is evaluated across diverse scenarios, making the findings and
predictions more reliable and applicable to real-world scenarios.

4. Result Analysis

On the basis of the above analysis, the interior PMSM has been selected in order
to verify the proposed method. In Figure 9, a prototype of a PMSM combined with the
hardware of the test bench for the experiment of the PMSM is presented. Table 4 contains
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the main parameters of the PMSM. A comparison of the calculated and measured values of
iron loss is shown in Figure 10. According to the results of the study, the PSO–RNN-based
calculation method has less error in the high-frequency part of the calculation as compared
to the model-based calculation method. Using the training set of the iron loss model as
a representative example, Figure 11 shows the absolute and relative errors of the model.
The maximum relative error calculated by the PSO–RNN-based calculation model under
different inputs is less than 3%, as demonstrated by the results.
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Table 4. Parameters of the PMSM.

Name Unit Value

Stator outer radius mm 196
Rotor outer radius mm 134

Core length mm 108
Airgap length mm 0.5

Number of poles - 8
Number of slots - 48

Rated power kW 20
Rated torque Nm 53
Rated speed rpm 3600
PM Material - NdFeB-35
Core material - 35WW360

Maximum speed rpm 5500
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Figure 12 displays the comparison between the predicted and measured values of the
trained neural network model when different inputs are applied. The root mean square
error (RMSE) is a metric that is widely used to evaluate the accuracy of predictions or
estimates in comparison to the actual values in various fields, such as engineering, machine
learning, and statistics. The formula for RMSE is:

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(7)

where ŷ1, ŷ2, · · · , ŷn are predicted values, y1, y2, · · · yn are measured values, and n is the
number of observations. For the iron loss prediction model, RMSE could be used to
measure the average error between the estimated iron loss values by the model and the
actual measured iron losses. A lower RMSE would indicate that the model’s predictions
closely align with the observed iron losses, signifying better predictive accuracy. As is
shown in Figure 12, the RNN RMSE between measured and estimated values is 1.3562,
while the PSO–RNN RMSE between measured and estimated values is 0.1855. The results
show that the trained calculation model can effectively predict iron loss under different
inputs in large ranges.
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5. Conclusions

This article presents a combined PSO–RNN approach to estimating the iron loss of a
PMSM. The RNN was fed with multiple factors as the input parameters, and PSO was used
to optimize the initial weights of the RNN. Based on the results of the proposed PSO–RNN
method, it is evident that it can provide accurate estimates of iron loss over a wide range of
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inputs. As a result of calculating the maximum relative error by comparing the measured
results with the estimated results for different inputs, the PSO–RNN model was able to
achieve less than a 3% relative error.

6. Discussion

The combination of PSO and RNNs to estimate iron loss in PMSMs offers a promising
avenue for enhancement. While the method exhibits strengths in accuracy and efficiency,
it faces limitations such as data dependency, model interpretability challenges, and the
complexity of parameter tuning. However, by extending this approach through hybrid
modeling, feature selection, multi-objective optimization, adaptive strategies, additional
data integration, and various other adaptations, the accuracy, efficiency, and applicability of
iron loss estimation in diverse motor types can be significantly improved. These advance-
ments hold potential for refining motor designs and fostering energy-efficient systems
across industries.
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