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Abstract: This study aims to apply a kinematic analysis to characterize and compare a normal
canine gait with a canine gait with cranial cruciate ligament (CrRL) rupture with free and open-
source software. Two dogs walked ten times. A bidimensional kinematic analysis was performed.
Spatiotemporal analysis showed significant differences between dogs. The dog with CrCL rupture
obtained higher results for all parameters except stance and step time. Also, the stifle angle did not
verify differences in absolute angle, but the signal showed differences in patterns between normal and
abnormal gait. This study supports that software assisting clinicians’ diagnosis with CrCl ruptures.
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1. Introduction

CrCL rupture is one of the most common causes of dog lameness [1,2]. The etiopatho-
genesis of CrCL is not fully known, but regardless of the cause, it results in stifle joint
instability and progressive degenerative joint disease [3]. Furthermore, this type of con-
dition causes lameness, an increase in cranial tibial translation, and internal rotation and
abduction of the tibia [4,5]. Gait analysis has evolved [6], it is well-established [7] and it is a
way to perform clinical diagnosis for CrCl rupture [8]. Subjective analysis has allowed the
identification of gait patterns, but the results, and thus the applications, are limited and
different agreements between observers can be obtained [6,8,9]. Alternatively, objective gait
analysis has emerged, allowing clinicians accurately study the canine gait cycle [6]. Several
methods and instruments can be applied in gait analysis, such as kinetic and kinematic
methods, and they are associated with instruments, such as force platforms and motion
analysis systems, respectively [7,9]. The kinematic gait analysis is one the most applied,
and it helps effectively in quantitative evaluation, measuring segments and joints and
identifying gait asymmetry [8]. However, the current methods are usually expensive and
require extensive data processing, so this study aims at an exploratory study which consists
of applying a kinematic analysis to characterize and compare a normal canine gait with
a canine gait with CrCL with free and open-source software. As a result, we could share
with veterinaries a simple and useful tool for their daily work to follow and analyze their
recovery of the canine gait.
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2. Materials and Methods
2.1. Experimental Design Overview

The experiment conducted in the present study consisted of a comparison between a
normal and an abnormal canine gait. Each dog performed ten trials with a natural speed in
a developed outdoor space of two meters near the Egas Moniz Veterinary University Clinic.
We used one high-speed camera and analyzed one step to determine the spatiotemporal
parameters and the stifle angle using the motion analysis system Kinovea®.

2.2. Subjects

The study subjects were two dogs, one healthy Labrador Retriever and one Bouvier
Bernouis with CrCL rupture, selected by convenience. The dogs’ owners were informed
of the objective and authorized the data collection. The CrCL rupture diagnosis was
assessed by a cranial “drawer” and tibial compression test and conducted by an experi-
enced veterinary orthopedic surgeon. The diagnosis was confirmed by Lateral radiogra-
phy of the femur-tibio-patellar joint taken doing the tibial compression test and without
tibial compression.

2.3. Measurement Protocol and Data Analysis

A veterinarian analyzed the subjects and placed three landmarks defining the stifle
angle (Figure 1). The dogs performed a walk of three minutes before the analysis. Dogs
started walking toward the outdoor calibrated zone of two meters with a natural but
uncontrol speed, and each dog walked ten times. One high-speed camera (Casio Exilim®

ZR200, Casio, Tokyo, Japan) collecting at 120 Hz was used during the bidimensional
kinematic analysis. It was placed perpendicular to the right of the dog’s line. Data
processing for the high-speed was conducted using the Kinovea® software (version 0.9.5)
to define the stance phase time, swing phase time, step time, step length and step speed,
and tracking the ankle, stifle and grand trochanter landmarks defining the stifle angle. Step
frequency (SF = 1/ST [steps/s]) and step speed (vstep = SL × SF [m/s]) were calculated.
Here, SF represents the step frequency; ST is the step time; vstep is the step speed and SL is
the step length. Their results were organized using Microsoft Excel Office, and kinematic
data processing was performed using the Spyder package in Python 3.7. Data from the
high-speed camera were smoothed using the spectral power analysis [10], and a cut-off
frequency of 9 Hz was applied.
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Figure 1. Segment model used to define the stifle angle.

2.4. Statistical Analysis

All walks (n = 20) performed by dogs were analyzed. Descriptive statistics were
determined to describe the spatiotemporal data and stifle angle, with means and standard
deviation values. Normality was calculated using the Shapiro–Wilk test (p ≤ 0.05). The
independent samples t-test was used to compare the proposed parameters, and when the
normality was not verified, the Mann–Whitney test was applied [8].

3. Results

Table 1 provides the results of the descriptive and comparison statistical analysis for
the spatiotemporal data and stifle angle parameters.
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Table 1. Spatiotemporal data and stifle angle parameters descriptive and comparative analysis.

CrCL Normal

Mean ± SD Mean ± SD ¥

Spatiotemporal parameters

Stance phase time (s) 0.56 ± 0.09 0.46 ± 0.09 p = 0.019
Swing phase time(s) 0.26 ± 0.03 0.28 ± 0.15 p = 0.150
Step time (s) 0.82 ± 0.10 0.80 ± 0.09 p = 0.051
Stance phase (%) 68.00 ± 0.04 62.20 ± 0.05 p = 0.005
Swing phase (%) 32.00 ± 0.04 37.90 ± 0.05 p = 0.005
Step length (m) 0.73 ± 0.12 0.92 ± 0.03 p < 0.001
Step frequency (step/s) 1.23 ± 0.14 1.38 ± 0.17 p = 0.048
Step speed (m/s) 0.91 ± 0.22 1.27 ± 0.19 p < 0.001

Angular kinematic parameters

Minimum stifle angle (degree) −0.95 ± 1.88 * −0.77 ± 1.48 * p = 0.912
Maximum stifle angle (degree) 39.4 ± 7.45 * 40.3 ± 5.03 p = 0.315
Stifle angle amplitude (degree) 40.4 ± 7.38 * 41.4 ± 5.91 p = 0.579

*, p-value, non-normal distribution; ¥, p-value of the comparisons analysis between Abnormal and Normal dogs.

Figure 2 represents the stifle angular displacement in sagittal plane to a canine gait
with CrCL (Figure 2a) and a normal canine gait (Figure 2b).
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4. Discussion

In this study, we performed a bidimensional kinematic analysis to compare spatiotem-
poral parameters and the stifle angle between the normal and CrCL dog. When we analyzed
Table 1, as expected, CrCL influenced canine gait by changing some parameters. All results
were higher in normal canines except for the stance and step phase time following the
literature [11] (p. 837). Specifically regarding the temporal parameters, our results were
higher than Jenkins et al. (stride, stance, and swing phases were 0.575, 0.355 and 0.221 s,
respectively) [12] (p. 81). However, they did not report the step speed, which is a factor that
can change the temporal step parameters. Additionally, we verified significant differences
in the stance phase time, stance and swing phase in percentage and step length, frequency,
and speed (see Table 1). These results were divergent with Møller et al., which did not
verify differences in the spatiotemporal parameters analyzed. However, they used a lower
sample frequency (50 Hz) and a non-motion analysis system (Media Player Classic Home
Cinema for Windows v.10.0) [8] (p. 66). Regarding the stifle angle (see Table 1), the ampli-
tude did not verify differences between gaits and obtain angular displacement lower than
Agostinho et al. (stifle angle: 52.48 ± 4.04 and 62.37 ± 6.53 deg), but they used a higher
speed of 2.1 and 2.2 m/s, while we obtained a step speed around 1 m/s [9]. Lastly, re-
garding the stifle angle signal (Figure 2), when compared with the literature, we verified a
similar but inverse signal [9,11], and signal differences between dogs, i.e., the gait to CrCL
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dog started flexion early (around 20% time gait phase). Our results followed the literature
and showed that our proposal can be a useful diagnostic tool for veterinarians in their
daily routine.

5. Conclusions

This study allowed us to characterize the normal and CrCL rupture canine gait with
free and open-source software obtaining detailed information relevant to clinicians. Fur-
thermore, this information should be confirmed with a higher sample and be suggested to
veterinarians for inclusion in the follow-up after surgery to ensure that the dog restored all
stifle joint range of motion.
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