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Abstract: Ionizing radiation induces many different types of DNA lesions. But one of its charac-
teristics is to produce complex DNA damage, of which tandem DNA damage has received much
attention, owing to its promise of distinctive biological properties. Oxidative stresses in response to
inflammation in tissues and metal-catalyzed reactions that result in generation of radicals also form
these DNA lesions. In this minireview, we have summarized the formation of the tandem lesions as
well as the replication and repair studies carried out on them after site-specific synthesis. Many of
these lesions are resistant to the traditional base excision repair, so that they can only be repaired by
the nucleotide excision repair pathway. They also block DNA replication and, when lesion bypass
occurs, it may be significantly error-prone. Some of these tandem DNA lesions may contribute to
ageing, neurological diseases, and cancer.

Keywords: double lesion; intra-strand cross-link; hydroxyl radical; DNA damage; translesion
synthesis; mutagenesis; DNA repair

1. Introduction

Tandem DNA damage and multiply damaged sites (MDS): An interesting feature of
ionizing radiation-induced DNA damage is that energy deposition is not homogeneous, and
a single energy deposition event may generate several free radical species from water [1,2].
The most common mode of fission of H2O upon exposure to ionizing radiation involves
generation of hydroxyl radicals (•OH) that induce many types of DNA damages [3].
Hydroxyl radicals are also generated in cells by several other mechanisms [3]. In addition to
isolated single DNA lesions, single- and double-strand breaks, and apurinic/apyrimidinic
sites, formation of clustered DNA lesions within a short stretch of DNA is a well-established
characteristic of ionizing radiation [4–9]. For the sake of convenience, MDS have been
defined as two or more lesions within ~20 base pairs, of which tandem lesions, with damage
to two contiguous bases, constitute an important fraction [7,10–12]. Generation of radicals
by metal ions also results in MDS [13,14]. Free radicals produced by the Fenton reaction,
for example, yield tandem lesions [10]. Additionally, the carbonate radical anion (CO3

•−),
an oxidant derived from the oxidation of bicarbonate anions and nitrosoperoxocarboxylate
anions in mammalian cells, forms tandem lesions [15–17]. The MDS present a greater
challenge for the DNA repair systems than any individual DNA lesion [1,6,18,19]. They are
also mutagenic and genotoxic [12,14]. The mechanism of formation of clustered DNA
lesions, however, typically involves multiple radical hits, whereas most tandem lesions
are generated by a single radical event, frequently initiated by a hydroxyl radical [8,20].
The distinct mechanisms for the generation of tandem lesions can be briefly outlined
as follows.

I. A common mechanism of generation of a peroxyl radical, such as 1 (Scheme 1), is
initiated by a hydroxyl radical attack at the pyrimidine C5 (or C6), followed by O2 addition.
The peroxyl radical can abstract a hydrogen atom from a neighboring sugar (such as from
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C1′) (to form 2) or add on to the C8 position of an adjacent guanine (discussed in Section 2).
An example of H-atom abstraction at C1′ of the 2-deoxyribose moiety by the peroxyl radical
is the formation of 2-deoxyribonolactone with concomitant release of the base, while the 3′

thymine base is converted to thymine glycol (discussed in Section 2.2) [21].
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Scheme 2. Hydroxyl radical-induced H atom abstraction from C5′ of 2-deoxyribose or 5-methyl 
group of thymine to generate 3 or 4, respectively. 

Scheme 1. Hydroxyl radical-induced formation of 6-(5-hydroxy-5,6-dihydrothyminyl)peroxyl radical 1
followed by abstraction of a hydrogen atom from C1′ of the neighboring sugar to generate 2.

II. Hydroxyl radical-induced hydrogen atom abstraction from the 5′ position of the
2-deoxyribose (to form 3) or the methyl group of thymine (or 5-methylcytosine) (to form 4)
(Scheme 2) constitutes additional pathways to form tandem DNA lesions. Radical 3 can re-
sult in the formation of a 8,5′-cyclo-2′-deoxyribonucleoside (discussed in Section 3.3) [22,23],
whereas radical 4 can give rise to G[8,5-Me]T and T[5-Me,8]G intra-strand cross-links (dis-
cussed in Section 3.1) [24]. It is noteworthy that substantial concentrations of tandem
lesions are generated in these pathways only in low-oxygen conditions.
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Scheme 2. Hydroxyl radical-induced H atom abstraction from C5′ of 2-deoxyribose or 5-methyl 
group of thymine to generate 3 or 4, respectively. 
Scheme 2. Hydroxyl radical-induced H atom abstraction from C5′ of 2-deoxyribose or 5-methyl
group of thymine to generate 3 or 4, respectively.

III. Another mechanism of tandem lesion formation involves one-electron oxidation of
a nucleobase (most frequently the guanine moiety) generating a radical cation (Scheme 3),
which is susceptible to form a covalent bond with the N3 position of a neighboring thymine
(discussed in Section 3.2) [15,16,25–27]. Unlike the lesions described in II, these intra-strand
cross-links are formed in the presence of oxygen. It is well-established that guanine is
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the most easily oxidizable nucleobase, whereas cytosine is most resistant to one-electron
oxidation [3,28]. The guanine radical cation is highly susceptible to hydration via the
nucleophilic addition of a H2O molecule at its C8 position [29,30]. Hydration of the guanine
radical cation followed by deprotonation generates the 8-hydroxy-7,8-dihydroguanin-7-yl
radical (•GOH), which predominantly gives rise to 8-oxo-7,8-dihydroguanine (8-OxoG) via
one-electron oxidation and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy•G) via
one-electron reduction [30]. A hydroxyl radical also forms •GOH by adding on to the C-8
position of guanine, leading to the generation of 8-OxoG and Fapy•G lesions [3]. Specific to
one-electron oxidants, the guanine cation radical or its conjugate base (i.e., (G-H)•) is also
involved in the formation of the intra-strand cross-links between the C8 of guanine and the
N3 of thymine, DNA–protein cross-links, and inter-strand DNA–DNA cross-links [28,31].
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Tandem lesions can be broadly divided into two types: one in which two neighboring
DNA bases are converted into two discrete lesions, and another type where the two
modified bases are linked by one or more covalent bonds. UV-induced thymine–thymine
photodimers [32] and 6-4 photoproducts [33] are examples of the latter type that have been
studied for many decades and will not be discussed here. Reviews of the tandem lesions
formed by pyrimidinyl, 2-deoxyribosyl peroxyl and other radicals, with mechanistic and
kinetic insights in their generation, have recently been published [20,34]. In the present
minireview, we shall prioritize the site-specific studies of the tandem DNA lesions.

2. Tandem Lesions Containing Two Discrete DNA Modifications

In the early 1990s, Box and coworkers were the first to show that in an X-irradiated oxy-
genated aqueous solution, in addition to conversion of guanine to 8-OxoG and degradation
of a pyrimidine nucleotide to a formamido remnant (formylamine) (F), tandem lesions con-
taining these two modifications also were generated (e.g., structure A in Scheme 4) [24,35].
The hydroxyl radical generated from a water molecule is the primary reactant in this pro-
cess. The mechanism of formation of these tandem lesions has been proposed to involve
a single hydroxyl radical that can induce two distinct DNA damages on two adjacent
bases. Using rigorous analytical methods, Cadet showed that an intramolecular addition
of a thymine peroxyl radical to vicinal guanine results in the formation of tandem lesions
comprised of 8-OxoG, either 5′ or 3′ to formylamine (8-OxoG-F or F-8-OxoG) [36]. First,
a hydroxyl radical adds to the C5-C6 double bond of thymine, generating a radical at
C6. Next, this radical reacts with oxygen to form a peroxyl radical, which adds on to the
C8 position of the neighboring guanine. Rearrangement of the resulting peroxide yields
8-OxoG, whereas the 5-hydroxy-6-oxyl-5,6-dihydrothymine radical thus formed undergoes
fragmentation to generate the formamido residue F (Scheme 4).

It is noteworthy that X-irradiation of short oligonucleotides in oxygenated aqueous so-
lutions was used in these experiments, when clustered lesions are unlikely to be formed and
the major DNA damage includes single and tandem lesions. In a γ-irradiated aerated aque-
ous solution of calf thymus DNA, 8-OxoG-F is formed at higher rate than F-8-OxoG [37].
Ravanat and coworkers showed that in hydroxyl radical-induced reactions, about 50% of
8-OxoG and 8-OxoA are part of tandem DNA damages but are strongly dependent on the



DNA 2024, 4 157

secondary structure of DNA [38]. Carter and Greenberg have determined that tandem
lesions are the major product from pyrimidine nucleobase radicals [39].

Additional tandem lesions with two discrete modifications, such as thymine gly-
col adjacent to 8-OxoG (Tg-8-OxoG (C) (and 8-OxoG-Tg) [40], 2-deoxyribonolactone 5′

to thymine glycol (dL-Tg) (D) [21], 8-OxoG 5′ to 5-formyluracil (8-OxoG-5fU) (E) [41],
Fapy•G 5′ to 5-formyluracil (Fapy•G-5fU) (F), and 8-OxoG 5′ to 5-hydroxymethyluracil
(8-OxoG-5hmU) (G) [41] (Figure 1), formed via various radical-mediated processes, have
been reported.
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2.1. Tg-8-OxoG (C)

A high frequency of formation of Tg-8-oxoG (C) (and 8-oxoG-Tg) in calf thymus DNA
upon exposure to Cu(II)/ascorbate along with H2O2 or γ-rays was reported by Wang and



DNA 2024, 4 158

coworkers [40]. Evidently, Tg-8-oxoG can form in DNA in any site where thymine is located
5′ to a guanine. But Tg can also result from the deamination of 5-methylcytosine glycol
following a hydroxyl radical attack at 5-methylcytosine. As a result, a Tg-8-oxoG tandem
lesion may arise from an attack of reactive oxygen species at the methylated CpG site.

2.2. dL-Tg (D)

Hydroxyl radical addition on the C5-C6 π bond of thymine forms a radical at either
C5 or C6, which, under aerobic conditions, is converted to the corresponding peroxyl
radical. The peroxyl radical can selectively abstract the C1′-hydrogen atom from the
5′-adjacent nucleotide (such as 2 in Scheme 1) [42]. The C1′-radical is transformed into
2-deoxyribonolactone dL via an O2-dependent process, whereas the 3′ 6(5)-hydroperoxy-
5(6)-hydroxy-5,6-dihydrothymine is converted to thymine glycol. Tandem dL-Tg (D) is
produced via a reaction with a single hydroxyl radical [21].

2.3. 8-OxoG-5fU (E), Fapy•G-5fU (F), and 8-OxoG-5hmU (G)

Thymine 5-methyl radicals (T•) are produced by HO• and other radicals that can
abstract H atoms from the methyl group. T• is also generated by deprotonation of pyrim-
idine radical cations. In an oxygenated environment, T• reacts with O2 to produce the
corresponding methylperoxyl radical (TOO•). Robert and Wagner recently reported the
formation of tandem lesions induced by TOO• in GT sequence, which comprise either
Fapy•G or 8-OxoG in tandem with 5-formyluracil (5fU) [41]. They are formed by an
initial attack of a TOO• radical to the C8 position of guanine, resulting in a cross-linked
N7-aminyl radical endoperoxide that can undergo either oxidation or reduction to give
rise to 8-OxoG-5fU (E) or Fapy•G-5fU (F), respectively (Scheme 5). In this investigation,
8-OxoG in tandem with 5-hydroxymethyluracil (8-OxoG-5hmU) (G) was also isolated.
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3. Two Bases or a Base and 2-Deoxyribose Linked by One or More Covalent Bonds

Examples of the other type of tandem lesions with a covalent bond between the two
neighboring bases or a base and a 2-deoxyribose are as follows (Figure 2).
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3.1. G[8,5-Me]T (H), T[5-Me,8]G (I), and G[8-5]C (J)

In addition to 8-OxoG-F and F-8-OxoG, Box and coworkers also discovered tandem
lesions with a covalent bond between two neighboring bases in DNA exposed to either
ionizing radiation or metal-catalyzed H2O2 reactions [10,24,35]. In anoxic conditions, the
predominant lesion is a cross-linked product in which the C8 of guanine is linked to the
5-methyl group of an adjacent thymine (G[8,5-Me]T) (Scheme 6).

Although both G[8,5-Me]T (H) and T[5-Me,8]G (I) are formed, the former cross-link
is formed at a much higher rate. This is likely due to the shorter distances between the
pyrimidine radical and the 5′ purine base involved in the addition reaction. A computa-
tional study rooted in the density functional theory of analogous lesions A[8,5-Me]T and
T[5-Me,8]A showed that in addition to steric accessibility, stereo-electronic effects play
a major role in determining the reaction mechanism and the observed predominance of
the A[8,5-Me]T lesion over T[5-Me,8]A [43]. Additional thymine-purine cross-links have
been isolated and characterized from γ–irradiated DNA in an oxygen-free aqueous solu-
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tion. Later, Wang et al. discovered the corresponding G[8-5]C lesion containing a covalent
bond between guanine-C8 and the C5 position of an adjacent cytosine (J in Figure 2) [44],
although the mechanism of its formation is unclear. Molecular dynamics simulations indi-
cated that the methylene-bridged cross-links, such as G[8,5-Me]T or G[8,5-Me]mC lesions,
are better accommodated in B-DNA than those that lack the methylene bridge, such as
the G[8-5]C lesion, which suggests that the methylene group acts as a spacer, allowing the
former cross-links more flexibility in DNA than the latter [45].
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3.2. G[8,N3]T (K) and G[8]C[N3]T (L)

Another type of cross-linked DNA lesion is formed by one-electron oxidation of gua-
nine under oxidative stress following inflammation in tissues, which results in the formation
of G[8,N3]T (K) (Scheme 7) and G[8]C[N3]T (L) by carbonate radical anions [16,25,26,46].
In contrast to the G[8-5Me]T, T[5-Me,8]G, and G[8-5]C, which are formed in anaerobic
conditions, these cross-links are formed in the presence of oxygen.
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3.3. 8,5′-Cyclopurine-2′-Deoxyribonucleosides

A different type of double lesion called 8,5′-cyclopurine-2′-deoxyribonucleosides, i.e.,
8,5′-cyclo-2′-deoxyguanosine (cdG) (M and N in Figure 2) and 8,5′-cyclo-2′-deoxyadenosine
(cdA) (O and P in Figure 2), has been known since the 1960s [22]. These DNA damages are
not tandem lesion, as they do not contain damage to two contiguous nucleosides. However,
as they contain concomitant damages to both the base and sugar moieties of the same
nucleoside, we decided to include them in this paper. The mechanism of their formation by
hydroxyl radicals has been postulated to be as follows (Scheme 8) [23,47].
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It is noteworthy that, in addition to 8,5′-cyclopurine-2′-deoxyribonucleoside formation
by hydroxyl radicals (as shown in Scheme 8), these lesions are also derived directly from
high-energy radiation. Direct generation of C5′-sugar radicals by γ- and Ar ion-beam-
irradiated hydrated DNA samples has been reported, which leads to the formation of the
cyclopurine lesions [48]. Indeed, in addition to single-nucleobase damage, these lesions
were detected following Ne-22 ion-beam irradiation of hydrated DNA [49]. However,
formation of these lesions is inhibited when O2 is present at high concentrations, due to its
ease of reaction with the C5′-centered radical [50,51]. Additionally, it was shown that purine
oxidation in dsDNA is highly dependent on DNA secondary structure and that greater
damage occurs toward the extended B-DNA topology for both isolated (e.g., 8-OxoG) and
tandem (e.g., cdG) DNA damage [52].

4. Biological Effects of the Tandem Lesions
4.1. 8-OxoG-F

8-OxoG is less efficiently excised from the 8-OxoG-F tandem lesion by human OGG1
(hOGG1) and Escherichia coli Fpg DNA glycosylases than when it is present as an isolated
lesion [38]. As a general rule, tandem lesions are refractory to BER [53], which is thought to
be due to the structural perturbation caused by the adjacent lesion [54,55]. They are also
stronger blocks of DNA replication than the isolated lesions. For example, in simian COS-7
cells, polymerase bypasses of 8-OxoG and F are 70% and 45%, respectively, compared
to 17% for the tandem 8-oxoG-F. In terms of mutagenic effects, 8-OxoG is only weakly
mutagenic (mutation frequency (MF) 2–4%) both as an isolated lesion and as part of a
tandem lesion, but adenine incorporation opposite F increases from a high of 71% as an
isolated lesion to 94% as part of the tandem lesion [56].

4.2. Tg-8-OxoG

The BER enzyme hOGG1 cleaves 8-OxoG with reduced ability in Tg-8-OxoG, whereas
it exhibits enhanced ability to cleave 8-OxoG in 8-OxoG-Tg [57]. In terms of replication,
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the bypass efficiencies for Tg-8-OxoG and 8-OxoG-Tg are approximately one half of those
for the two isolated single-nucleobase lesions in wild-type and polymerase-deficient E.
coli strains [40]. The presence of an adjacent Tg leads to significant increases in G→T
transversions at the 8-OxoG site relative to an isolated 8-OxoG lesion [40]. In this study,
while 18% of G→T mutations occur for an isolated 8-OxoG, the percentage increases
to 32% and 28% in 8-OxoG-Tg and in Tg-8-OxoG, respectively. Experiments in pol IV-

and pol V- backgrounds indicate that both pol IV and pol V are involved, in part, in
translesion synthesis (TLS) of Tg, either as an isolated DNA damage incident or as part of
the tandem lesion.

4.3. dL-Tg

While endonuclease III (Nth) and endonuclease IV (Nfo) excise isolated Tg and dL,
respectively, they are unable to excise dL-Tg [58]. However, long-patch BER (LP-BER)
repairs the tandem lesion by APE1 cleavage followed by a strand-displacement synthesis
carried out by pol β, which adds 2–10 nucleotides; subsequent removal of the overhang by
FEN1 and a final ligation of the two ends by ligase completes this process [58]. UvrABC,
the E. coli NER enzymes, can also repair dL-Tg.

dL-Tg is a replication-blocking lesion in E. coli, which is bypassed only under SOS-
induced conditions [21]. While Tg does not influence nucleotide incorporation opposite
dL in wild-type cells, MF of Tg, negligible as an isolated lesion, increases to 10% in wild-
type E. coli cells when dL-Tg is flanked by a 3′-guanine. A misalignment–realignment
mechanism appears to be operating, and pol II and pol IV are responsible for misalignment-
induced mutations and compete with the pol V bypass. Tg in a tandem lesion, therefore,
increases mutagenesis by blocking replication, allowing the misalignment–realignment
mechanism to compete with the direct bypass by pol V. Though many of the BER enzymes
that repair an isolated Tg cannot repair dL-Tg, it is repaired by UvrABC with nearly the
same efficiency as an isolated Tg [58]. In mammalian cells, pol β is involved in strand-
displacement synthesis, which is increased by flap endonuclease (FEN1), as it cleaves the
flap generated by this mechanism [58].

Replication of dL-Tg was also studied in human cells. Although nearly 100% of Tg
is bypassed in HEK 293T cells, dL constitutes a major replication block [59]. dL-Tg is an
even stronger replication block with only 5% bypass efficiency [59]. The MF of Tg as a
tandem lesion is 3.4%, which increased to 3.9% and 4.8% in cells deficient in pol ι and
pol κ, respectively. A greater increase in the MF of Tg (to ∼5.5%) in cells that lack both
pol κ and pol ζ suggests that they work together for error-free TLS of Tg. Bypass of a
solitary dL results in 12–18% one-base deletions, which increases to as much as 60% in TLS
polymerase-deficient cells. For dL-Tg also, the fraction of deletion products also increases
in TLS polymerase-deficient cells. In full-length products and in all cell types, adenine is
preferentially incorporated opposite an isolated dL as well as when it is part of a tandem
lesion, whereas substantial misincorporation opposite Tg occurs only in dL-Tg. In wild-
type cells, targeted mutations increase to 9.7% and to 17.4, 15.9, and 28.8% in cells deficient
in pol κ, pol ζ, and pol ι, respectively. Consequently, Tg is much more mutagenic as part of
a tandem lesion, and the TLS polymerases are involved in the error-free Tg replication in
HEK 293T cells.

4.4. 8-OxoG-fU and Fapy•G-fU

The replications of 8-OxoG-5fU and Fapy•G-5fU tandem lesions in HEK 293T cells
with or without deficiency of bypass polymerases were examined [60]. The local sequence
of the tandem lesions encompasses the 273 codon of the p53 gene, a mutational hot-spot in
human cancer. Replication of weakly mutagenic 5-fU remains the same in the 8-OxoG-5fU
tandem lesion. But G→T transversions by 8-OxoG increase >10-fold. In contrast to 8-OxoG-
5fU, Fapy•G-5fU exhibits significant error-prone bypass of both lesions. The MF of Fapy•G
in Fapy•G-5fU increases 3-fold compared to isolated Fapy•G. In addition, MF of 5fU
significantly increases with a 5′-adjacent Fapy•G. But G→T transversions in Fapy•G-5fU
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decrease by almost a third in hPol κ-deficient cells, in contrast to isolated Fapy•G in the
same sequence context, which showed an increase in this mutation.

4.5. G[8,5-Me]T, T[5-Me,8]G, and G[8-5]C

The tandem intra-strand cross-links are substrates for NER by the UvrABC proteins of
E. coli [61]. However, even though G[8,5-Me]T and the UV-derived T[6,4]T cross-links are
recognized well by the UvrA protein, the UvrABC incision of the G[8,5-Me]T cross-link is
far less efficient than that of either the T[6,4]T cross-link or the bulky C8-AAF-dG adduct,
owing to poor recognition by the UvrB protein [61].

Replication of the tandem lesions in mammalian cells revealed that both G[8,5-Me]T
and T[5-Me,8]G cross-links cause targeted and semi-targeted mutations in simian (COS-7)
and human embryonic kidney (HEK 293T) cells, and each lesion displays a unique mu-
tational pattern [62]. While targeted base substitutions occur at a frequency of 5.8% for
G[8,5-Me]T in HEK 293T cells, 11.0% of semi-targeted single base substitutions near the
lesion have been detected. The semi-targeted mutations include up to two bases 5′ and
three bases 3′ to the cross-link. The dominant semi-targeted mutation is a C→T transition
immediately 5′ to the G[8,5-Me]T cross-link. For the T[5-Me,8]G cross-link, the MF is
higher but a similar pattern of mutations is noted. The targeted mutation frequency is
16.3%, with G→T as the dominant mutation. The semi-targeted mutations occur at 15.8%
frequency, of which the G immediately 5′ to the cross-link gives the highest frequency of
G→T transversions.

4.6. G[8,N3]T and G[8]C[N3]T

Both G[8,N3]T and G[8]C[N3]T lesions are removed by NER mechanisms [63]. But
unlike the G[8,5-Me]T and T[5-Me,8]G cross-links and the cyclopurine lesions (described in
the next section) that are only repaired by the NER mechanism, BER is active at the sites
of the G[8,N3]T and G[8]C[N3]T cross-links in double-stranded DNA [64]. A number of
eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth,
and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo) incise
G[8,N3]T and G[8]C[N3]T cross-links on either side of the cross-linked G. Additionally, the
higher yield of NER products in the case of G[8]C[N3]T accompanies a lower yield of BER
products. Likewise, the NER product yield is about five times smaller for G[8,N3]T, while
the BER product yield is much higher. This is an indication that BER and NER compete
with one another. This interesting observation deserves further examination.

Replication by the A-family polymerase BF (bacillus fragment) from Bacillus stearother-
mophilus is strongly blocked by G[8,N3]T and G[8]C[N3]T, but weak TLS occurs by the
Y-family polymerases Dpo4 and pol κ [17]. Primer extension by pol η is also partially
stalled at several sites at or near the G[8,N3]T cross-link; even so, a substantial and dis-
tributive primer extension occurs beyond the sites of the lesions. It is worth noting that the
efficiency of primer extension is always greater on templates with G[8]C[N3]T relative to
G[8,N3]T [17]. The investigators suggest that in comparison to the rigid configuration of
G[8,N3]T, the unmodified cytosine in G[8]C[N3]T allows enough flexibility for it to adopt
multiple configurations, of which some are favorable for polymerase bypass.

4.7. 8,5′-Cyclopurine-2′-Deoxyribonucleosides

The 5′R- and 5′R-diastereomers of cdA and cdG have been detected in vitro and
in vivo from a number of cells and organisms [23,65,66]. Their yield decreases steadily with
the increase in the oxygen concentration [67]. It has been suggested that these lesions play
roles in neurologic disease in xeroderma pigmentosum complementation group C patients
as well as in Cockayne syndrome, cancer, and familial Mediterranean fever [47].

The levels of 8-oxopurines are typically 40-fold higher relative to the cyclopurine
lesions in reactions of hydroxyl radicals (generated by γ-radiolysis or Fenton reaction)
with calf thymus DNA [50,68,69]. The yields of the R-diastereomers are greater than those
of the S-diastereomers for both cdA and cdG in γ-irradiated calf thymus DNA and Ne-
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22 ion-irradiated hydrated DNA [49,50]. However, there have been controversies over
the detection of these lesions in human cells and animal tissues. Cadet and colleagues
were unsuccessful in detecting them in the brains of NER knockout mice and γ-irradiated
human cells (1 kGy) [67,70]. On the other hand, the Chatgilialoglu, Dizdaroglu, and Wang
laboratories independently detected these lesions in cultured cell lines and in human and
animal tissues [71–74]. These cyclopurine lesions accumulate in wild-type mice with age,
and in progeroid mice, which are deficient in DNA repair, they accumulate rapidly with
aging in a tissue-specific manner [75].

Unlike most other oxidatively generated damage, 5′S- and 5′R-cdA and 5′S-cdG are
not repaired by BER [76,77]. Additionally, cdA impedes gene expression and is poorly
repaired in NER-deficient cells, suggesting that the cyclopurine lesions may accumulate in
NER-deficient cells. Both 5′R-cdA and 5′S-cdA also accumulate in Neil1-/- mice, indicating
a role for this BER protein in NER of these lesions. A comprehensive review of these lesions
encapsulates the present state of knowledge [47], and therefore, we will only summarize
the site-specific in vitro and cellular studies here.

Geacintov, Chatgilialoglu and coworkers have reported the relative NER efficiencies
of all four cyclopurine lesions in the same sequence context in human cell extracts [78].
Although NER excision of the cdA and cdG lesions occurs with comparable efficiencies,
both R diastereoisomers are excised twice as efficiently as the S lesions. Molecular modeling
and molecular dynamics simulations indicate that the C5′–C8 bond causes a significant
local distortion of the DNA backbone as well as a major disruption of the van der Waals
stacking interactions with the neighboring bases in the R diastereoisomers of cdA and cdG
lesions than the S forms. In another study, the NER efficiency of 5′S-cdG with different
complementary bases shows that excision of the wobble pair 5′S-cdG·dT is more efficient
than the 5′S-cdG·dC pair, even though the latter maintains a nearly perfect Watson–Crick
hydrogen bonding [77]. It is also puzzling that excision of the 5′S-cdG·dC pair is more
efficient than that of the 5′S-cdG·dA mispair that has no hydrogen bonds. In experiments
with 5′S-cdA, the excision of the 5′S-cdA·dC mispair was found to be much more efficient
than that of the 5′S-cdA·dT pair, while the 5′S-cdA·dA pair excision is the least efficient.
These results underscore the complexity of human NER, which probably uses multiple
criteria to discriminate among base pairs containing a DNA lesion.

5′S-cdG blocks replication strongly in E. coli with a viability <1%, which increases
to 5.5% with SOS [79]. In a pol II-deficient strain, viability further decreases, whereas it
increases substantially in a strain lacking pol IV. But no progeny is recovered from a pol
V-deficient strain, suggesting an absolute requirement of pol V for bypassing 5′S-cdG. This
lesion induces ∼34% mutation with SOS. 5′S-cdG→A dominates the mutational spectrum,
though 5′S-cdG → T mutation and 5′C deletion also occur.

In contrast to 5′S-cdG, 5′S-cdA→T and 5′S-cdA→G substitutions occur in comparable
frequency in wild-type E. coli [80]. However, the frequency of 5′S-cdA→G transitions
reduce in a pol IV-deficient strain, particularly upon induction of SOS, suggesting pol IV’s
participation in this mutation. In a pol II-deficient strain, MF is increased dramatically,
which suggests that pol II is likely involved in its error-free bypass. In vitro studies using
pol IV, exo-free Klenow fragment (KF (exo-)), and Dpo4 on 5′S-cdA and 5′S-cdG templates
provided additional insight. Primer extension by pol IV was quite inefficient, as it stalls
before the lesion, and nucleotide incorporation opposite the lesion occurred only very
sluggishly. Kinetic studies show that pol IV incorporates dCMP and dTMP opposite
5′S-cdA with nearly equal efficiency, whereas incorporation of the correct nucleotide
dCMP opposite 5′S-cdG by pol IV occurred 10-fold more efficiently than any other dNMP.
However, pol IV is quite inefficient in further extension of each cyclopurine-containing
pair. While these results suggest a possible involvement of pol IV in 5′S-cdA→G mutations
in E. coli, they also imply the lack of its role in 5′S-cdG mutagenesis. Unlike pol IV, KF
(exo -), though hindered by both cyclopurines, can slowly incorporate the correct nucleotide
opposite them. In contrast, Dpo4 can carry out a more facile bypass of both 5′S-cdG and
5′S-cdA, incorporating the correct nucleotide dTMP opposite 5′S-cdA, but it is only 2–8-fold
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more proficient relative to the other dNMPs, and it cannot extend the 5′S-cdA:T and 5′S-
cdA:C pair. However, Dpo4 incorporates dTMP opposite 5′S-cdG preferentially relative
to dCMP, even though extension of the 5′S-cdG:T pair is less efficient than the 5′S-cdG:C
pair. In summary, the in vitro and cellular studies suggest that both 5′S-cdA and 5′S-cdG
are replication-blocking lesions and 5′S-cdG, in addition, can induce G→A transition in
E. coli. Furthermore, the Y-family DNA polymerases can initiate error-prone synthesis of
these lesions, albeit inefficiently.

For the roles of mammalian DNA polymerases on these cyclopurines, Wang and
coworkers determined that pol η is involved in the insertion step of TLS and showed that
the human pol ι and yeast pol ζ complexes (REV3/REV7) efficiently carry out the insertion
and extension steps, respectively, of the replicative bypass of 5′S-cdA and 5′S-cdG [81].
Human pol κ and pol η also bypass these lesions but less efficiently. In human embryonic
kidney epithelial cells, in addition to major inhibition of DNA replication, 5′S-cdA and
5′S-cdG exhibit potent mutagenicity. While pol κ does not appear to be involved in TLS
of 5′S-cdA and 5′S-cdG in human cells, pol η, pol ι, and pol ζ play crucial roles. Based
on these results, the investigators propose that pol η and/or pol ι carry out nucleotide
insertion opposite 5′S-cdA and 5′S-cdG, whereas pol ζ executes the extension step.

5. Concluding Comments

Tandem lesions comprise a diverse group of DNA lesions. They present a greater
challenge for the DNA repair systems than the isolated lesions. In addition, as enumerated
in this minireview, they also are stronger replication blocks compared to the isolated DNA
lesions. In many cases, these DNA lesions show a synergistic effect in mutagenesis, or at
least one of the lesions is more mutagenic than when it is replicated as a solitary lesion.
Site-specific incorporations of some of these lesions now allow the investigators to critically
examine their repair and replication properties in great detail. As yet, only a limited number
of studies have been carried out. Additional systematic studies in the future will provide
a better understanding of the biological roles of these tandem lesions. Moreover, as the
levels of the tandem lesions are usually lower than some of the isolated lesions, such as the
8-oxopurines, in human cells and tissues, more efforts in their detection are warranted.
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Abbreviations

NER nucleotide excision repair
MDS multiply damaged sites
DSB Double-strand breaks
8-OxodGuo 8-oxo-7,8-dihydro-2′-deoxyguanosine; 8-OxoG, 8-oxo-7,8-dihydroguanine
dF N-(2-deoxy-β-D-erythro-pentofuranosyl)formylamine
Tg thymine glycol
dL 2-deoxyribonolactone
5fU 5-formyluracil
Fapy•G 2,6-diamino-4-hydroxy-5-formamidopyrimidine
cdG 8,5′-cyclo-2′-deoxyguanosine; cdA, 8,5′-cyclo-2′-deoxyadenosine
HEK human embryonic kidney
TLS translesion synthesis
MF mutation frequency
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pol DNA polymerase
KF (exo-) exo-free Klenow fragment
BER base excision repair
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