
Citation: Duarte, T.G.A.;

Arunachalam, S.; Subgranon, A.;

Spence, S.M.J. Uncertainty

Quantification and Simulation of

Wind-Tunnel-Informed Stochastic

Wind Loads. Wind 2023, 3, 375–393.

https://doi.org/10.3390/wind3030022

Academic Editors: Yasushi Uematsu

and Yong Chul Kim

Received: 19 July 2023

Revised: 15 August 2023

Accepted: 4 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Uncertainty Quantification and Simulation of
Wind-Tunnel-Informed Stochastic Wind Loads †

Thays G. A. Duarte 1, Srinivasan Arunachalam 2 , Arthriya Subgranon 1,∗ and Seymour M. J. Spence 2

1 Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA;
tduarte.guerraar@ufl.edu

2 Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
sriarun@umich.edu (S.A.); smjs@umich.edu (S.M.J.S.)

* Correspondence: arthriya.subgranon@essie.ufl.edu
† This paper is an extended version of our paper published in ICASP 14.

Abstract: The simulation of stochastic wind loads is necessary for many applications in wind engi-
neering. The proper-orthogonal-decomposition-(POD)-based spectral representation method is a
popular approach used for this purpose, due to its computational efficiency. For general wind direc-
tions and building configurations, the data-informed POD-based stochastic model is an alternative
that uses wind-tunnel-smoothed auto- and cross-spectral density as input, to calibrate the eigenvalues
and eigenvectors of the target load process. Even though this method is straightforward and presents
advantages, compared to using empirical target auto- and cross-spectral density, the limitations and
errors associated with this model have not been investigated. To this end, an extensive experimental
study on a rectangular building model considering multiple wind directions and configurations
was conducted, to allow the quantification of uncertainty related to the use of short-duration wind
tunnel records for calibration and validation of the data-informed POD-based stochastic model. The
results demonstrate that the data-informed model can efficiently simulate stochastic wind loads with
negligible model errors, while the errors associated with calibration to short-duration wind tunnel
data can be important.

Keywords: stochastic wind load models; wind tunnel validation; spectral representation; proper
orthogonal decomposition; uncertainty quantification; short-duration record

1. Introduction

Simulation of multivariate stochastic wind loads is crucial for the performance as-
sessment of mid- and high-rise structural systems and, ultimately, for obtaining reliable
designs. Many simulation approaches have been developed and extensively studied for
wind engineering applications, such as the wavelet-based method [1,2], the hybrid discrete
Fourier transform (DFT), the digital filtering method [3], the autoregressive moving average
(ARMA) method [4], and the spectral representation method (SRM) [5,6]. Among these,
the SRM has been widely used for a variety of applications, due to its established theory and
relative simplicity [6–10]. The SRM consists of simulating the time histories of stationary
Gaussian processes that have second-order properties of the input process [5,6,11]. Central
to the SRM is the decomposition of the cross-power spectral density (CPSD) matrix corre-
sponding to the stochastic process, which can be done through Cholesky decomposition
or proper orthogonal decomposition (POD). The latter has gained popularity, especially
for wind engineering applications, with many studies demonstrating its computational
efficiency through mode truncation [8,12–17]. However, while mode truncation accelerates
the simulation, it can influence the accuracy of the simulated signals if an insufficient
number of modes are considered, and it needs to be treated with care [15,18].

The critical aspect of the SRM for simulating wind loads is defining the underlying (target)
stochastic process. Analytical formulations of the power spectral density (PSD) and CPSD
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functions have been largely used to define the target load process and are generally limited
to a few wind directions (e.g., along-wind, across-wind) and geometries [9,19–23]. Some
recent studies have used measured data as input (sample-based), to calibrate the stochastic
process [8,10,16,24,25], which is seen as a straightforward and physically meaningful alternative.
The advantage of using experimentally estimated spectral functions as the target, as opposed
to analytical PSD/CPSD functions, is the possibility of directly capturing in the simulated
samples the complex aerodynamic phenomena seen in the wind tunnel. Thus, a data-informed
stochastic simulation method has the potential to be calibrated with any given experimental
input function and to generate samples with the desired second-order properties for different
building geometries, approaching flows, and surrounding configurations. Regardless of the
various advantages of wind-tunnel-informed stochastic simulation models, concerns still exist
about the limitations they may impose, due to a lack of experimental validation.

Typically, short-duration records collected in wind tunnel tests, with lengths ranging
from 30 s to 1 min, are used to calibrate the stochastic wind load model [16,25]. These
records can be obtained by conducting high-frequency forcing balance (HFFB) tests or by
conducting synchronous multi-pressure sensing system (SMPSS) tests. The latter is com-
monly preferred, as it provides a more complete picture of the dynamic wind loads acting
on the building surface [26–28]. Each short-duration record (observation) is a realization of
the underlying stochastic process; therefore, only partial/incomplete information about
the probabilistic characteristics of the process is available. Ideally, multiple realizations
of a stochastic process need to be obtained to describe the underlying process. However,
in practice, just one (or, at most, a handful) short-duration time history is obtained for
each wind direction and used as the baseline for design. These short-duration records are
generally affected by epistemic uncertainties, i.e., imperfect knowledge (e.g., model defects,
human errors, low equipment resolution, sampling errors), and aleatory uncertainties,
i.e., inherent randomness (e.g., variability of the wind tunnel records collected for the
same experimental setup). As a consequence, the underlying statistical properties of the
target process will contain errors that can propagate to the simulation of the wind load
and, ultimately, the estimation of structural responses. Although several experimental
campaigns have been conducted to study the effects of different conditions on wind loading
(e.g., different terrain roughness, surrounding structures, etc.), the errors associated with
the estimation of the second-order properties of target stochastic processes using short-
duration wind tunnel data have not been investigated thoroughly. If not accounted for,
these errors can propagate through the stochastic wind load model and can compromise
the assessment of structural responses.

The focus of this study is the quantification of the uncertainty associated with the
use of short-duration wind tunnel records (e.g., 32 s) to calibrate wind-tunnel-informed
POD-based stochastic wind load models for the simulation of wind load time series.
An additional discussion on the limitations of the data-informed stochastic wind load
model, given input data from different testing conditions, is also provided. To this end,
an extensive wind tunnel experimental campaign was conducted on a rectangular building
model, considering a total of 19 test conditions involving varying wind directions and
experimental setups. The extent of the errors in the simulation model due to the inevitable
variability of short-duration records is quantified, as is the efficiency and accuracy of
the wind-tunnel-informed POD-based wind load model, in light of model errors and
mode truncation.

This study is organized as follows: the background theory on the simulation of multi-
variate stochastic wind loads through the POD-based SRM is briefly described, followed
by a discussion on the wind-tunnel-informed POD-based SRM model; next, the mea-
sures adopted to quantify the uncertainties from the use of short-duration wind tunnel
records for calibration of the simulation model are presented; subsequently, the wind tunnel
experimental testing is described; finally, the results and conclusions are presented.
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2. Theoretical Background
2.1. Simulation of Multivariate Stochastic Wind Loads

Wind loads are spatio-temporally varying random processes that can be modeled
as stationary in time for a large number of applications. Based on this assumption,
let P(t; β) = [P1(t; β), P2(t; β), ..., PN(t; β)]T be considered as the zero-mean fluctuating
part of the multivariate stationary wind load process for a given wind direction, β, where N
is the total number of wind load components (i.e., the loads or force coefficients associated
with each floor level and force direction). According to the POD-based SRM theory [15],
the simulation of stationary zero-mean multicorrelated vector-value subprocesses P̃i(t; β)
can be generated by:

P̃i(t; β) =
Nl−1

∑
k=0

2|Ψi(ωk; β)|
√

Λi(ωk; β)∆ω cos(ωkt + ϑi(ωk) + θik) (1)

where Λi and Ψi are the ith frequency-dependent eigenvalue and eigenvector of the CPSD
matrix of P(t; β), respectively, Nl is the total number of discrete frequencies up to the
Nyquist cutoff frequency, ∆ω is the frequency increment with ωk = k∆ω, θik is a uniformly
distributed independent random variable over [0, 2π] characterizing the stochasticity of
the process, and ϑi(ωk) is the phase angle, defined as:

ϑi(ωk) = tan−1
(

Im(Ψi(ωk; β))

Re(Ψi(ωk; β))

)
(2)

The eigenvalues and eigenvectors, Λi and Ψi, can be obtained through the decomposi-
tion of the CPSD matrix of P(t; β), in terms of orthogonal mode functions, by solving the
following eigenproblem:

[SP(ω; β)−Λi(ω; β)I]Ψi(ω; β) = 0 (3)

where SP is the two-sided CPSD matrix of the zero-mean process P(t; β), which is a Hermi-
tian and non-negative definite [11], and I is the identity matrix. Once the eigenvalues and
eigenvectors are obtained, the CPSD matrix of P(t; β) can be expressed by the summation
of the contributing modes as:

SP(ω; β) =
N

∑
i=1

Λi(ω; β)Ψi(ω; β)Ψ∗i (ω; β) (4)

For many problems in wind engineering, the first few eigenmodes associated with
the highest eigenvalues carry the majority of the energy of the process. The truncation of
the higher modes enables the following reduced-order modeling of the resultant Gaussian
wind load process PGP(t; β):

PGP(t; β) ≈ P̂GP(t; β) = P(β) +
Nm

∑
i=1

P̃i(t; β) (5)

where P̂GP(t; β) is the truncated representation of PGP(t; β), P(β) is the mean wind load
for a given wind direction β, and Nm is the number of contributing modes, such that
Nm ≤ N [15].

While wind pressures are known to have non-Gaussian features, the wind loads may
be modeled as a Gaussian process based on the Central Limit Theorem [29]. Therefore,
knowledge of second-order statistics is assumed adequate for describing the stochastic
wind load process, P(t; β).
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2.2. Wind-Tunnel-Informed POD-Based SRM

The wind-tunnel-informed POD-based SRM is based on the method described in
Section 2.1. The basic idea is to calibrate the model to a two-sided CPSD matrix, SP(ω; β),
derived from a typical single short-duration (30 s to 1 min) wind tunnel record [16,25].

To describe the method for the simulation of wind loads, assume Pwt(t; β) = [Pwt,1(t; β),
Pwt,2(t; β), ..., Pwt,N(t; β)]T , where N is the total number of force components obtained from
wind tunnel experimentation and represents the forces Fx(t), Fy(t), and Tz(t) acting at the
centroid of each floor of the building. To obtain the eigenvalues and eigenvectors of the
CPSD matrix of Pwt(t; β) and to calibrate the simulation model as in Equation (1), the data-
informed smoothed CPSD matrix of the single record needs to be estimated. Welch’s
averaging method can be used to this end, which consists of breaking the filtered zero-
mean time series Pwt(t; β) into K windowed segments of the same length and averaging
their periodograms [30,31]. This method reduces the variance of the PSD/CPSD functions,
by eliminating noise (random effects), hence facilitating the identification of important pat-
terns and trends in the frequency domain that better align with the underlying PSD/CPSD
functions of the process. The smoothed PSD/CPSD functions are then decomposed, using
the spectral POD method, to obtain the eigenvalues and eigenvectors, as in Equation (3).
The simulation model can be further enhanced through standardization of the input wind
tunnel loads or force coefficient time series prior to applying the spectral POD method (see
Appendix A). This leads to a more even distribution of energy within the POD, and a lower
number of modes is needed to accurately represent the component time series.

This data-informed approach has the key property of incorporating any building-
specific aerodynamic phenomena captured in the wind tunnel into the simulation (e.g.,
vortex shedding and separated flow). Additionally, it enables the simulation of correlated
load components acting in the x and y translational directions and the torque around
vertical z direction, without the need for a large set of repeated measurements or the
development of complex equations to describe the stochastic process for each wind direction
and building geometry. However, the estimation of the target matrix, SP(ω; β), from one
short-duration record could potentially lead to significant deviation from the underlying
process. It is therefore crucial to quantify the uncertainty related to the use of a single
short-duration record for calibrating the simulation model.

3. Uncertainty Quantification
3.1. Errors Induced by Wind Tunnel Data

The main uncertainty investigated in this study is associated with the variability of
individual wind tunnel records that are used to calibrate the wind-tunnel-informed POD-
based SRM. In this study, the second-order statistics of the processes, such as variance
and correlation coefficients, were used to define the uncertainty measures. The target
CPSD functions, hereafter referred to as target spectra, were obtained through the ensemble
average of multiple wind tunnel records, as described in detail in Section 4, and were used
in this study as the baseline for comparison.

The error in the variance can be defined as follows:

εi(%) =

(
σ2

i − σ2
iT

σ2
iT

)
× 100 (6)

where σ2
iT

is the variance associated with the target PSD function, which is estimated in
terms of the integration of the PSD functions, and σ2

i is the variance derived from the
integration of the smoothed PSD function, estimated from a single short-duration record.
Note that this measure determines the percentage difference between the diagonal terms of
the CPSD matrices.

For the off-diagonal terms of the CPSD matrices, percentage error estimates can become
meaningless for scarcely correlated signal pairs. Indeed, the target covariance, σijT , which
is estimated by integrating the co-spectrum (real part of the target CPSD matrix), can have
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values close to zero for signals with weak correlation. This can lead to large relative errors
when σijT is used as the denominator in the percentage error estimation. Therefore, errors
of the off-diagonal terms in the CPSD functions are assessed by calculating the difference
between the correlation coefficients of the target spectra and the correlation coefficients of
each smoothed spectra from short-duration records. The error in the correlation coefficients,
ϕij, is therefore expressed as:

ϕij = ρt,ij − ρr,ij (7)

ρt,ij =
σijT√
σ2

iiT
σ2

jjT

(8)

ρr,ij =
σijr√
σ2

iir σ2
jjr

(9)

where ρt,ij is the correlation coefficient of the target spectra, ρr,ij is the correlation coeffi-
cient associated with individual smoothed spectra estimated from short-duration records,
and r = 1, . . . , R, with R being the total number of wind tunnel records. As correlation coef-
ficients have values ranging from−1 to 1, it is a straightforward measure to judge/interpret
the significance of any observed differences.

3.2. Errors Induced by the Model

Previous studies have extensively demonstrated the accuracy and efficiency of the
POD-based SRM for generating realizations that match prescribed CPSD functions [15,32].
For validation purposes, the model errors associated with the wind-tunnel-informed stochastic
wind load model calibrated to the target spectra were estimated for different experimental
conditions. The model errors were computed using the same error measures described in
Equations (6) and (7), with the caveat that the smoothed spectra were substituted by the
ensemble spectra of the simulated signals, considering all modes.

Additionally, to provide guidance on the selection of a sufficient number of modes for
an accurate reduced-order representation of the simulated signals, the error considering
higher-order mode truncation was quantified. The effects of wind direction and experi-
mental setup on the truncation error were evaluated. In evaluating the error measures
of Equations (6) and (7), the target spectra were used to calibrate the model, while the
ensemble spectra of the reduced-order signals were used to characterize the performance
of the reduced model.

4. Wind Tunnel Tests
4.1. Experimental Setup

Extensive experimental testing was carried out at the wind tunnel to enable the quan-
tification of the uncertainty associated with individual wind tunnel records. In particular,
a rectangular rigid model with geometry and pressure tap distribution shown in Figure 1a
was considered. Pressure measurements were simultaneously collected, using a Scanivalve
system at 625 Hz sampling frequency. A total of 512 pressure taps were distributed on five
surfaces, to capture the flow around the corners and flow variation with height, width,
and depth. In this study, only the lateral surfaces were considered, to obtain the resultant
forces, as the roof pressures did not contribute to the lateral forces. In total, 19 different
testing conditions were conducted for various wind directions and experimental setups.
To investigate possible interference effects on the uncertainties of short-duration records,
two different testing configurations were considered: the first considered a single model
(SM), while the other configuration added two proximity models (PM) with the same
geometry as the building model, as shown in Figure 1b,c. For the SM setup, the experiment
was conducted for approximately 15 min in model scale and was repeated five times for
wind directions varying from 0 to 90 degrees, in increments of 10 degrees, as shown in
Figure 2a. Due to the bilateral symmetry of the proximity model test setup, as shown in
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Figure 2b, five repetitions of 15 min in model scale were carried out, rotating from 0 to
180 degrees, also in 10-degree increments.

The experiments were carried out at the Natural Hazards Engineering Research Infras-
tructure (NHERI) Boundary Layer Wind Tunnel of the University of Florida. The tunnel is
6 m wide, 3 m tall, and 40 m long, as shown in Figure 3, where the “terraformers” are auto-
mated terrain roughness elements with an adjustable height that can be quickly adjusted by
electric actuators [33]. For the conducted tests, the height of the terraformer elements was
set to 16 cm, in order to obtain a suburban terrain condition. The model scale considered in
this study was 1:200, representing a 25-story full-scale building, while the velocity scale
was 1:3, leading to a time scale of 1:66.

Figure 1. (a) illustration of the building model used in the wind tunnel tests, and configuration of the
pressure taps, (b) wind tunnel testing with SM setup, and (c) wind tunnel testing with PM setup.

Figure 2. (a) SM setup, (b) PM setup, and (c) coordinate system adopted in estimating the wind loads.

The external pressure coefficients, Cp,e, at each tap location and time, t, were estimated
as:

Cp,e(t) =
p(t)− p0

q
(10)

where p(t) was the raw pressure measured at each pressure tap, p0 was the mean reference
static pressure measured by a Cobra Probe located upwind and at the height of the model,
and q was the dynamic pressure, defined as q = 1/2ρU2

H , with ρ being the local air density,
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and UH being the mean streamwise wind speed at the model height. Information on the
local atmospheric pressure and temperature was used to estimate the air density during
the experiments.

Figure 3. Representation of the UF NHERI boundary layer wind tunnel.

The local wind forces acting on the nth floor in the x and y translational directions
and the torque around the vertical z direction were obtained by first considering a linear
interpolation between the pressure taps, to obtain the pressures acting at each floor level.
Then, the pressures were integrated over the tributary area corresponding to the nth
floor, to obtain the wind force components. The resultant local forces and moment can
be decomposed into Fx,n(t), Fy,n(t), and Tz,n(t) components, where n denotes the floor
number. Figure 2c shows the forces, coordinate system, and wind directions. The force
components at each floor are normalized, to obtain force coefficients as follows:

CFx,n(t) =
Fx,n(t)
qBx H

(11)

CFy,n(t) =
Fy,n(t)
qBy H

(12)

CTz,n(t) =
Tz,n(t)

qH B2
max
2

(13)

where CFx,n(t), CFy,n(t), CTz,n(t) are the dynamic force coefficients at the nth floor, H is
the height of the model, Bx and By are the plan dimensions of the building, and Bmax is the
maximum plan dimension of the building.

4.2. Processing of the Wind Tunnel Data

In order to evaluate the uncertainties associated with using short-duration wind tunnel
records to calibrate the data-informed stochastic model, as defined in Section 3, the wind
tunnel data set was divided into two groups: the first group was used to define the baseline
target spectra, and the second group—also referred to as the testing set—was used to obtain
the smoothed spectra of individual short-duration records. The purpose of dividing the
data into two different groups was to obtain unbiased and meaningful error estimates, as
the testing set was independent of the data set used to define the target spectra.

The target spectra were obtained using an ensemble average of 750 spectra, estimated
using a rectangular window of 4-s duration. Each 4-s record was obtained from non-
overlapping intervals extracted from the first 10 min of each wind tunnel test repetition,
as described in Section 2.2. In particular, each 10 min set was divided into 150 segments
of 4-s duration, while a rectangular window of the same length as the signal was used to
ensure zero padding and zero overlapping between the segments. The window size of 4 s
was adopted because it was small enough to obtain multiple periodograms to be averaged,
as well as to capture the low-frequency content sufficiently well without any padding-based
interpolation. A total of 750 segments were used to establish the target spectra for each
force coefficient. Ultimately, the target spectra were estimated for all 75 force components
for every wind direction and setting.

The remaining 5 min of data were used as a testing set, in order to evaluate the
uncertainties as described in Section 3. The testing data were divided into 32-s segments,
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which were treated as independent short-duration wind tunnel records. The spectra of each
short-duration record were obtained, such that the frequency intervals were identical to the
target spectra, therefore ensuring the absence of interpolation errors (e.g., zero padding).
In particular, Welch’s averaging method was considered, using a Hanning window function
of the same length as the target spectra window size, and an overlap of 50%. In general,
a total of 45 short-duration records were obtained for each wind direction, with a few
directions having fewer records (e.g., 35–44 segments), due to missing data or evident
errors in the data set (e.g., abnormal peak pressure values that were up to 50 times larger
than the maximum peaks of the entire signal), which were disregarded. Similarly, one of
the 4-s segments was disregarded, due to the occurrence of abnormal peak pressure.

A second-order Butterworth lowpass filter with a cutoff frequency of 50 Hz was
applied to the dataset, as frequencies only up to a certain value are of interest for practical
wind engineering applications. The cutoff frequency was determined, such that unrealistic
high-frequency noise caused by equipment was eliminated.

5. Results
5.1. Preamble

The experimental data are employed to estimate the uncertainties associated with the
calibration of the wind-tunnel-informed stochastic wind load model using short-duration
records (e.g., 32 s). Subsequently, to investigate the effectiveness of the simulation scheme,
the model errors and truncation errors are discussed.

5.2. Errors Induced by the Variability of Short-Duration Wind Tunnel Records

Figures 4–6 provide a comparison between the target PSDs (black solid lines)—estimated
as in Section 4.2—and the smoothed PSDs (gray dotted lines) of approximately 45 individual
realizations of short-duration force coefficient records, SR, at the 20th floor, i.e., CFx,20(t),
CFy,20(t), and CTz,20(t), respectively. As can be observed, the smoothed PSDs fluctuate around
the target spectra, especially in the lower-frequency region, showing a record variability of up
to two standard deviations from the mean. It is also possible to observe that the mean spectra,
µSR , which is obtained from the ensemble average of short-duration records, closely follow
the target spectra for the x and y directions, as well as rotations around the vertical z direction.
The fact that both curves are visibly close to one another indicates that the individual records
are indeed realizations of the target stochastic process, and even though smoothing is applied,
considerable variability in the records is clearly evident. The similarity between both curves
also indicates the quality and repeatability of the experiment. A similar conclusion could be
drawn for all the other floors.

Figure 4. Comparison between smoothed PSDs of short-duration records, SR( f ), and target PSD of
CFx,20(t) at the 20th floor and wind direction of β = 0◦.
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Figure 5. Comparison between smoothed PSDs of short-duration records, SR( f ), and target PSD of
CFy,20(t) at the 20th floor and wind direction of β = 0◦.

Figure 6. Comparison between smoothed PSDs of short-duration records, SR( f ), and target PSD of
CTz,20(t) at the 20th floor and wind direction of β = 0◦.

With respect to quantitative measures, the errors in the variance and the errors in the
correlation coefficients were estimated as detailed in Section 3. Figure 7 presents the mean,
µε, and standard deviation, σε, of the error in the variance for all force components at each
floor and the SM layout for wind direction β = 0◦.

Figure 7. Mean error in the variance, µε, with standard deviation, σε, for each floor, for the SM layout
and β = 0◦.

In particular, µε represents the error between the variance estimated from the target
spectra (black solid curve in Figures 4–6) and the variance estimated from the mean spectra
(green solid line in Figures 4–6), whereas σε quantifies the spread that individual records
can cause on the estimated variances. Overall, it is evident that µε ranged between −3% to



Wind 2023, 3 384

0.5% for all force components and all floors, while σε varied between 5.5% to 9.6% for this
particular wind direction and configuration.

To summarize the ranges of the error measures µε and σε for all wind directions and
both experimental configurations (i.e., SM and PM), Figure 8 presents the expectation,
maximum, and minimum values of µε and σε for all wind directions and both experimental
configurations. It is possible to observe from Figure 8 that, overall, both µε and σε were
relatively consistent for all 19 cases studied, with no particular sensitivity to wind direction
or testing condition.

Figure 8. (a) mean errors in the variance for SM and PM layouts, and (b) standard deviation of the
errors in the variance for the SM and PM layouts.

In particular, σε ranged from about 5% to almost 12%, with an average of around
7.5%. This demonstrates that the smoothed spectra of short-duration records can consider-
ably deviate from the target spectra, regardless of force component and testing condition.
Therefore, even though smoothing is applied to reduce noise, the use of short-duration
records to calibrate the wind-tunnel-informed stochastic wind load model can introduce
significant errors in the simulation. It should be noted that, in general, there are other
possible sources of errors: for example, errors generated by experimental setup or those
introduced by the integration of pressures over the tributary areas and interpolation to each
structural model level. These errors should, in general, be added to the errors discussed in
this study. It should be observed that, because a consistent pressure integration method
and experimental set were used in this work, such additional errors did not affect the
presented results.

To assess the errors in terms of the off-diagonal components of the CPSD matrices,
the errors in the correlation coefficients were estimated, using Equation (7). The map
of correlation coefficients estimated from the target spectra are presented in Figure 9 for
β = 0◦ and the SM setup. It should be noted that components 1–25, 26–50, and 51–75 refer
to the components CFx(t), CFy(t), and CTz(t), respectively.
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Figure 9. Map of the target correlation coefficients for the SM setup and wind direction β = 0◦.
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The map of the mean errors in the correlation coefficients between the target spec-
tra and the smoothed spectra, µϕ, considering all the force components, the SM setup,
and β = 0◦, is presented in Figure 10. The values of µϕ ranged from around−0.014 to 0.014,
which was relatively small compared to the magnitude of the target correlation coefficients
in Figure 9, indicating the validity of spectral smoothing in a mean sense. Figure 11 shows
the map of the standard deviation, σϕ, of the errors in the correlation coefficients for β = 0◦

and the SM configuration. It can be observed that highly correlated components showed
a smaller σϕ, while higher values were obtained for pairs with a small correlation coeffi-
cient. The values of σϕ reached as high as 0.056, indicating uncertainty in the estimation
of the correlation coefficients, which agrees with the results presented for the errors in the
variance.

Figure 10. Mean error in the correlation coefficients for the SM setup and wind direction β = 0◦.
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Figure 11. Standard deviation of the difference between target and typical correlation coefficients for
the SM setup and wind direction β = 0◦.

To summarize the errors presented in Figures 10 and 11 for all 19 testing conditions,
Figure 12 reports the maximum, minimum, and expected values of µϕ and σϕ for all
correlation pairs of each wind direction and experimental configuration. It can be seen that
E[µϕ], over all floors and force components, fluctuated around zero, indicating that, on
average, the correlation structure estimated from the smoothed spectra was close to the
target. However, for the standard deviation, the values of σϕ fluctuated around 0.04, with a
maximum that could reach as high as 0.08, indicating an important level of variability in
the correlation structure estimated from a single short-duration wind tunnel record. Similar
to what was seen for the variance, it is also possible to observe that there was no particular
sensitivity of the results to the wind direction or testing configuration.
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Figure 12. (a) mean errors in the correlation coefficients for SM and PM layouts, and (b) standard
deviation of the errors in the correlation coefficients for the SM and PM layouts.

Figure 13a–c presents the histograms of the error in the variance, ε, from all realizations
in the testing set for the SM layout and β = 0◦. It is possible to observe that the histograms
resemble approximately normal distributions, with errors induced from the use of an
individual record reaching as high as 20%. Another important finding is presented in the
map of Figure 13d, which shows the correlation of the error in the variance ρε associated
with each force component. It can be observed that there was a high correlation in ε
between components acting in the same direction, but a moderate-to low-correlation for
components acting in different directions. A similar trend can be observed for other wind
directions and settings, in terms of the magnitude of errors, the shape of the histograms,
and the correlation of the errors. This, again, indicates the importance of modeling the
uncertainty associated with spectral functions estimated from short-duration records.

Figure 13. Histograms of ε associated with SM layout and β = 0◦ of (a) CFx, (b) CFy, (c) CTz,
and (d) correlation coefficients between the components of ε.

5.3. Model and Truncation Errors
5.3.1. Model Errors

To evaluate the errors associated with the wind-tunnel-informed stochastic wind load
model, a set of 40,000 realizations was generated, using the target spectra to calibrate the
model. Figures 14 and 15 report the statistics of the errors in the variance and the errors
in the correlation coefficients for the 40,000 realizations. It can be seen that for all wind
directions and settings, the expected mean error in the variance, E[µε], is in the order
of 10−4%, and the expected error in the correlation coefficients, E[µϕ] is nearly 0. This
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demonstrates that the data-driven POD-based stochastic wind load model operates with
negligible model error. This agrees with the theory of POD-based SRM models, as the
simulation algorithm depends only on the target spectra provided as input, regardless of
testing conditions when all modes are considered [17,18,34].

Figure 14. Expected values and range of the model error in the variance for the SM and PM setups.

Figure 15. Expected values and range of the model error in the correlation coefficients for the SM and
PM setups.

Figures 16 and 17 examine the relative magnitude of the errors that can arise from the
stochastic wind load model based on the target spectra, compared to the errors induced
by the use of smoothed spectra estimated from a single short-duration record. From these
figures, it is evident that model errors are insignificant, compared to the errors introduced
by the use of short-duration wind tunnel records when all modes are considered.

Figure 16. Comparison of the error in the variance due to the use of a single smoothed short-duration
wind tunnel record (wt) and the simulation model (sim).
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Figure 17. Comparison of the difference between the correlation coefficients due to the use of a single
smoothed short-duration wind tunnel record (wt) and the simulation model (sim).

5.3.2. Truncation Errors

To study the effects of mode truncation, the simulation of a set of 40,000 realizations
was conducted, using the wind-tunnel-informed stochastic wind load model calibrated to
the target spectra. This was used to carry out a parametric study varying the number of
modes, in order to examine the errors this induced in the variance and the correlation coef-
ficients.

A total of 10, 15, and 25 out of the 75 total modes were considered, to generate samples
for the SM layout and wind direction β = 0◦, which corresponded to 13%, 20%, and 33%
of all modes, respectively. The value of µε, shown in Figure 18, reduced as the number
of modes increased, as expected. Figure 19 shows how the map of µϕ changes for an
increase in the number of contributing modes. The results demonstrate that consideration
of the lower modes associated with large eigenvalues is crucial for capturing the majority
of the energy of the process, while consideration of higher modes does not significantly
improve accuracy. This result agrees with other studies in the literature for multiple
applications [12,15,26].

Figure 20a,b summarize the statistics (i.e., maximum, minimum, and expected values)
of ε and ϕ, for the various wind directions and two configurations. For a reduced number
of modes, i.e., 10 and 15 modes, the errors were considerably larger and more sensitive
to changes in wind directions and configurations. However, for a sufficient number of
contributing modes, i.e., 25 modes, the errors were sufficiently small for all cases. This
confirms that a minimum number of modes in the simulation is necessary to ensure small
and consistent errors, given any wind direction and configuration.

Figure 18. Mean error in the variance, µε, for each force coefficient component, considering 10, 15,
and 25 contributing modes, for SM layout and wind direction β = 0◦.
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Figure 19. Mean error in the correlation coefficients, considering 10, 15, and 25 modes, for SM layout
and wind direction β = 0◦.

Figure 20. (a) error in the variance, ε, and (b) errors in the correlation coefficients, ϕ, considering 10,
15, and 25 contributing modes.

Figures 21 and 22 show the expected values of µε and the expected values of µϕ

for all wind directions and both experimental settings, considering varying numbers of
contributing modes. The results demonstrate that the wind-tunnel-informed stochastic
model is able to accurately simulate reduced-order signals, regardless of the type of input
spectra. For the test conditions investigated in this study, it is possible to observe that
E[µε] reached a value between −0.2% to −0.6% for approximately 20 modes (i.e., around
27% of all modes) while E[µϕ] reached a value of around 10−4, which is comparable to
the model error, considering all modes. This means that higher modes do not have a
significant contribution to the loading process and can be truncated with no noticeable loss
of accuracy. Similar results have been encountered in different studies, where for local loads
and pressures about 20% to 30% of modes were necessary to provide high accuracy [12,15].

Figure 21. Expected error in the variance from the truncation of modes for both the SM and PM
setups, considering 1, 5, 10, 15, 20, 25, and 75 contributing modes.
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Figure 22. Expected difference in the correlation coefficients from the truncation of modes for all
wind directions and the SM and PM setups, considering 1, 5, 10, 15, 20, 25, and 75 contributing modes.

6. Conclusions and Discussion

An extensive wind tunnel test campaign was conducted, considering multiple wind
directions and two different experimental configurations, to ultimately quantify the uncer-
tainties introduced in the simulation of wind loads when using typical single short-duration
wind tunnel records to calibrate POD-based stochastic wind load models. A discussion on
the limitations of using data-informed POD models has also been provided, with respect to
model errors and the truncation of higher-order modes.

The major contributions of this study are as follows. We have demonstrated that the
spectra estimated from single short-duration wind load records can considerably deviate
from the spectra of the underlying stochastic process, even when smoothing is applied
to reduce noise. The standard deviation of the errors in the variance estimated from the
integration of the spectra can reach 12%, while the standard deviation of the errors in
the correlation coefficients can reach values as high as 0.08. This significant variability
supports the argument that uncertainty should be considered when simulating wind loads
calibrated to spectral functions estimated from single short-duration records, because it
can affect the response estimates of wind-excited systems. Moreover, we observed that
errors introduced by the use of single short-duration records are of a similar magnitude for
different experimental conditions, with no particular sensitivity to the experimental setting
being observed. We also found that errors in the variance have a high correlation for forces
acting in the same direction, whereas for forces acting in different directions these errors
have a low-to-moderate correlation. Lastly, we have demonstrated that the wind-tunnel-
informed stochastic wind load model has negligible model errors, as compared to the errors
introduced by calibration to single short-duration records. Regarding mode truncation, we
observed that at least 25% of modes should be included for simulating wind loads for the
tested scenarios with negligible errors, which, overall, is consistent with the results found in
the literature. It is important to note that even though 19 cases were considered, the study
of the effects of the uncertainties of this work should be investigated for other geometries
and record durations, in order to obtain a more comprehensive uncertainty quantification.

To conclude, due to its straightforwardness, the wind-tunnel-informed stochastic wind
load model can be a powerful alternative to reduce the reliance on the collection of multiple
wind records for generating representative samples of stochastic wind load time series.
It is hoped that the extensive error analysis associated with the use of the data-driven
POD-based stochastic wind load model of this work will provide greater confidence for
the use of such models in wind engineering applications—in particular, for structural
response estimation, performance-based wind engineering, and vibration control. Future
research efforts will focus on expanding the error assessment of this work to non-Gaussian
multivariate wind processes, developing models that incorporate these uncertainties in
probabilistic performance assessment approaches, and quantifying the impacts of these
uncertainties on the structural response.
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Appendix A. Standardization Scheme of Force Coefficients

To increase the efficiency of carrying out a POD analysis of wind force coefficients, it
is first advisable to standardize the data. To this end, the zero-mean force coefficients were
standardized in this study, using the following scheme:

CFnorm
x,n (t) =

CFx,n(t)
σCFx,n γr

(A1)

CFnorm
y,n (t) =

CFy,n(t)
σCFy,n γr

(A2)

CTnorm
z,n (t) =

CTz,n(t)
σCTz,n γr

(A3)

where CFx(t), CFy(t), and CTz(t), are the zero-mean force coefficients, while γr = 3.5 is
the reduced variate estimated based on the expected peak of a Gaussian process after
normalization. As an example, Figure A1 illustrates the standardized force coefficient time
series of an individual record for wind direction β = 0◦ and the SM layout.

Figure A1. Example time series of the standardized force coefficients for β = 0◦ and the SM layout.
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