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Abstract: Thrombosis is characterized by the pathological formation of fibrin clots within a blood
vessel, leading to the obstruction of blood flow. Fibrinolytic enzymes from microorganisms have
been shown to be more efficient and safer in dissolving clots. Then, this study aimed to evaluate
the cell growth and fibrinolytic enzyme production of Tetradesmus obliquus under different culti-
vation conditions. T. obliquus grew under autotrophic and mixotrophic conditions using different
concentrations of corn steep liquor (0.25 ≤ CSL ≤ 4.00%). The cells were concentrated and lysed
via two different methods (sonication or homogenization) to trigger the release of the enzyme. It
was precipitated via acetone or ammonium sulfate additions and purified using ion exchange chro-
matography. The highest biomass productivity (Px = 130 ± 12.8 mg·L−1day−1), specific growth
rate (µmax = 0.17 ± 0.00 day−1), and fibrinolytic activity (391 ± 40.0 U·mg−1) was achieved on a
mixotrophic cultivation at a 0.25% CSL concentration. The results showed that the homogenizing
method had better performance in the release of enzyme, and the precipitation with acetone obtained
the highest fibrinolytic activity (567 ± 49.3 U·mg−1). The purified enzyme showed a specific activity
of 1221 ± 31 U·mg−1 and a molecular mass of 97 kDa. So, the fibrinolytic enzyme from T. obliquus
had higher activity when compared to the other fibrinolytic enzymes, being a potential source for
the development of therapeutic agents in thrombosis treatment. Additional studies are needed to
investigate the biochemical properties and biological profile of this enzyme.

Keywords: thrombosis; kinetic parameters; cell growth; protein purification; biomass production;
Chlorophyceae; agro-industrial sub-product; extraction methods; molecular mass; chromatography

1. Introduction

Cardiovascular diseases (CVDs) are the main cause of death worldwide and are
responsible for about 32% of all global deaths [1]. Thrombosis is a severe CVD complication
characterized by the pathological formation of fibrin clots that obstruct blood flow, leading
to intense clinical manifestations such as acute ischemic stroke, myocardial infarction, and
venous thromboembolism [2,3].

Currently, thrombosis treatment is based on antiplatelet or anticoagulant agents, which
may lead to severe bleeding problems, such as hemorrhage [4,5]. Alternatively, fibrinolytic
agents such as the tissue plasminogen activator (t-PA), urokinase (u-PA), and streptokinase
have been widely used for thrombosis therapy. However, these drugs have some limitations
including a short half-life, low specificity to fibrin, high cost, and excessive bleeding [6].
Thus, the search for more effective and safe fibrinolytic enzymes has become the key to
thrombosis treatment.
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In this sense, fibrinolytic enzymes from photosynthetic microorganisms such as
Chlorella vulgaris, Arthrospira platensis, and Dunaliella tertiolecta have shown promising
antithrombotic effects [7–9]. However, up to now, there is no report on the fibrinolytic
potential of the Tetradesmus genus, although some bioactive compounds such as lectin,
linoleic acid, and flavonoids with anticancer and antimicrobial activities have already been
reported in the literature [10–12].

The production of microalgae has tripled in the last 5 years [13]. The interest in world
production is due to some characteristics such as high photosynthetic efficiency, fast growth
rate, resistance to various contaminants, and the capacity to grow on non-arable lands and
be cultured using different growth conditions (autotrophic, heterotrophic, and mixotrophic
growth modes) [14,15]. Specifically, previous studies have shown that mixotrophic con-
ditions using different organic carbon substrates improve enzyme production and the T.
obliquus biomass yields [16,17].

Organic wastes and by-products are frequently used as substrates for mixotrophic
growth and are advantageous for sustainable resource recycling and the cost reduction
in microalgal production [18]. Corn steep liquor (CSL) is a by-product from the corn wet-
milling industries and has high amounts of carbohydrates, amino acids, vitamins, organic
acids, and minerals, being a nitrogen-rich source used for the microalgal cultivation [19].
By the way, this by-product has been successful in the production of fibrinolytic enzymes
from C. vulgaris, A. platensis, and D. tertiolecta [7–9]. So, this study aims to evaluate and
compare the biomass and fibrinolytic enzyme productions from T. obliquus cultivated under
autotrophic and mixotrophic (using CSL) growth conditions.

2. Materials and Methods
2.1. Culture Media and Growth Conditions

T. obliquus (SISGEN A5F5402) was isolated from Açude of Apipucos (Recife, Pernam-
buco, Brazil, coordinates 8◦1′13.08′′ S; 34◦55′56.51′′ W) and cultivated under autotrophic
condition in 1000 mL Erlenmeyer flasks containing 400 mL of the BG-11 medium [20] with
an initial concentration of 50 mg·L−1, temperature of 30 ± 1 ◦C, continuous light intensity
of 40 µmol photons m−2·s−1, and under constant aeration [21]. The mixotrophic condition
was defined by the addition of different concentrations of corn steep liquor (0.25, 0.50,
0.75, 1.00, 2.00, and 4.00% (v/v)) into the BG-11 medium. The corn steep liquor (CSL)
(Corn Products Brazil, Cabo de Santo Agostinho, PE, Brazil) was previously treated via
autoclaving and precipitation according to Liggett and Koffler [22].

Cell growth was measured daily until the end of the exponential growth phase. The
cell biomass was harvested via centrifugation (5000 rpm for 5 min), washed three times
with distilled water, freeze-dried, and stored at 4 ◦C.

The biomass concentration was determined by measuring the optical density (OD)
at λ665 nm via a UV/Visible spectrophotometer using an appropriate calibration curve
correlating OD665 to the biomass concentration (Equation (1), R2 = 0.99).

Biomass concentration = 0.0041OD665 + 0.0486 (1)

2.2. Kinetic Parameters

The biomass productivity (Px) at the end of cultivation was calculated via Equation (2):

Px =
(Xt − X0)

tc
(2)

where Xt is the final cell concentration (mg·L−1), X0 is the initial cell concentration (mg·L−1),
and tc time is the culture’s final cell concentration (days).

The maximum specific growth rate (µmax), expressed in day−1, was calculated via the
following equation:

µmax =
1

∆t
ln

Xj

xj−1
(3)
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where Xj and Xj−1 are the cell concentrations at the end and the beginning of each time
interval (∆t = 1 day).

2.3. Fibrinolytic Enzyme Extraction

The cell biomass (100 mg·mL−1) was resuspended in 0.02 M Tris-HCl buffer (pH 7.4)
and submitted to two different extraction methods: (1) homogenization by constant stirring
for 30 min in ice bath [23]; and (2) sonication using a sonicator (Bandelin Sonoplus HD 2070,
Microtip MS 72, Berlin, Germany) with 20 pulses for 1 min with intervals of 1 min between
each pulse in ice bath [10]. Both the homogenized and sonicated biomasses were centrifuged
at 15,000 rpm for 10 min at 4 ◦C and the cell extract was used for further analysis.

2.4. Precipitation Methods

Cell extract was precipitated using two different solvents: (1) acetone (80%); and
(2) ammonium sulfate at 0–40% and 40–70% (w/v). The protein precipitated by using
ammonium sulfate was dialyzed against 0.02 M Tris-HCl buffer for 6 h at 25 ◦C.

2.5. Protein Purification

The redissolved protein was loaded onto ion-exchange chromatography using DEAE
Sephadex column (1.6 × 50 cm) pre-equilibrated with 0.02 M Tris-HCl buffer and eluted
with the same buffer at a flow rate of 0.5 mL·min−1, and fractions of 0.5 mL were collected.
The absorbance was measured at λ280 nm.

2.6. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried
out using a 12% polyacrylamide gel as described by Laemmli [24]. The molecular mass was
calibrated using a Molecular Mass Marker Kit (14,000–200,000 Da, Sigma-Aldrich, St. Louis,
MO, USA). Protein bands were detected by staining with silver.

2.7. Protein Concentration Analysis

Protein concentration was obtained using the BCA Protein Assay Reagent Kit (BCATM

Protein Assay Kit, Thermo Fisher Scientific, Waltham, MA, USA). Bovine serum albumin
was used as the standard.

2.8. Protease Activity Assay

Protease activity was assayed using azocasein as a substrate. The reaction mixture
contained 30 µL of 0.08 mM azocasein, 140 µL of 0.02 M Tris-HCl, and 30 µL of the T.
obliquus cell extracts. After 15 min, the reaction was stopped by the trichloroacetic acid
(TCA) addition and the absorbance of liquid fraction was measured at λ450 nm using a
microplate reader. One unit of azocasein activity was defined as the amount of enzyme
required to increase the absorbance by 0.001 per minute, and the protease activity was
expressed as activity units [25].

2.9. Determination of Fibrinolytic Enzyme
2.9.1. Fibrinolytic Plate Assay

The fibrinolytic activity was determined on a fibrin plate [26] with adaptations.
Typically, the fibrin plate was prepared by mixing 0.45% bovine fibrinogen and 0.02 M
Tris-HCl buffer with 2% agarose dissolved in 0.02 M Tris-HCl buffer and 200 µL of CaCl2.
The prepared solution was poured into a Petri plate (90 × 15 mm) containing 200 µL
of a thrombin suspension. The fibrinolytic activity of the cell extracts was obtained by
creating wells of 5 mm, which were impregnated with 20 µL of the T. obliquus extracts
and incubated at 37 ◦C for 20 h. The zone of clearance was defined as the fibrinolytic
activity of the cell extracts.
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2.9.2. Fibrinolytic Assay Using Spectrophotometry

The fibrinolytic activity was evaluated according to Wang [27] using the spectrophoto-
metric method. Fibrinogen (0.72%) and 0.02 M Tris-HCl buffer was placed in a test tube
and incubated at 37 ◦C for 5 min. After the addition of the thrombin (20 U·mL−1) solution,
the resulting mixture was incubated at 37 ◦C for 10 min, the enzyme solution was added,
and incubation continued at 37 ◦C. At 60 min, the reaction was stopped by adding 0.2 M
TCA. Finally, the solution was centrifugated (8000 rpm for 10 min) and the supernatant
was measured at λ275 nm. One unit (U) of fibrinolytic activity was defined as the amount
of enzyme required to increase 0.01 units of absorbance per minute.

2.10. Statistical Analysis

All the experiments were performed in duplicates and the data are presented as the
mean ± standard deviation (SD). The statistical analyses were performed using one-way
analysis of variance (ANOVA), followed by Tukey’s test as post hoc. p values < 0.05 were
considered statistically significant.

3. Results and Discussion
3.1. Cell Growth Profile and Kinetic Parameters of T. obliquus Cultivation under Different
Growth Conditions

Cell growth profiles of T. obliquus in autotrophic and mixotrophic growth conditions
using different CSL concentrations are shown in Figure 1. A short lag phase of two days
was observed in autotrophic growth (Figure 1) due to the previous adaptation of T. obliquus
cells in a culture medium constituted by only inorganic nitrogen sources such as NaNO3
and (NH4)5[Fe(C6H4O7)2]. In this condition, the exponential phase was of 16 days reaching
the highest maximum biomass concentration (Xm) values (1970 ± 231 mg·L−1). In the
mixotrophic cultivation using 0.25% CSL, the exponential growth phase began after 8 days
of cultivation and obtained a Xm value of 1625 ± 207 mg·L−1 (Figure 1), and when the CLS
was increased to 0.50%, slow cell growth was observed during 15 days, reaching the lowest
Xm of 936 ± 82.8 mg·L−1. In the CSL concentration higher than 0.50%, no T. obliquus cell
growth was observed. Similar results were observed in the mixotrophic cultivation of A.
platensis and D. tertiolecta using CSL concentrations above 0.6% and 1.0%, which inhibited
cell growth [8,9].

CSL concentration also influenced the cell growth kinetic parameters. As shown in
Table 1, the biomass productivity (Px = 130 ± 12.8 mg·L−1day−1) and specific growth rate
(µmax = 0.17 ± 0.00 day−1) in the mixotrophic cultivation using 0.25% CSL was higher than
those cultivated with 0.50% CSL (Px = 93.4 ± 10.9 mg·L−1day−1; µmax = 0.12 ± 0.00 day−1).
These results showed that higher CSL concentrations (>0.50%) in the mixotrophic culti-
vation of T. obliquus decrease the Px and µmax values probably due to stress provoked by
the excess of nitrogen [28,29]. CSL is rich in protein content (420 mg·g−1) and the main
amino acids available are arginine (44.30 mg·g−1), alanine (35.70 mg·g−1), and glutamic
acid (42.00 mg·g−1), showing that CSL is a potential organic N-source [30,31]. By the
way, CSL has been considered as a low-cost material for the microbial production of en-
zymes [18,32,33], and its effects on the fibrinolytic enzyme production of T. obliquus has
not yet been studied. The highest biomass productivity (130 ± 12.8 mg·L−1day−1) was
obtained in the cultivation using 0.25% CSL, which was selected for further steps.

3.2. Protease and Fibrinolytic Productions

The cell growth condition has an important influence on the production of microbial
enzymes. As shown in Table 1, T. obliquus produced a high amount of protease enzyme
when cultivated under mixotrophic conditions using 0.25% CSL (84.7 U·mg−1), followed
by the autotrophic (12.5 U·mg−1) and mixotrophic 0.50% CSL (5.85 U·mg−1) conditions.
Moreover, the protease activity of T. obliquus cultivated on 0.25% CSL is higher than
those produced by different marine algae, such as Ulva lactuca (6.55–7.33 U·mg−1), Ulva
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fasciata (8.00 U·mg−1), Enteromorpha sp. (6.74–9.60 U·mg−1), and Chaetomorpha antenna
(9.40 U·mg−1) [34].

Table 1. Cultivation parameters and enzymatic activities of T. obliquus cultivated in different growth
conditions.

Growth
Conditions Xm (mg·L−1) Px

(mg·L−1·day−1) µmax (day−1) Methods Total Protein
(mg·mL−1)

Protease
Activity

(U·mg−1)

Fibrinolytic
Activity

(U·mg−1)

Autotrophic 1970 ± 231 a 112 ± 13.5 a 0.19 ± 0.03 a Homogenization 0.93 ± 0.00 a 12.5 ± 1.35 a 430 ± 40.2 a

Sonication 2.99 ± 0.50 b 4.50 ± 0.40 a 149 ± 3.8 b

Mixotrophic
(CSL 0.25%) 1625 ± 207 a 130 ± 12.8 a 0.17 ± 0.00 a Homogenization 0.86 ± 0.00 a 12.5 ± 2.94 a 391 ± 40.0 a

Sonication 3.32 ± 0.22 b 84.7 ± 3.51 b 243 ± 11.5 c

Mixotrophic
(CSL 0.50%) 936 ± 82.8 b 93.4 ± 10.9 a 0.12 ± 0.00 a Homogenization 2.90 ± 0.09 b 4.64 ± 3.06 a 130 ± 1.0 b

Sonication 2.76 ± 0.14 b 5.85 ± 3.68 a 135 ± 7.0 b

Maximum cell concentration (Xm), biomass productivity (Px), specific growth rate (µmax). Data expressed as
means ± standard deviations of duplicate experiments. a,b,c Different superscript letters indicate statistically
significant differences (p < 0.05).
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Figure 1. Growth profiles of T. obliquus cultivated autotrophically and mixotrophically under different
concentrations of corn steep liquor: Autotrophic (�), mixotrophic 0.25% (N), and mixotrophic
0.50% (•).

No significant difference in fibrinolytic activities was observed between autotrophic
(430 ± 40.2 U·mg−1) and mixotrophic using the 0.25% CSL (391 ± 40.0 U·mg−1) cultiva-
tions, which were higher than those using 0.50% CSL (135 ± 7.0 U·mg−1). The results
showed that high CSL concentrations inhibit protease and fibrinolytic enzyme productions.
Fibrinolytic enzyme production from the autotrophic and 0.25% CSL mixotrophic were
higher than those obtained from the other photosynthetic microorganisms, such as A. platen-
sis (268 ± 10.7 U·mg−1) and C. vulgaris (302 ± 37.5 U·mg−1) [7,8]. It is well known that the
biochemical composition of the microalgae biomass, e.g., enzyme production, depends on
the culture conditions such as the medium composition [35]. Then, the highest enzyme
activities were obtained using 0.25% CSL, which also enhanced the enzyme production
by A. platensis [8]. On the other hand, the cultivation with a higher CSL concentration
(≥0.50%) decreases enzyme production, since a high concentration of some nutrients, such
as nitrogen, might affect the biomass [36].
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3.3. Effect of Extraction Methods on the Enzymatic Activities

The extraction methods influence enzyme activity. The extraction of enzymes was
evaluated using the homogenization and sonication methods. Homogenization was the
most efficient method to extract protease (12.5 ± 1.35 U·mg−1) and fibrinolytic enzymes
(430 ± 40.2 U·mg−1) from the autotrophic cultivation, while the sonication method de-
creased the protease and fibrinolytic activities to 4.50 ± 0.40 and 149 ± 3.8 U·mg−1, respec-
tively (Table 1). Similar results were observed in the T. obliquus extracts from the mixotrophic
cultures using 0.25% CSL, which also showed higher protease (12.5 ± 2.94 U·mg−1) and fib-
rinolytic (391 ± 40.0 U·mg−1) activities using the homogenization method when compared
to the sonication methods. These data were similar to those obtained by Silva et al. [9]
which showed that the fibrinolytic activity from D. tertiolecta was 819 and 422 U·mg−1

using homogenization and sonication, respectively. This can be explained by the possi-
ble enzyme denaturation caused by the prolonged sonication time, high temperature, or
elevated frequency, as reported by Sukor et al. [37] and Ranjha et al. [38]. Then, these
results showed that homogenization is more effective in the extraction of the protease and
fibrinolytic enzymes from T. obliquus.

Therefore, according to Table 1, the mixotrophic cultivation using 0.25% CSL was
selected for further steps due to its higher biomass productivity and significantly high
enzyme production. Moreover, the extract from the 0.25% CSL cultivation obtained via the
homogenization method showed higher fibrinolytic activity compared to the sonication
method; thus, this extract was selected for the purification steps.

3.4. Effect of Precipitation Methods on the Enzymatic Activities

The T. obliquus extract-rich protein was precipitated using acetone or ammonium
sulfate in two fractions of saturation (0–40% and 40–70%). Both 0–40% and 40–70% ammo-
nium sulfate fractions showed similar protease activity (655± 69.3 and 623± 192 U·mg−1,
respectively), which was higher compared to the acetone precipitation (206 ± 17.5 U·mg−1).
Then, the ammonium sulfate fractions are more advantageous for the protease activity
applications. However, although the 0–40% ammonium sulfate fraction exhibited the
highest fibrinolytic activity (625 ± 20.2 U·mg−1), the acetone fraction showed better
performance due to its potential fibrinolytic activity (567 ± 49.3 U·mg−1) and the highest
enzyme yield of 80.3%. These results are similar to those reported by Barros et al. [8]
and Silva et al. [9] for the fibrinolytic enzymes from A. platensis and D. tertiolecta, which
showed fibrinolytic activity of 256 U·mg−1 (yield = 53.8%) and 435 U·mg−1 (yield = 37%),
respectively.

Taking into account that the fibrinolytic activity measures the enzyme capacity of
degrading fibrin specifically, and the acetone fraction showed the highest recovery yield,
this fraction was considered more advantageous to be studied for thrombosis therapy
purposes. Acetone is listed among the Generally Recognized as Safe (GRAS) by the Food
and Drug Administration (FDA) since toxicological and medical studies show no adverse
effects on human health [39]. Additionally, the use of acetone for precipitation includes
some advantages such as simple-step extraction, less cost, and less time consumed [40,41].
Therefore, acetone was selected as the most advantageous precipitating agent to obtain the
fibrinolytic enzyme from T. obliquus.

3.5. Fibrinolytic Activity in Fibrin Plate

Figure 2 shows a qualitative assessment of the fibrinolytic activity from T. obliquus by
the fibrin plate method. The cell extract from T. obliquus cultivated in 0.25% CSL showed
a high clear zone (82 mm2) when compared to the cell extract obtained from the cell
extracts cultivated autotrophically (69 mm2) or mixotrophically with 0.50% CSL (69 mm2)
(Figure 2A), confirming that the 0.25% CSL cultivation has higher fibrinolytic production
by this qualitative analysis. These values are higher than those of the fibrinolytic enzymes
from Bionectria sp. strains, which ranged from 21.9 to 66.7 mm2 [42].
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The fibrinolytic activities of protein precipitated by different precipitating agents are
shown in Figure 2B. Both the 0–40% ammonium sulfate and acetone fractions exhibited a
clear zone of fibrin degradation around the well after 48 h, as shown in Figure 2B (letters
g and h) and Table 2. On the other hand, the 40–70% ammonium sulfate fraction did not
show a clear zone area of hydrolysis (Figure 2B; letter e).
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Figure 2. Fibrinolytic activity of T. obliquus by fibrin plate method. (A) Fibrinolytic activity of
homogenized extracts obtained by 0.25% CSL mixotrophic cultivation (a), Tris-HCl buffer control (b),
0.5% CSL mixotrophic cultivation (c), and autotrophic cultivation (d). (B) Fibrinolytic activity of
40–70% ammonium sulfate precipitate (e), cell extract (f), acetone precipitate (g), 0–40% ammonium
sulfate (h), Tris-HCl buffer control (i), and cell extract extracted twice (j) after 48 h.

Table 2. Comparison of different precipitating agents for precipitation of the homogenized cell extract
from T. obliquus cultivated in 0.25% CSL.

Precipitating
Agents

Volume
(mL)

Total Protein
(mg)

Total Protease
Activity (U)

Specific
Protease
Activity

(U·mg−1)

P.F Yield
(%)

Total
Fibrinolytic
Activity (U)

Specific
Fibrinolytic

Activity
(U·mg−1)

P.F Yield
(%)

Cell extract 50 23.3 ± 1.2 a 4740 ± 1039 a 203 ± 56.3 a 100 11,520 ± 1420 a 494 ± 86.1 a 100
Ammonium

sulfate
(0–40%)

40 4.80 ± 0.00 b 3144 ± 332 b 655 ± 69.3 b 3.22 66.3 3000 ± 97 b 625 ± 20.2 a,b 1.26 26.0

Ammonium
sulfate

(40–70%)
40 5.20 ± 1.38 b 3240 ± 72 b 623 ± 192 b 3.06 68.3 2448 ± 0 b 470 ± 157 b 0.95 21.7

Acetone 40 16.4 ± 0.9 c 3384 ± 125 c 206 ± 17.5 a 1.01 71.3 9312 ± 396 c 567 ± 49.3 a,b 1.14 80.3

Data expressed as means± standard deviations of duplicate experiments. a,b,c Different superscript letters indicate
statistically significant differences (p < 0.05).

3.6. Enzyme Purification

The fibrinolytic enzyme from T. obliquus was purified using a combination of acetone
precipitation and the DEAE-Sephadex ion exchange column. The chromatogram shown
in Figure 3 exhibits a single peak (fractions 4–12). These protein fractions were pooled
and concentrated, showing a fibrinolytic activity of 1221 ± 31 U·mg−1. After purification
via DEAE-Sephadex, the fibrinolytic enzyme was 2.46-fold purified with a yield of 8.90%,
which is relative to that of the cell extract (Table 3). In general, the activity of the puri-
fied fibrinolytic enzyme from T. obliquus was significantly higher than those obtained by
Silva et al. [9] for the fibrinolytic enzyme from D. tertiolecta, which showed fibrinolytic
activity of 670 U·mg−1. Similarly, the fibrinolytic activity of the fibrinolytic enzyme from
T. obliquus is also higher compared to diverse macroalgal species, such as Costaria costata
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(915 U·mg−1), Codium divaricatum (6.3 U·mg−1), Codium fragile (61.5 U·mg−1), and Ulva
pertusa (295 U·mg−1), and also various bacterial species such as Bacillus flexus (315 U·mg−1),
Bacillus velezensis BS2 (131 U·mg−1), Bacillus subtilis HQS-3 (30.0 U·mg−1), and Bacillus
subtilis ICTF-1 (280 U·mg−1) [23,43–46].

Table 3. Steps of purification of fibrinolytic enzyme from T. obliquus.

Purification
Step

Volume
(mL)

Total Protein
(mg)

Total Protease
Activity (U)

Specific
Protease
Activity

(U·mg−1)

P.F Yield
(%)

Total
Fibrinolytic
Activity (U)

Specific
Fibrinolytic

Activity
(U·mg−1)

P.F Yield
(%)

Cell extract 50 23.3 ± 1.2 a 4740 ± 1039 a 203 ± 56.3 a 100 11,520 ± 1420 a 494 ± 86.1 a 100
Acetone

precipitation 40 16.4 ± 0.9 b 3384 ± 125 a 206 ± 17.5 a 1.01 71.3 9312 ± 396 b 567 ± 49.3 b 1.14 80.8

DEAE-
Sephadex 4.5 0.84 ± 0.02 c 297 ± 4.2 b 353 ± 12.4 b 1.73 6.26 1026 ± 0 c 1221 ± 31 c 2.47 8.90

Data expressed as means± standard deviations of duplicate experiments. a,b,c Different superscript letters indicate
statistically significant differences (p < 0.05).
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Figure 3. Chromatogram of fibrinolytic enzyme from T. obliquus on the DEAE-Sephadex column.

Briefly, the extracts obtained by the homogenization method were purified using
acetone precipitation and the DEAE-Sephadex chromatography, showing potential fibri-
nolytic activity of 1221 ± 31 U·mg−1 (Table 3). The same sample was also submitted to the
SDS-PAGE analysis.

SDS-PAGE showed one protein band with a molecular mass of probably 97 kDa
(Figure 4). This is higher than that exhibited by the other T. obliquus proteins reported
by Silva et al. [21] and Heide et al. [47] that have a molecular mass of 78 and 12 kDa,
respectively. Additionally, the molecular mass of the fibrinolytic enzymes obtained from
the other microalgae species, including A. platensis (72 kDa), C. vulgaris (45 kDa), and D.
tertiolecta (10 kDa), is also lower than the fibrinolytic enzyme from T. obliquus [7–9]. These
results show that this is a different protein from those reported previously.
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4. Conclusions

In the present study, it was possible to extract and purify an enzyme from T. obliquus
microalgae with a specific activity of 1221 ± 31 U·mg−1. The mixotrophic cultivation using
an inexpensive and advantageous agro-industrial by-product (0.25% CSL) showed higher
growth kinetic parameters and fibrinolytic production. Additionally, cell extraction via
homogenization had the highest fibrinolytic activity, while the protein precipitation with
acetone exhibited the highest recovery yield. In general, these methods are considered
simple, efficient, less costly, less time-consuming, and are recognized as safe for human
health, which can facilitate this enzyme production as well as its purification. Future
research may continue to investigate the enzyme biochemical and biological profile as well
as its mechanism of action for thrombolytic activity. Finally, these results can conclude
that the fibrinolytic enzyme from T. obliquus has wide potential for industrial application
besides its promising effects as an alternative to thrombolytic therapy.
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