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Abstract: We consider and prove the existence of stable, spherical, and thin fluid shells in the context
of a Schwarzschild–Rindler-anti-de Sitter (SRAdS) background. We identify the metric parameter
regions that allow the existence and stability of these shells for three cases of fluid equations of state.
The case of the vacuum shell is especially interesting since it remains consistent with past studies by
two of the authors of this manuscript, which showed the existence of stable spherical domain walls
in the context of the same metric. This type of structure could be an alternative to the idea of the
gravastar star formations.

Keywords: stability; fluid equation of state; gravastar; Rindler; anti-de Sitter; domain wall;
spherical shell

1. Introduction

The concept of thin spherical shells in General Relativity holds great significance
as a theoretical construct because, as was first shown in [1], one can use it to model
the interactions between matter and gravity and find analytical solutions to the Einstein
equations governing them.

The gravastar [2–6] is a theoretical, spherical and stable thin shell configuration that
can be used to accurately describe an alternative to black holes as the last step of stellar
evolution. The concept of gravastars portrays star structures that alternate between a
Schwarzschild metric for their exterior and a de Sitter metric for their interior space, with
the inner region considered traditionally as a gravitational Bose–Einstein condensate with
zero entropy.

As shown in [7], a stable spherical thin shell solution similar to that of the gravastar
can be found when considering a non-trivial background geometry of Schwarzschild-anti-
deSitter curved spacetime [7,8] with a Rindler acceleration term, coupled with spherically
symmetric scalar field dynamical equations. This metric is a Schwarzschild–Rindler-anti-
deSitter (SRAdS) metric [9],

ds2 = f (r)dt2 − dr2

f (r)
− r2(dθ2 + sin2 θdφ2)

f (r) = 1− 2Gm
r

+ 2br− Λ
3

r2,

(1)

where Λ is the well known cosmological constant, and b is the parameter attributed to the
Rindler acceleration.

This SRAdS metric (1) has been subject to constraints appended by solar system
observations [10,11]; it can produce flat rotation curves [12] and it has been shown to
partially explain [13,14] the Pioneer anomaly [15,16].

A new analysis [17] was instigated by the fact that this type of metric has a demon-
strated ability to support metastable structures such as spherical domain walls. Specifically,
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the question that was raised was whether this metric could foster thin shell solutions
adhering to the three most general forms of equations of state, corresponding to a vacuum
shell, a stiff matter shell and a dust shell.

In what follows, we will show how we made use of the Israel junction conditions
formalism to explore the aforementioned question by breaking it down to four simpler
points of interest:

• Is it possible to construct stable, thin, fluid shells within an SRAdS metric?
• If so, which are the specific, general conditions that have to be met in order to achieve

stability?
• What are the numerical metric parameter ranges that enable stability, considering the

conditions induced by the different equations of state?
• How does the radius R of the stable shell change as a function of the metric parameters

within the allowed numerical space?

As mentioned above, we have made use of the Israel junction condition formalism in
order to interpolate between the two metric parts of the shell, in each case of the equations of
state. The value of the shell mass m has been considered to be discontinuous radially across
the shell, m− inside and m+ outside, in contrast to the values of the b and Λ parameters
that are considered to have continuous fixed values when crossing the shell.

The manuscript is structured as follows: In the first section, we show the general
theory that has been developed entailing the derivation of stability conditions for a static
and spherical shell with a general equation of state on an SRAdS metric background
geometry. In Section 3, we show how these results can be applied to three specific cases
of fluid equations of state, as well as how we can derive the conditions for stability in
each case. Finally, in the last Section 4 of the manuscript, we discuss the opportunities for
extending the analysis presented here.

The following assumptions have been made in the entirety of the manuscript: We set
G = c = 1, as well as m− = 1. For the parameter values considered here, an event horizon
exists but no cosmological horizon, and the shell radius is always outside the event horizon
of the black hole.

2. Existence and Stability of Thin Shell Solutions

We begin by defining a spherical thin shell with a radius R, which alternates between
an interior (g−µν) and an exterior (g+µν) SRAds metric of the form [2,3,18],

ds2 = f±(r±)dt2 −
dr2
±

f±(r±)
− r2
±(dθ2 + sin2 θdφ2), (2)

where

f±(r±) = 1− 2m±(r±)
r±

(3)

and

m±(r±) = m± +
Λ
6

r3
± − br2

±. (4)

Considering the case of a shell in the context of the SRAdS metric (1), one can derive
the Israel junction conditions in the form of [3]

p =
1

8πR

1−m±(R)′ −m±(R)/R + Ṙ2 + RR̈√
1 + Ṙ2 − 2m±(R)/R

 (5)

σ = − 1
4πR

[[√
1 + Ṙ2 − 2m±(R)/R

]]
, , (6)
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where (′) denotes the derivative of the mass with respect to r, and the dot corresponds to
the derivative with respect to the proper time, defined as

dτ2 = − 1
1− 2m±(R)/R

[
dR
dt

]2
+ dt2

[
1− 2m±(R)

R

]
dt2. (7)

From these equations, one can derive the equation for the energy conservation of
the shell

d
dτ

(σR2) + p
d

dτ
R2 = 0. (8)

Then, Equation (6) could be written as,

E =
1
2

Ṙ2 + V(R), (9)

considering that

V(R) ≡ 1−
[

4πσR2

2R
+

m+(R) + m−(R)
4πσR2

]2

+
4 m+(R) m−(R)

16π2σ2R4 (10)

and E = 0.
Therefore, the necessary general conditions for the existence and stability of a static

fluid shell take the form,

V(R) = 0

V
′′
(R) > 0

V
′
(R) = 0,

(11)

where we have made the assumption that Equation (9) is exactly the same as that of a
particle moving in a straight line with zero energy. For the SRAdS metric, the general form
of the potential of the shell has the form

V(R) = 1− ΛR2

3
− (m− −m+)2

16π2R4σ(R)2 −
m− + m+

R
− 4π2σ(R)2R2 + 2bR. (12)

In what follows, we show the derivation of the system of equations that constrain the
ranges of of (b, Λ), which permit the existence of stable, spherical fluid shells. Specifically,
we concern ourselves with three distinct types of fluid shells—the vacuum, the stiff matter,
and the dust fluid shell. We also derive the numerical ranges of the metric parameters that
allow for stability.

3. Specific Cases of Shell Stability
3.1. Shell with Vacuum Fluid Equation of State

Firstly, we concern ourselves with the case of the vacuum shell with an equation
of state,

p = −σ. (13)

Therefore, the surface density takes the form,

σ(R) = σ0 = const. (14)
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In this case, the system of Equation (11), necessary for the existence and stability of a
shell solution, becomes

V(R) = 1− m− + m+

R
− ΛR2

3
− (m− −m+)2

16π2R4σ2
0
− 4π2σ2

0 R2 + 2bR = 0, (15)

∂V
∂r

∣∣∣
r=R

= 2b +
m− + m+

R2 − 2ΛR
3

+
(m− −m+)2

4π2R5σ2
0
− 8π2σ2

0 R = 0, (16)

∂2V
∂r2

∣∣∣
r=R

= −2Λ
3
− 2(m− + m+)

R3 − 5(m− −m+)2

4π2R6σ2
0
− 8π2σ2

0 > 0. (17)

Whereas its solution is written as

Λ(R, σ0) =
15(m− −m+)2

16π2R6σ2
0

+
6(m− + m+)− 3R

R3 − 12π2σ2
0 , (18)

b(R, σ0) =
3(m− −m+)2 + 8π2[3(m− + m+)− 2R]R3σ2

0
16π2σ2

0 R5
, (19)

R > 3(m− + m+) ≡ Rmin (20)

σ0 ≡

√
15
√
− (m−−m+)2

R3(3m−+3m+−R)

4π
+ ∆σ >

√
15
√
− (m−−m+)2

R3(3m−+3m+−R)

4π
≡ σ0min,(21)

where ∆σ corresponds to perturbations of the surface density σ0.
The fact that the parameters R and σ0 display lower limits, as seen in Equations (20)

and (21), allows us to derive boundaries on the values of (b, Λ) that permit the existence
and stability of the stable shell solutions. These lower and upper boundaries are of the form,

Λ→ −∞ =⇒ b→ − 1
6(m+ + m−)

(22)

σ0min → 0 and Λ→ −12π2σ2
0 > 0 (23)

b < 0 with Λ < Λmax = −12π2σ2
0 . (24)

In Figure 1 [17], we can see the aforementioned boundaries as well as the parameter
space that allows for stability considering the values of m+, m− m+, m−. The minimum
value of the parameter b is increased as m+ is increased (see Equation (22)). For the three
sets of (R, σ, b, Λ), displayed as color coded dots in the the right panel of Figure 1, we show
their corresponding potentials in Figure 2 [17], noticing that only those potentials that
correspond to the parameter sets that exist inside the stability region display a minimum
that indicates stability.

In order to validate our analytical results, we have performed a random Monte Carlo
process, selecting a set of points in the parameter space (b, Λ) for which there exist stable,
spherical shell solutions, as seen in Figure 3 [17]. We have obtained these points by fixing
m− = 1, m+ ≡ m+/m− = 1.5, and repeating a process of considering random values of
(R = Ri, σi) within the limits set by the stability constraint (20) such that σi > σ0min(Ri)
(see Equation (21)). For each point in the set of (R = Ri, σi) values, we derive the stability
metric parameters (b, Λ).
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b

bmin=-
1

6 (m- + m+)

Λmax=-12 π
2 σ0

2

-0.10 -0.08 -0.06 -0.04 -0.02 0.00

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

Δbmin

-0.10 -0.08 -0.06 -0.04 -0.02 0.00

Λ

Figure 1. We see how the stability regions (light blue region) vary for two cases of exterior masses of
the shell. Each of the different colored curves correspond to different values of the surface density
σ0 ≡ σ0min + ∆σ > σ0min. The left panel corresponds to m+ = 1.05 and the right to m+ = 1.5.

3.2. Stiff Matter and Pressurless Dust Fluid Shells

Regarding the stiff matter shell the equation of state takes the form

p = σ, (25)

with a surface density of
σ(R) = σ0R−4, (26)

whereas for the case of the dust fluid shell, the equation of state is

p = 0, (27)

with a surface density,
σ(R) = σ0R−2. (28)

The potentials (12) are,

V(R) = 1− ΛR2

3
+ 2bR− (m− −m+)2R4

16π2σ2
0

− m− + m+

R
−

4π2σ2
0

R6 (29)

and

V(R) = 1− ΛR2

3
+ 2bR− (m− −m+)2

16π2σ2
0
− m− + m+

R
−

4π2σ2
0

R2 (30)

for each case, respectively. Solving the system (11) for these potentials produces Λ and b of
the form,

Λ(R, σ0) = −9(m− −m+)2R2

16π2σ2
0

+
6(m+ + m−)− 3R

R3 +
84π2σ2

0
R8 , (31)

b(R, σ0) = − (m− −m+)2R3

16π2σ2
0

+
3(m− + m+)− 2R

2R2 +
16π2σ2

0
R7 , (32)
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for the stiff matter case, and

Λ(R, σ0) =
3(m− −m+)2

16π2R2σ2
0

+
6(m− + m+)− 3R

R3 +
36π2σ2

0
R4 , (33)

b(R, σ0) =
(m− −m+)2

16π2Rσ2
0

+
3(m− + m+)− 2R

2R2 +
8π2σ2

0
R3 (34)

for the dust fluid shell.

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

R-Rmin

V

Figure 2. The potential (15) for the values of (b, Λ) that correspond to the points highlighted in
Figure 1. We see that the red point of Figure 1 does not correspond to a stable shell solution.

Figure 3. A random Monte Carlo selection of points that satisfy the shell existence and stability
conditions (18)–(21) for m+ = 1.5. The orange line represents the limit of the region, which is clearly
respected by all the randomly selected points, which span the stability region.

We expect that the range of the metric parameters that allow for the stability of the
stiff matter shell solutions will be narrower than that of the vacuum shell. This is because
the potential of Equation (29) contains an extra repulsive term proportional to R4, and
therefore has the side effect of diminishing the attraction produced by the anti-deSitter
term ∼ ΛR2 (Λ < 0), which is very important for the stability of the shell.

The potential (30) that corresponds to the dust fluid shell does not contain any high
order terms of R, for example, R4; this benefits the stability at a larger R by not constraining
the effect of the anti-deSitter term ∼ ΛR2 (Λ < 0). This means that the stability range for
the case of the dust fluid shell is much wider than the case of the stiff matter equation of
state.
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4. Conclusions

We have constructed thin, spherical, fluid shell structures in the SRAdS metric and we
have proved their stability. These shells are very similar to the gravastar structures [2,3,19–21],
but instead of having an interior described by a de Sitter metric, they are described by the
SRAdS metric throughout.

Our analysis could present the opportunity for interesting extensions, including the
investigation of the existence and stability of spherical fluid shells in the context of various
metrics. Perhaps one could consider a non continuous metric broken up into two pieces,
half containing a Schwarzschild term and half containing a Rindler term.

Arguably, the most important extension of our study would be the investigation of the
observational effects produced by these types of shell structures. We can study the lensing
patterns produced by the light-like geodesics along the lines of References [22,23]. Such
observational signatures can be directly compared with those of gravastars [24]. Lastly,
it would be interesting to investigate non-spherical fluid shells in the context of rotating
spacetimes coupled with the cosmological constant.

Funding: This research is co-financed by Greece and the European Union (European Social Fund-
ESF) through the Operational Programme “Human Resources Development, Education and Lifelong
Learning 2014-2020” in the context of the project “Scalar fields in Curved Spacetimes: Soliton
Solutions, Observational Results and Gravitational Waves” (MIS 5047648).
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