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Abstract: In this review, in addition to the potential cardiovascular applications of β-blockers and,
more specifically, propranolol, we wanted to list the more recent applications in psychiatry as
well as current knowledge on the impact of oxidative stress on propranolol hydrochloride and
the oxidative stress that could be limited by the latter. In fact, a number of studies show that this
molecule is modified by oxidative stress but is also able to limit it. Mention is also made to studies on
the increasingly important problem of eliminating drug waste and its impact on the environment,
particularly the marine environment. Given the increase in the consumption of medicines, more
rigorous waste management is needed to avoid impacting biodiversity.
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1. Introduction

β-blockers were discovered in the 1960s, and since then, this class of drugs has become
established in cardiology as in other specialties. New molecules have appeared with
specific actions and a better benefit–risk balance. β-blockers are increasingly used not only
in cardiology but also in other specialties, such as endocrinology, psychiatry, and neurology.
Not all the properties of β-blockers have been fully elucidated, and new indications may
emerge [1]. Propranolol is a β-adrenergic receptor antagonist discovered by an English
researcher, Sir James Black, to treat the symptoms of angina pectoris. Research soon focused
on anxiety. It became clear that β-blockers had a role to play in reducing anxiety, unlike
other anxiolytic substances developed in psychiatry, such as benzodiazepines. β-blockers
do not carry the same risk of dependence as benzodiazepines, exert several central and
peripheral effects, and are, therefore, useful in a variety of conditions [2]. Propranolol is
rapidly absorbed after oral administration. Its bioavailability varies according to the dose
administered. The area under the curve is multiplied by 2.5 if the dose is doubled. The area
under the curve varies according to whether the drug is immediately released or sustained
in its release. Propranolol is metabolized by CYP2D6, CYP1A2, and CYP2C19, which are
sources of potential drug interactions. CYP cytochromes are a group of enzymes belonging
to the cytochrome P450 family. These various enzymes are involved in the metabolism of
a large number of drugs, including antidepressants, neuroleptics, and β-blockers, which
are of interest here. Renal insufficiency can modify pharmacokinetic parameters, unlike
other parameters such as age, gender, and ethnic origin. In the case of renal insufficiency,
therapeutic adaptation is necessary [3]. β-blockers can lead to psychiatric disorders or
even suicidal behavior; the results must be confirmed [4]. New ideas have emerged that
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propranolol could replace benzodiazepines to effectively treat post-traumatic stress disorder
(PTSD) without tachyphylaxis as with benzodiazepines. Propranolol is the leading beta-
blocker as it is easy to use and requires less monitoring than benzodiazepines. Along with
EMDR, propranolol is the best treatment for anxiety disorders. Propranolol acts on stage
fright. It is effective in the treatment of post-traumatic stress disorder (PTSD), pending proof
of the mechanism of action [5]. For the time being, these extra-cardiological indications
remain in the research domain and have not received marketing authorization [5].

In this review, in addition to the various new potential therapeutic applications in
psychiatry, we wanted to survey current knowledge on the impact of oxidative stress on
propranolol hydrochloride and the oxidative stress that could be limited by it.

2. Results and Discussion
2.1. Role of Propranolol Hydrochloride in Mental Health

A clinical case describes a 44-year-old woman who was a multi-recidivist in road
accidents, with 3 out of 5 accidents resulting in post-traumatic stress despite several
treatments. Her symptoms reappeared in a sixth accident. Four days after this accident,
she received 60 mg of propranolol twice a day, resulting in a reduction in symptoms. On
the 11th day after the accident, her clinical scale score fell from 86 to 56. This research
is the first to report the efficacy of propranolol in reducing post-traumatic symptoms,
particularly its recurrence. Hence, the long-term efficacy of propranolol in preventing
post-traumatic stress is a possibility [6]. An activity-dependent labeling system has been
registered in mice. Specific mouse models were conditioned to four shocks, followed
by immediate or delayed contextual re-exposure. To assess the impact on hippocampal,
prefrontal, and amygdala memory, mice were re-exposed with or without propranolol.
Propranolol reduced the expression of fear only when it was administered to mice before
delayed re-exposure to the context. Propranolol altered functional connectivity between the
hippocampal, prefrontal, and amygdala regions. These preclinical in vivo models confirm
the efficacy of propranolol in preventing stress recurrence [7]. A total of 3326 senior high-
school students, mostly women, took part in the study, with an average age of 22. One-third
were considered to suffer from mild anxiety, with a significant positive correlation between
β-blocker use and the GAD-7 score. In total, 6.4% of the sample were taking β-blockers.
Medical students, particularly men, were more likely to use β-blockers because they were
more anxious than other students [8]. In total, 92 psychiatric patients in Okinawa, Japan,
were treated with atenolol. Adverse events were systematically recorded. In total, 86%
of patients had a positive effect and continued to take atenolol, including 87% with a
diagnosis of post-traumatic stress disorder. Overall, 90% of patients had few, transient,
or mild adverse effects. Thus, 100% of patients preferred atenolol to propranolol, which
they had previously tried [9]. It seems necessary to better identify anxiolytic prescriptions
on the basis of better-established clinical evidence. This can help avoid unnecessary and
even dangerous prescriptions [10]. B-blockers appear to be effective in the treatment of
other disorders, such as specific phobia, panic disorder, and aggression in patients with
psychosis, acquired brain damage, or intellectual disability. Robust data from clinical
psychiatric research are desirable to establish the efficacy of β-blockers in different forms
of anxiety. Randomized, placebo-controlled clinical trials are needed to prove this [11].
For a comparison with benzodiazepines, β-blockers have been used for many years to
prevent performance anxiety, such as stage fright. A single dose of propranolol has been
used to treat performance anxiety [12]. The brain structures involved are the cortex,
limbic system, reticular formation, locus coeruleus, raphe nuclei, and hypothalamus. The
neurotransmitters involved are GABA, serotonin, and noradrenaline. Anxiety disorders
are thought to be linked to the disruption of the GABAergic and serotoninergic systems.
The advantage of β-blockers over benzodiazepines is that they only treat anxiety at the
adrenergic level, with no impact on cognition or memory. A person treated with β-blockers
retains full powers of concentration, decision making, and memory [5,13].
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Why choose propranolol over other β-blockers? Propranolol is an old drug with a
proven pharmacovigilance record, which can be titrated gradually. The dose of propranolol
can start at 40 mg per day and then be increased in increments every 72 h up to a dose of
160 mg per day [14].

An electrocardiogram is indicated to rule out any cardiac rhythm disorders that
contraindicate the prescription of β-blockers. It is a non-cardioselective drug that acts via
the competitive antagonism of catecholamines at β-adrenergic receptors, particularly in
the heart, vessels, and bronchi. β-adrenergic receptors are, thus, blocked by competitive
inhibition, and the somatic symptoms disappear. Propranolol is a highly lipid-soluble
molecule. It can, therefore, cross the blood–brain barrier and block noradrenaline receptors
involved in memory [15]. The stressful event must be known, and the drug should be taken
12 h before the event. Several forms of anxiety are observed, including worry, panic attacks,
anxiety attacks, and post-traumatic stress. Generalized anxiety is a persistent fear that is
not related to a specific event or situation. Panic disorder is a form of anxiety that manifests
itself in panic attacks. These attacks last between 5 and 30 min. Obsessive-compulsive
disorder (OCD) is a form of anxiety characterized by repetitive and persistent thoughts or
ideas or repetitive behaviors or rituals, such as washing and rewashing hands, checking
that doors close properly, etc. A phobia is an anxiety experienced in a particular situation,
such as fear of crowds, fear of insects, fear of lifts, fear of flying, etc. Post-traumatic stress is
a form of anxiety that follows a traumatic experience, including aggression, armed conflict,
accident, flood, etc. Propranolol has been proven to be efficient in this post-traumatic stress
(PTSD) disorder [16].

Benzodiazepines have a rapid effect on anxiety symptoms. They are the first-line
treatment in emergency situations, with diazepam at doses ranging from 16 to 30 mg/d
being the first choice. The risk of dependence makes it necessary to limit the duration of
their prescription. A comparison between propranolol and benzodiazepines showed no
statistical differences [17].

The administration of propranolol shortly after the traumatic event prevents or di-
minishes the action of noradrenaline, rendering the amygdala inoperative in Takutsubo
syndrome [13]. The amygdala is a key human structure involved in the encoding of
emotional information, and propranolol is effective at proving emotional encoding via
noradrenaline [18,19]. The noradrenergic circuit is involved via the vague nerve [20].
Propranolol has been shown to be effective for the emotional aspects of autism [21], and
promising results have been obtained following a recent meta-analysis showing the efficacy
of propranolol in reducing emotional disorders [22].

2.2. Antioxidant Activity and Environmental Impact of Propranolol Hydrochloride

As mentioned above, propranolol, a β-adrenoreceptors blocker drug, was tradition-
ally prescribed for the treatment of hypertension, arrhythmia, various palpitations, and
cardiovascular manifestations due to hyperthyroidism, migraines, panic attacks, and glau-
coma [23]. Given the increasing prevalence of the conditions concerned by treatment with
propranolol or other classes of β-blockers, it seemed that the use of propranolol or other
β-blockers should increase. Studies were, therefore, carried out to measure the various
potential secondary impacts of its use on health and the environment, as well as the impact
of oxidative stress. During our bibliographic search on oxidative stress, we used the follow-
ing search terms in scifinder: “Avlocardyl© AND oxidative stress” or “propranolol AND
oxidative stress”. Why Avlocardyl? Because it is the original product. It is known by other
names in different countries. We did not use the names of all generics in our literature
search. Half of the results were patents, and a number of interesting studies, more or less
recent, are described in detail here. First, we will look at the impact of oxidative stress, then
at the ability of these molecules to act as antioxidants, and finally at the environmental
problems associated with taking these drugs. On the one hand, they are found in their
initial form in wastewater, and therefore, sometimes in the marine environment when the
elimination of excess prescription drugs does not follow the regulatory destruction circuit;
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on the other hand, they are also found in the form of various metabolites, which can end
up in the same wastewater, this time due to the natural evacuation of body fluids. This
concentration in water is a public health problem, and several recent studies have reported
toxic effects on marine fauna.

Propranolol has a low bioavailability of around 30% and is eliminated by the liver.
It is also known for its antitumoral effects [24,25] and for its inhibitory action on pro-
inflammatory cytokines [26–29]. Propranolol is a small molecule with one asymmetric
carbon which, unlike many drugs, is marketed in its racemic form (Scheme 1: showing
R(1) and S(2)propranolol), although one of the enantiomers S(2) has much greater activity
than the other R(1) [30]. As with many drugs, R or S enantiomers whose orientation of
certain functions (in this case, the alcohol) differs in space are often responsible for their
therapeutic efficacy, as they may or may not fit into the active site.
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Scheme 1. The two R and S enantiomers of propranolol.

To detect the possible drug pollution of wastewater, it is essential to know the
metabolism of drugs and the derivatives produced by the biological transformations
they undergo. As propanolol is an old drug, we are well acquainted with its metabolic
pathway. In humans, propranolol can be oxidized by cytochrome P450 (CYP) enzymes
in a regio- and stereoselective manner. Among the CYP isoenzymes, CYPs 1, 2, and 3 are
involved in the metabolism of many human drugs [31]. S. Narimatsu et al. [32]. confirmed
that the enantiomers of propranolol can be oxidized by the P450 enzyme (CYP2D6) on the
aromatic ring to 4-hydroxyproranolol (4-OH-PL), then to 5-OH-PL and on the linear chain
to N-deopropylpropranolol (NDP) by CYP2D6 according to Scheme 2.
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This hepatic enzyme is the main one involved in drug oxidation [33,34], which, in this
case, is propranolol. Other equivalent enzymes are involved in monkeys and marmosets,
and the authors have shown that the stereoselectivity of oxidation is similar between
humans and monkeys but that the regioselectivity of oxidation is not. Oxidized metabolites
and propranolol are substrates of UDP-glucuronosyltransferases and sulfo-transferases [35].

E. Fernandes et al. [36]. showed that the β-blocker family possesses antioxidant ac-
tivity, which could also be at the origin of their therapeutic activities. Indeed, certain
cardiovascular effects are thought to be due to the antioxidant properties of some com-
pounds in this family. They, therefore, tested atenolol, sotalol, timolol, labetalol, metoprolol,
pindolol, carvedilol, and the propranolol of interest here (Scheme 3).
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This study follows another by Mak and Weglicki [37], who were able to demonstrate
concentration-dependent membrane anti-peroxidant activity for five β-blockers, including
propranolol, which also proved to be the most potent of these. The cardioprotective antiox-
idant effects of propranolol were subsequently confirmed by other teams, who reported
that propranolol was capable of significantly reducing lipid peroxidation products [38].
Propranolol acts at different levels against oxidative stress, whether at the level of enzymes,
membrane protection, or cardiovascular cells [39].
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Other β-blocker compounds also have antioxidant activities at different levels, such
as carvedilol (CVD), which is the most potent at protecting red blood cells from the toxic-
ity of phenazine methosulphate, thus limiting the formation of superoxide radicals [40].
Carvedilol is marketed as a racemic mixture. It has antioxidant properties, although this
has not been demonstrated in the treatment of heart failure. This molecule contains both a
β-blocker and α-blocker component. Like propranolol, it has a membrane-stabilizing effect.
However, its use can lead to alterations in renal function, which are fortunately reversible.

Anxiety disorders are among the most common psychiatric illnesses. Carvedilol, a
β-blocker, was studied for hypertension and to assess its efficacy against unpredictable
chronic stress in animals. A mouse model was used for 21 days. Between days 15 and 21,
mice were treated with carvedilol (5 or 10 mg/kg) or a venlafaxine-like antidepressant,
desvenlafaxine (DVS 10 mg/kg). Locomotor tests were performed on day 22. Adrenal
demand was observed in stressed animals, which is an effect that was reversed by CVD.
The increase in myeloperoxidase (MPO) and interferon-γ (IFN-γ) activity, as well as the
stress-induced reduction in interleukin-4 (IL-4), was reversed by β-blocker treatment.
Carvedilol has a proven anxiolytic effect and is associated with the regulation of the
immuno-inflammatory mechanism [41].

E. Fernandes et al. [36], Therefore, carried out a precise study of the scavenging of ROS
and RNS by β-blockers to determine their ranking in terms of potency. The antioxidant
capacity of these cardiovascular drugs makes it possible to combine their cardiovascular
activities with antioxidant activities, generally taking into account the implementation of an
associated dietary protocol or the intake of vitamin-type antioxidants. It turns out that the
β-blockers studied, including propranolol, are not capable of scavenging O2

•− but are good
scavengers of HO•, which enables them to prevent the resulting cardiovascular pathologies.
They are also very good scavengers of HOCl, and propranolol and pindolol are good
scavengers of ROO• or alkyl radical R•, thus limiting the propagation of lipid peroxidase
and reducing the formation of oxidized LDL particles. This reduction leads to a reduction
in foam cells, as macrophages have far fewer oxidized LDL particles at their disposal, and
it is these foam cells that are responsible for the formation of atherosclerotic plaques, which
ultimately lead to circulatory problems. Propranolol is also a •NO scavenger, which is
interesting because •NOs are involved in central nervous system pathologies [42].

The antioxidant activity of these β-blockers, and propranolol in particular, can also
be explained by the molecule’s high lipophilicity, which enables it to protect membranes
since propranolol is able to accumulate there [43]. The scavenging efficiency of antioxidants
depends on the quantity of the reactive species. This is higher in vitro than in vivo [44].
The authors have, therefore, shown that certain β-blockers, including propranolol, are ROS
scavengers and, as such, may be useful in preventing the damage caused by oxidative
stress, which is often implicated in various pathologies.

In addition to the therapeutic effect of these active substances and their impact on
other effects, we increasingly observed the impact of these molecules on nature. Indeed, a
large number of the planet’s inhabitants live close to the sea and feed off it, and the sea is
confronted with numerous more or less controlled discharges of human waste accumulated
in various large cities close to the coast. This generates a large amount of accumulated waste
that the oceans receive without prevention. This waste is discharged into the sea either
through a faulty drug recovery–destruction mechanism or through the elimination of excess
drugs or drug metabolites by natural means (biological fluids) [45–48]. This phenomenon
is even more pronounced in freshwater environments, where waste can be disseminated
by run-off water. Recently, in view of the increasingly frequent effects observed, studies
have been carried out on the impact of drugs in the aquatic environment. Propranolol is
no exception, as this molecule is not particularly well eliminated in wastewater [49]. It
has, therefore, proved essential to study the toxicity of propranolol on aquatic organisms
living in environments where human wastewater may be found [50]. Medicines are
active molecules, generally at low doses, and their toxicity has been assessed according
to the protocols defined for obtaining marketing authorizations, but their toxicity is not
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generally assessed in the environment. Population growth will lead to an increase in drug
consumption, which is already underway and is already generating definite shortages,
so the release of these substances will only increase, hence the need to carry out these
studies on the various drugs currently on the market and on any new drugs. This drug
acts on human adrenergic receptors, but these have similarities to those of various aquatic
and plant species. S.F. Owen and colleagues conducted excellent work in 2021, compiling
numerous articles on the aquatic risks of β-blockers and propranolol in particular [51].
The latter is reputed to represent a scientifically proven risk to the environment and the
aquatic fauna.

Very recently, propranolol hydrochloride has been shown to be toxic to mitochondrial
function in rats [52], and in adult zebrafish, propranolol hydrochloride has been shown to
reduce testosterone-type sex hormone levels and increase cholesterol [53,54]. The neuro-
toxicity of propranolol hydrochloride on zebrafish has been demonstrated; this molecule
reduces young neurons, limits neuronal development, and can lead to symptoms of tremor,
showing undeniable cerebral damage [55]. These effects are also likely to be present in
other aquatic organisms. Like many other drugs, propranolol has many advantages, but
given its widespread use, it can also contribute to environmental health risks.

Another study has shown the deleterious impact of propranolol and other xenobiotic
substances on the reproduction of sturgeon, which is a fish that is currently overfished and
sensitive to pollution. This study by Shaliutina et al. [56]. assessed the effect of propranolol
on the spermatozoa of the sterlet Acispenser ruthenus. Sperm mobility decreased linearly
with the dose, as did membrane integrity (at 25 µM). At higher concentrations (25–100 µM),
oxidative stress was even demonstrated, with an increase in superoxide dismutase activity.
This time, it is propranolol that caused oxidative stress in the spermatozoa of this fish, which
was, therefore, detrimental to reproduction and the survival of the species. This is even
more true if there are synergistic effects with other types of drug waste in the wastewater.
Quantities of propranolol are in the order of micrograms per liter and up to 6 micrograms
per liter in hospital effluents [57–62]. A very interesting study by B. Duarte et al. [62]. shows
that the staple food of marine organisms, diatoms (microalgae essential to the food chain), are
essential oxygen-producing agents that are indispensable to marine life because they produce
fatty acids essential to the maintenance of various cardiovascular, immune, or inflammatory
functions [63]. Essential fatty acids are acquired through the diet, so if diatoms are disrupted
in their functioning, the food chain suffers. They worked on Phaeodactylum tricornutum,
which is a marine diatom often used for stress studies.

Its genome is known [64], and Phaeodactylum tricornutum reflects the first signs
of stress [65]. Phaeodactylum tricornutum is used to test the differential retention and
digestive selection of any microalgal component by the mussel Mytilus edulis. Marine
bivalves are considered good bio-indicators of chemical pollution, as they have the capacity
to filter large volumes of water during respiration and feeding and to bio-accumulate chem-
icals (biomarkers effective for assessing the toxicity of pharmaceutical residues on marine
bivalves). A number of studies have been carried out, notably on responses to oxidative
stress [66] and on changes in fatty acid production and membrane unsaturation [67,68]. In
this article, B. Duarte et al. [62,68]. sought to assess the impact of propranolol on P. tricor-
nutum. Growth, oxidative stress, and fatty acids were studied to understand the impact of
propranolol. Diatom growth rates and cell densities decreased after 48 h of exposure, with
a clear dose–response relationship. Potential cellular damage due to oxidative stress was
caused by exposure to propranolol at several concentrations, despite the upward trend in
peroxidase activities observed for up to 150 µg L−1 of propranolol, and changes were only
observed from 80 µg L−1. CAT and SOD activities increased, as did lipid peroxidation. The
relative abundance of certain fatty acids also differed significantly between treatments.

Based on these results, the authors highlighted a depletion in the oxygenation capacity
of diatoms, strongly affected metabolisms, and a possible disturbance in the balance of
species since this affects the food chain. Another study by J.P. Shaw and J.W. Readman [69]
showed propranolol levels of the order of a few tens of nanograms in British estuaries,
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again showing the persistence of certain drugs in water that have not been eliminated by
treatment in wastewater treatment plants. Acetaminophen (paracetamol), on the other
hand, is found in small quantities because its elimination rate is high depending, of
course, on the structure of the drug but also on the methods used in the treatment plants.
Adrenergic receptors in invertebrates are poorly documented but could play a role in
bivalve larvae such as Mytilus species [70] with involvement in the feeding behavior of
the gastropod aplysia [71]. Contrary to what we have seen previously, while cytochrome
P450 (CYP) and carboxylesterases play an important role in humans and even potentially
in vertebrates, this is not the case in invertebrates. In mussels, the activity of cytochrome
P450 enzymes does not appear to be important in the management of drug metabolism;
it is mainly carboxylesterases and acetylcholinesterases that are active [72]. Studies have
been carried out on the marine mussel Mytilus galloprovincialis concerning feeding rates,
xenobiotic metabolism, and oxidative stress. Lipid peroxidation levels were measured in
the gills and digestive glands. The results show that propranolol inhibits the feeding rate at
concentrations of 147µg/L, increases liver activity, and may increase metabolism but does
not generate oxidative stress in the digestive gland [69], which is reassuring.

3. Conclusions

Although propranolol has a favorable benefit–risk balance and does not appear to
pose an immediate threat to the environment or to freshwater and marine pollution, further
comparative studies are required. This is a drug that does not present any very serious
toxicity, but it is beginning to be found in significant quantities in water because propranolol
is poorly eliminated by wastewater treatment plants. The disposal of surplus drugs does
not always follow the correct circuit, and they are sometimes thrown away without due
care. Other drugs are less concerning because they are easily eliminated or not very soluble
in water. Unfortunately, this is not the case for all of them, and very few studies have
been carried out on the comparative effect of several drugs and on the possible synergistic
effects that could increase their harmful effects on human health or on vertebrate or other
organisms that enter the food chain.
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