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Simple Summary: We connect the Planck scale to the subatomic world without assuming a priori that
such a connection exists; we deduce the physical meaning of the famous dimensionless fine-structure
constant 1/137 (known simply as 137); we relate the masses of quarks, leptons, and vector bosons to
the Higgs mass, i.e., we derive scaling relations for the entire mass ladder of the subatomic world;
we deduce from first principles the origin and physical significance of Koide’s K = 2/3 enigmatic
constant and analogous quark and vector boson constants; and we calculate the gauge coupling
factors of quarks, leptons, bosons, and the weak interaction in terms of only the Higgs field and
Koide’s constant.

Abstract: Natural systems of units {Ui} need to be overhauled to include the dimensionless coupling
constants {αUi} of the natural forces. Otherwise, they cannot quantify all the forces of nature in a
unified manner. Thus, each force must furnish a system of units with at least one dimensional and
one dimensionless constant. We revisit three natural systems of units (atomic, cosmological, and
Planck). The Planck system is easier to rectify, and we do so in this work. The atomic system discounts
{G,αG}, thus it cannot account for gravitation. The cosmological system discounts {/h,α/h}, thus it
cannot account for quantum physics. Here, the symbols have their usual meanings; in particular, αG

is the gravitational coupling constant and α/h is Dirac’s fine-structure constant. The speed of light
c and the impedance of free space Z0 are resistive properties imposed by the vacuum itself; thus,
they must be present in all systems of units. The upgraded Planck system with fundamental units
UPS := {c, Z0, G,αG, /h,α/h , . . .} describes all physical scales in the universe—it is nature’s system of
units. As such, it reveals a number of properties, most of which have been encountered previously in
seemingly disjoint parts of physics and some of which have been designated as mere coincidences.
Based on the UPS results, which relate (sub)atomic scales to the Planck scale and the fine-structure
constant to the Higgs field, we can state with confidence that no observed or measured physical
properties are coincidental in this universe. Furthermore, we derive from first principles Koide’s
K = 2/3 enigmatic constant and additional analogous quark and vector boson constants. These
are formal mathematical proofs that justify a posteriori the use of geometric means in deriving the
quark/boson mass ladder. This ladder allows us to also calculate the Higgs couplings to the vector
bosons and the Weinberg angle in terms of K only, and many of the “free” parameters of the Standard
Model of particle physics were previously expected to be determined only from experiments.

Keywords: atomic processes; cosmological parameters; cosmology: theory; early universe;
elementary particles; galaxies: kinematics and dynamics; gravitation

1. Introduction and Motivation
1.1. Three Fundamental Systems of Units Under Consideration

In a recent paper [1], we used a cosmological system of units based on the speed
of light c, Newton’s gravitational constant G, and MOND’s characteristic acceleration
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a0 [2–4]. Since G is a building block of this system, then a0 can substitute for the universal
MOND unit, the mysterious constantA0 ≡ a0G. BesidesA0, pairs of the fundamental units
produced two more de facto important dynamical units: the surface density σ0 = a0/G and
the force F0 = c4/G. Notice a disparity implicit in unit F0: inverting G produces c4G, which
(very much unlike c4/G) is a composite unit of no particular interest with dimensions
of [M]−1[L]7[T]−6 = c8/F0. This disparity singles out the unit of force F0 = c4/G as an
important component of the cosmological system (along with the pair of units A0 and
σ0), but there is not much more one can do with it at this point, besides noting that the
same unit of force appears in the famous Planck system of units as well and that F0 is a
geometry-independent quantity since both c and G do not carry an imprint of (dependence
on) the geometry of our four-dimensional spacetime.

The cosmological system of units does not use Planck’s constant h [5,6], which
turns out to be a derived unit of no particular interest, but current thinking forgives
the oversight—after all, this is a cosmological system designed for measurements on uni-
versal scales. Nonetheless, we were drawn into comparisons with the Planck system, which
now uses Dirac’s /h = h/(2π) as a fundamental unit [7–9]; and, soon enough, we also
added Hartree’s atomic system of units [10], which paradoxically does not use c (or G,
for that matter) as a fundamental unit. The immediate implication is that the speed of
light is not a preset limit in the atomic world, where the unit of speed is α/h c� c, where
α/h = 1/137.036 is the fine-structure constant. Under these circumstances, we ended up
juggling three different fundamental systems of units, comparing and contrasting their
building blocks and the assumptions that have gone into their architectures.

1.2. Dirac’s Problematic Constant /h and the Three Widely-Used Atomic Radii

The modern atomic and Planck systems use Dirac’s /h = h/(2π) [7] instead of Planck’s
original and purely physical constant h [5]. This modification is not trivial because the 2π
carries the “unit” of radians, which, although not a physical unit, alerts us to the presence of
2-D geometry. The descriptive unit of radian has been dropped by many authors and also
by the SI system of units, leading to a widespread misunderstanding that /h simply absorbs
a numerical factor of 2π with no further ramifications. The inconsistency was noted by
Bunker et al. [11], who inserted the unit of radian in the definition of /h and the unit of cycle
in the definition of h. The SI system must reinstate at least the radian/steradian “units” as
descriptive words because they alert us to the presence of geometry (see below). The same
holds for trigonometric functions, whose arguments must always be in radians—although
this is such common knowledge that the radian is no longer mentioned. On the other
hand, the radian is not dropped from the unit of angular velocity, which has always been
radians/sec, where “radians” is a descriptive term and “sec” is the only physical unit.

Dirac believed that /h is the true universal constant, and we can only guess the reason
why: the 2π in /h has introduced 2-D geometry into the constant, so, unlike Planck’s h,
the constant /h is not purely physical; it is a composite constant. This fact was effectively
proven by Leblanc et al. [12] who showed that the Compton radius rc (where rc ∝ /h)
also includes a geometric component. The seminal results presented in Refs. [11,12] have
important consequences in physics that become detectable when we write side-by-side the
three famous electronic radii of the atomic world (where me is the electron mass and e is
the fundamental positive charge):

Classical radius : re = e2/(/ε0mec2) = rcα/h
Compton radius : rc = /h/(mec)

Bohr radius : rb = /ε0/h2/(mee2) = rc/α/h

. (1)

Here, α/h is the fine-structure constant and /ε0 is the reduced vacuum permittivity defined by
/ε0 ≡ 4πε0, an equation that shows how the stereometry of space modifies the physical unit
ε0 of the vacuum. Therefore, we have an SI unit problem here too, just as Bunker et al. [11]
discovered for /h. The vacuum is a three-dimensional space, hence the stereometric term
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of 4π; thus, the units of /ε0 must also include the descriptive unit steradians1. Now, these
geometric considerations show why three different radii do exist in atomic physics: al-
though they have the same physical dimension of length [L], they capture entirely different
geometries; the electrons in the atoms venture in 3-D space (their orbitals are 3-D structures,
hence, the 1/(4π) in re); the emitted photons only “see” two dimensions (see Note 1); and
the electrons in the Bohr model of the atom are quantized and they see only discrete sectors
embedded in 3-D space (hence, the 1/π factor in rb). The factor of 1/4 “missing” from the
1/π is, however, applied to the energy levels because this factor is included in the Rydberg
energy ER (see below).

Deriving the geometric pattern of the quantized radii rn of the Bohr model is a little
harder, yet within our grasp2. In any case, the factor of 1/4 is necessarily missing from rb,
so that the quantized angular momentum Ln is truly a 2-D quantity (Ln ∝ /h ∝ 1/(2π)),
and the associated Rydberg energy ER is independent of geometry (although the abolished
geometry contributes a unitless constant of 1/4, i.e., ER ∝ 1/(/ε0/h)2 ∝ 1/[4π/(2π)]2 = 1/4,
the same factor as that “missing” from rb).

Lastly, the Bohr radius is the fundamental unit of length in the atomic system [10], but
we argue that the Compton radius is actually the most important unit because its definition
in Equation (1) does not contain the fine-structure constant α/h . Furthermore, there is more
circumstantial evidence that rc is important among the three radii shown in Equation (1):
rc is the geometric mean of re and rb (i.e., rc =

√
rerb), and this implies that the Compton

radius rc is also the geometric mean of all three length scales combined together, viz.

rc = 3
√

rercrb . (2)

Thus, rc is singled out among the three electronic radii for further duty in all systems of
units (but probably without the 2π term in order to remove the artificially inserted 2-D
geometry). Furthermore, it may not be as obvious yet, but geometric averaging plays a huge
role in nature, as was first discovered in Ref. [1]. The above geometric means (hereafter
denoted as G-Ms, to avoid confusion with the famous heliocentric constant “GM”) are
only a prelude to their ubiquitous appearances in many G-M combinations of natural
constants and physical quantities as well. That many G-Ms appear in physics equations
is an empirical observation for which we do not presently have a full explanation; the
properties of G-M averaging, in comparison to those of arithmetic averaging, provide some
hints, which we discuss in Section 4.3 below.

1.3. Dimensionless Constants

The general notion about constructing a system of units is that one is free to choose
any units to be the building blocks. Dimensionless constants do not have units to offer, so
they are not chosen as building blocks. They remain as passive invariants in any adopted
system of units, and they serve mostly as cross-checks of the various calculations performed
between dimensional quantities. The current thinking is summarized in the following
excerpt from Zeidler [14]:

“A special role is played by those physical quantities that are dimensionless in the SI
system. We expect that such quantities are related to important physical effects. The
experience of physicists confirms this.”

Therefore, we suspect that such constants are important in physics, but we do not
really know what to do with them beyond their ascertained invariance, simply because
they lack units.

The general notion about constructing a physical system of units is wrong on two
counts: (1) Although unitless constants do not have units to offer, they must be actively
included in systems of units because they introduce the natural forces that cause the
important physical effects mentioned by Zeidler [14]. (2) We are not free to choose any
dimensional units as building blocks; we must choose wisely the units that measure the
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fundamental forces and, in addition, those units dictated by the vacuum itself. In particular,
choosing a favorite particle to supply its properties for building blocks could be a bad idea3,
and the reason is that such favoritism could violate a principle of “fairness” in this world.
As will be seen below, nature does not at all favor or neglect any particle or force field, not
even the “very small” ones against the “very large” ones, and vice versa.

One or both of the above defects have crept into our systems of units, where they
selectively impaired or eliminated entirely some fundamental forces of nature. A natural
force is impaired when its dimensional or dimensionless constant is not included as a
building block of a system of units, and a force is eliminated entirely when both of its
defining constants are not included in a system of units.

1.4. Outline

In this work, we construct a self-consistent system of units that does not suffer from
the above defects and that includes gravity, electromagnetism, and the weak interaction
(Section 2). The coupling constant of the strong interaction is not included yet because
massive particles at the TeV energy scale have not been discovered. We are going to test
this system’s performance on the atomic and subatomic scales, as well as on the Planck and
macroscopic scales (Section 3).

It turns out that the Planck system is easier to upgrade because it already includes
the appropriate dimensional constants {c, Z0, G, /h}, although the impedance of free space
Z0 has so far been sidelined. Therefore, what we need to do for the upgrade is to activate
the unitless coupling constants αG (gravitational coupling constant) and α/h (fine-structure
constant) and to repair the damage that /h has caused by inadvertently introducing geometry
in them (see Note 9 for details), besides the well-intended quantum forces.

In Section 2, we describe the building blocks of the upgraded Planck system of units.
In Section 3, we collect the new results concerning masses, charges, and lengths in the new
system. In Section 4, we discuss the results, and in Section 5, we summarize potential issues
still lingering in this system of units as well as some future research prospects.

Finally, in Section 6, we list the most important highlights of our investigation, in-
cluding the results obtained in the Appendices. In Appendix A, we derive from first
principles the long-sought physical significance of Koide’s lepton constant K = 2/3 [15]
of atomic physics; the Higgs couplings to the vector bosons [16] and the bottom quark;
and the Weinberg angle [16] in terms of K. In Appendix B, we discuss the universality of
the Tully–Fisher/Faber–Jackson relation [17,18] discovered in spiral and elliptical galaxies,
respectively (see also Ref. [1]). This fundamental relation that relates the fourth power of a
kinetic scalar to a quantity with units of surface density signifies a new universal law of na-
ture that has manifestations in several other parts of physical science besides astrophysics.

2. The Building Blocks of the Upgraded Planck System

The upgraded Planck system (UPS) includes the following building blocks:

UPS := {c, Z0, G,αG, /h,α/h}, (3)

where {c, Z0, G, /h} are the usual dimensional units and the coupling constants {αG,α/h}
are dimensionless units. We use a slash to indicate the presence of geometric units, which
are undesirable. This is a problem we have to contend with throughout this work. In
Section 2.2, we will be ready to replace the units {/h,α/h} with Planck’s original units
{h,αh} in the UPS in order to eliminate the 2-D geometry introduced to Dirac’s constants
by the 2π term (see also Note 28 below).
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2.1. Dimensional Units

For future reference, we need to recall and emphasize a gem of natural units: the
fundamental dimensional relation between gravity (supplying G) and electromagnetic
(EM) forces (supplying also the vacuum’s constant (4πε0)

−1). This is obtained by equating
the dimensions of the forces in Newton’s gravitational law and Coulomb’s law for two
electrons. We find, in dimensional form, that

G m 2
e ∼ (4πε0)

−1 e2, (4)

where me is the mass of the electron and e is the elementary positive charge. Here, we
explicitly write down the vacuum permittivity /ε0 as 4πε0 to ensure that its geometric
content (the 4π factor in the EM term) is clearly noticeable.

Each side of Equation (4) becomes unitless when divided by /hc, as is done separately
in the definitions of the two fundamental coupling constants α/h and αG. Unfortunately, the
/h introduces additional geometry into the gravitational part and eliminates geometry from
the EM part, clearly altering the original geometrical characteristics of the two coupling
constants (see Section 2.1.2 below). The unit of [rad]−1 has been dropped from /h by
international agreement, so this intrusion of geometry is no longer visible [11]; going as
far back as Schrödinger [19], our community is under the impression that it is only a pure
numerical factor of 2π which has been absorbed in the definition of /h. Not keeping track of
pure geometric factors, such as the 2π in Schrödinger’s equation and the Bohr model of the
atom (or the 4π in the electric field), was, in hindsight, a miscue that set us back during the
past 100 years 4.

2.1.1. Constants Imposed by the Vacuum

In order to dictate the speed of EM waves, it also sets an upper limit to the motion
of material objects possessing mass. The vacuum does that incidentally by providing the
smallest possible natural resistance to any kind of motion. The magnitude of c is set by the
G-M of two inverse properties of the vacuum [13], viz.

c =
√

/ε −1
0 /µ−1

0 . (5)

The SI value of c is c = 2.9979× 108 m s−1, and its dimensions are [length][time]−1 [23].
In Equation (5), the reduced values of vacuum permittivity and vacuum permeability

combine in a way that removes geometric constraints from this speed (see also Note 1); the
maximum permitted velocity of a combined EM wave or a massive object must be the same
in any direction. In contrast, it is understood that a static electric field in a vacuum must
adjust to the geometric constraint imposed by /ε −1

0 , and this is why the vacuum’s inverse
permittivity appears in Coulomb’s law. In fact, /ε −1

0 is the slope between the electric field E
and the charge surface density e/r2 [1], where r represents distance (see also Appendix B
for the role that various surface densities play in disjoint parts of physics).

Since Equation (5) can be written in the equivalent form

c =
√

ε−1
0 µ−1

0 , (6)

We can surmise that the physical quantities ε0 and µ0 are geometry-free. Indeed, after
some manipulations involving the geometry-free fine-structure constant α/h (as this was
inadvertently defined long ago using Dirac’s /h), we find that

ε−1
0 = c

(
2hα/h

e2

)
, (7)

and

µ−1
0 = c

(
e2

2hα/h

)
. (8)
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There is no geometric influence on the right-hand sides of these equations. The quantity
that is inverted from one equation to the other, h/e2 = µ0c/(2α/h), is proportional to the
impedance of free space Z0 =

√
µ0/ε0 = 376.730 Ω, which is the G-M of µ0 and ε−1

0 ; thus,
h/e2 has dimensions of [ohmic resistance] (see Ref. [24] and Note 22 below). Thus, ε−1

0 and

µ−1
0 can effectively be expressed as G-Ms involving the squares of c and Z0 (i.e.,

√
c2Z 2

0

and
√

c2(1/Z 2
0 ), respectively); the first G-M involves a direct multiplication of the two

constants involved, whereas the second G-M uses the Lie-type inversion of one of the two
constants [13]. We will pick up this important inference in again Section 4.2 below.

2.1.2. Dirac’s Constant /h = h/(2π)

Dirac’s constant is the slope between the energy E carried by a single photon and its
angular frequency ω, viz.

E = /h ω . (9)

Its SI value is /h = 1.0546× 10−34 J s rad−1 [11,23], and its dimensions are [action][rad]−1

or, equivalently, [moment of inertia][second]−1[rad]−1. Here, the physical unit is J s, while
the descriptive unit [rad]−1 alerts us to the presence of 2-D geometry.

This new awareness that inertia is built into /h (and Planck’s h) may be the spark we
need to theorize that the weak equivalence principle [25] is embedded into the microcosm as
well, where gravity is not important. Action integrals [26], in particular, may be viewed as
carrying the physical units of [moment of inertia][second]−1, thus each action is a measure
of the rate of change of moment of inertia at all scales of the universe, large and small.

In the spirit of Equations (7) and (8), Planck’s reduced constant may also be split into
a product of two G-Ms, viz.

/h =
√

/h(/ε0c)

√
/h
(

1
/ε0c

)
= e

(
/h
e

)
; (10)

the first G-M (=e) on the right-hand side is geometry-independent; the next G-M (=/h/e) is
influenced by 2-D geometry since it is directly proportional to√

/h(/ε −1
0 ) ∝

√
(4π2)−1(2ε0)−1 ∝ (2π)−1.

This G-M that reduces to (/h/e) has dimensions of [magnetic flux] = [magnetic field][area]5.
It is understood from the G-M decomposition (10) that the vacuum quantity /ε0c = 4π/Z0
can couple to /h and thus influence quantum phenomena, and it does so in the definition of
the fine-structure constant (Section 2.2.1).

2.1.3. Newton’s Gravitational Constant G

Newton’s gravitational constant G is the slope between the gravitational field a(r) (i.e.,
acceleration) and the surface mass density σ(r) ≡ M(r)/r2 [1] on the surface of a sphere of
radius r enclosing a total mass of M(r), viz.

a(r) = G σ(r) . (11)

Its SI value is G = 6.67430× 10−11 m3 kg−1 s−2 [23], with dimensions of [acceleration]
[surface density]−1 [1].

In the spirit of Equation (10), Newton’s gravitational constant can also be split into a
product of two G-Ms, viz.

G =
√

G M2

√
G
(

1
M2

)
=
√

/hc
(

G√
/hc

)
, (12)
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which shows the potential of mass M to couple to G, and thus influence gravitation. The
M2 term does that in the definition of the gravitational coupling constant (Section 2.2.2).
According to Equation (4), the first G-M reduces to e/

√
/ε0 =

√
/hc, and the second G-M

reduces to G(
√

/ε0/e) = G/
√

/hc, as shown in the second equality of Equation (12).

2.2. Dimensionless Units

We now come to the operations and properties of the unitless coupling constants
{αG,α/h}. We show how these units rectify the Planck system of units and make it functional
over all scales of the universe, including atomic and subatomic scales as well.

2.2.1. Fine-Structure Constant α/h

The fine-structure constant has been defined as

α/h =
e2

/ε0/hc
. (13)

Its value has been measured [27] to be very close to (137.036)−1 (or αh = (861.022576)−1

for the wiser choice h→ /h in the definition). Other than that, α/h brings no geometry and
no units into the system of units. In particular, the geometry embedded in the electric
field (and carried on by /ε0) has been inadvertently eliminated by the insertion of /h in the
modern definition (13).

Nevertheless, definition (13) provides a powerful tool (Section 2.2.3), which we have
not taken advantage of in the past: being a measurable constant, α/h may serve as the
reference UPS unit against which we can quantify all the other unitless coupling constants.
For instance, the gravitational coupling constant αG, which we describe next, acquires a
quantitative meaning by comparison to α/h in the ratio (αG/α/h); most importantly, /h and
its artificial dependence on geometry drop out of this comparative ratio, which is another
strong hint that /h should not have replaced h in Equation (13).

2.2.2. Gravitational Coupling Constant αG

Using G and the electron mass me, the gravitational coupling constant has been
defined as

αG =
Gm 2

e
/hc

. (14)

Its value is 1.7518× 10−45 (or αG = 2.7881× 10−46, the geometry-free value obtained for
h→ /h in the definition), as determined by calculation.

Comparing the definitions (13) and (14), we see that αG is, unfortunately, geometry-
dependent. This problem did not exist during Max Planck’s heydays, when h was in use
and /h did not exist. In general, the problem with the modern definitions of constants and
variables is that /h necessarily introduces 2-D geometry and a [rad] measure, in addition to
the intended physical constant h. We must pronounce this Dirac’s miscue [7,8].

The geometry dependence so artificially inserted in αG will be taken out entirely in the
calculations that follow. We must emphasize up front that reinstating the physical nature
of αG (and α/h) is necessary for the successful repair of the modern Planck system, and
it leads to the determination of natural scales of mass, length, and charge for the chosen
mass-to-charge ratio (me/e) of the electron (Section 2.2.3) or any other chosen particle for
that matter (see Note 10 for details).

2.2.3. Relative Strength of Gravitational Coupling βG

Leaving aside the descriptive [rad] unit in the above coupling constants, we come
now to the only known method of actively using such dimensionless (pure) numbers.
Being pure numbers, these constants have absolutely no meaning or practical use, but they
are useful in ratios, in which their strengths are compared against other dimensionless
constants; in such comparisons, these ratios acquire quantitative meaning, and then their
relative strengths are, for all practical purposes, measurements of the same stature and im-
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portance as dimensional quantities (which, incidentally, are also measured by comparisons
to international standards). One unitless coupling constant should, however, be included in
the system in absolute terms in order to provide the reference value for the comparisons 6.

For the UPS, we choose αh (let h→ /h in Equation (13); Ref. [28]) for this duty because
it has been measured by experiment [27], and its physical meaning has now become clear
(see Section 3.1 and Table A1 below): the factor

√
αh ' 1/30 is a fundamental scale used by

the Higgs field to couple to the bottom quark, and then on to all lower particle masses.
In this study, we assume that the coupling constants do not vary at the low energies

(<246.22 GeV; Ref. [29]) of the subatomic particles. Furthermore, we calculate the UPS unit

βG ≡
αG
α/h

=
/ε0Gm 2

e
e2 = 2.4006× 10−43 , (15)

a pure comparative number that is independent of /h and h (and c, for that matter—as
would be expected, the vacuum does not at all contribute to such ratios of forces). This
“measurement” of βG represents the strength of gravitational coupling relative to that of
the EM coupling obtained from electrons (see Note 10 for considering protons instead, and
constructing another UPS with different scales, but with the same elementary particles).

Compared to the relation between units shown in Equation (4), βG carries a lot more
weight because it can be used in quantitative calculations (although it was Equation (4) that
gave us a reason to define βG). The numerical value obtained in Equation (15) does not
tell us that gravity is weak and the EM force is strong 7; it only tells us about the relative
couplings of these forces in the particular system of units that includes βG as a building
block. Gravity is attractive and has always had a chance to grow past the other forces
in extraordinarily massive 8. settings (M � me)—something that is actively occurring
in many places in the present universe. In contrast, the Coulomb force cannot do the
same because its attraction brings together charges of opposite signs that cancel each other
out [30].

Furthermore, Equation (15) does not tell us that, in the distant past, gravity could have
been much stronger in the atomic world, and it got weaker going forward in time [8,9]
because of the expansion of the universe. The gravitational force has always been weak
in the atomic world because the characteristic atomic masses are too small (much smaller
than the Planck mass Mp = 3× 1019 GeV/c2). Therefore, instead of Dirac’s “large numbers
hypothesis”, a safer assumption is probably that the gravitational constant G does not vary
in time or that some meaningful physical reason must be found to the contrary rather than
relying on pure speculation [1,8,9].

2.3. Determining a New Atomic Mass Scale

Definitions (13) and (14) have both incorporated /h, thus the coupling constants have
been defined in the microcosm. Here, we use the above results to establish a new atomic
mass scale after correcting for the unintended insertion of planar geometry into the cou-
pling constants.

Looking at Equation (14), we see two problems that need to be addressed: (a) Despite
the apparent lack of units (not entirely true, since /h also carries radians), αG is not influenced
by EM coupling (there is no e in the definition, only mass me, and the two long-range forces
are not linked to one another, although they are in the real world). (b) The unfortunate use
of /h has had the unforeseen consequence of arbitrarily adding spurious geometry into the
dimensionless mix 9.

We can solve both problems by adopting Equation (15) to help us define a new atomic
mass scale MA in the UPS. The relative ratio βG carries both forces, and the composite
unit /h, which was not appropriate in the first place, has been eliminated (correcting thus a
century-old oversight). One unavoidable conclusion is that the geometry of the vacuum
(the /ε0) is still present in βG. This comes from the geometric dependence of the electric
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field, which will now overtly influence the new mass scale MA (see also Note 9 and
Section 5 below).

Based on these considerations, we return to Equation (14), and we rewrite this defini-
tion by making the following substitutions: βG → αG, h → /h, and MA → me. We find a
new equation, viz.

βG = GM 2
A /(hc) , (16)

in which both sides are dimensionless comparative ratios, and substituting for βG from
Equation (15), we obtain the new atomic mass scale

MA =
√

/ε0hc
(me

e

)
= 2.6730× 10−29 kg . (17)

We reiterate here the ingredients that form the physical basis for this mass: (i) the unitless
ratio βG in Equation (15) has no dependence on /h, or h, or c; (ii) the substitution h → /h
produces a truly unitless Equation (16); there are no loose radians in this equation, covertly
suppressed by SI conventional practices (although the descriptive unit “cycle” [11] has
indeed been suppressed in h, since it does not signify insertion of geometry); and (iii) the
ratio of electric charges e/

√
/ε0hc = 1/30 is the same deflation factor described above (e.g.,

in Note 8) and in Section 3.1 below.
It is quite interesting that only the ratio (me/e) of the characteristic parameters of the

electron ends up being a building block of the new mass scale MA. The reciprocal ratio,
i.e., e/me = 1.7588× 1011 C kg−1, was first measured by J. J. Thomson [31], years before the
electronic charge itself was finally measured by experiment (see also Section 4.2).

The presence of /ε0 (coupled to h, as shown in the Lie-type G-Ms given in Section 2.1.2)
in the new mass scale MA is necessary (the vacuum’s /ε0 is a building block of the electro-
static field); after some algebraic manipulations, we recast Equation (17) (or Equation (16))
to the equivalent form

MA =

√(
hc
G

)(
Egrav

Eelec

)
, (18)

where the comparative ratio of energies,

Egrav

Eelec
≡ βG ,

was determined from the corresponding forces acting between two interacting electrons 10.
In dimensional analysis, this ratio is 1 (see Equation (4) above), but here, βG plays an
important quantitative role: the unitless factor√

βG = 4.900× 10−22, (19)

scales the original Planck mass [5] (Mp =
√

hc/G = 5.4555× 10−8 kg) down to the atomic
world. This scaling is a significant result of our work, as it connects the original Planck
mass scale with the MA scale of the atomic world 11, viz.

MA = Mp
√

βG . (20)

We note that MA and Mp are mass scales related by this equation; as such, they do not
correspond to any actual particle or object in nature (see also Section 4.3).

We return now to the complete absence of Dirac’s /h from Equations (15)–(18). The only
geometric dependence entering these equations is that which is imposed by the vacuum
on the electrostatic field (hence, MA ∝

√
/ε0 ∝ 2

√
π). The

√
π does not carry angular units

since Eelec ∼ e2//ε0 ∼ [Joule] in Equation (18)—just like the 1/π in the Bohr radius and the
factor of 1/4 in the Rydberg energy (see the analysis following Equation (1) in Section 1.2).
Therefore, besides introducing the speed of light, the vacuum also manages to imprint MA

with a unitless, purely numerical constant 12 (see also Note 5).
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3. Results within the UPS Realm
3.1. Subatomic Masses

This new UPS mass scale (17) corresponds to a value of

MA = 15.0 MeV/c2, (21)

thus, it lands near the subatomic world of the low-mass up-and-down quarks, with corre-
sponding masses mu = 2.16 MeV/c2 and md = 4.67 MeV/c2 [32]; and it is smaller than the
G-M defined for the hydrogen atom

√
memp = 21.9 MeV/c2, (22)

where mp is the proton mass.
The new mass scale MA appears to be important for the Standard Model of particle

physics, and it should be investigated further theoretically (there is no elementary particle
corresponding to this energy). So far, we have derived the following empirical relations
(sufficient to lead us to a clear physical interpretation of Koide’s enigmatic constant and
other constants in the Standard Model; for details, see Appendix A):

(1) The mismatch between MA and √memp may be related to Koide’s K-constant
K = 2/3 [15], viz.

MA/
√

memp = 0.6850 , (23)

connecting thus the masses of leptons to the atomic constants MA and mp.
(2) Using the above values of first-generation quark masses and the mass of the strange

quark, ms = 93.4 MeV/c2 [32], we find that

√
mums/MA ' 0.95 , (24)

and √
mdms/

√
memp ' 0.95 , (25)

showing only a 5% deviation of both quark G-Ms from the two atomic mass constants.
The results indicate that the mass of the second-generation strange quark is connected
to both MA and the masses of the first-generation quarks. Thus, a connection should
exist for the charm quark too,13 and so on for the third generation of quarks as well.

(3) It certainly appears that there exists a ladder-type mechanism that uses G-Ms (and
some scaling coefficients) to relate various particle masses (see also Table A1 in
Appendix A below). Some examples (and their corresponding deviations from experi-
ment) are:

ms =
√

mdmτ (2.5%) , (26)

where mτ = 1.777 GeV/c2 is the tauon mass;

ms =
√

mumb (1.7%) ; (27)

mc =
√

mpmτ (1.7%) ; (28)

mc =
√

2mdmt (0.054%) , (29)

where mt = 172.5 GeV/c2 is the top quark mass;

mu =
√

2mdme (1.1%) ; (30)

mp =
√

2mµmb (0.17%) , (31)
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where mµ = 105.66 MeV/c2 is the muon mass;

mb =
√

mµmt (2.1%) ; (32)

and
MA =

√
mµmu (0.71%) , (33)

MA =
√√

memµ
√

memτ (0.80%) . (34)

(4) The Higgs boson (mH = 125.25 GeV/c2) is certainly special, although unavoidably a
part of the mass ladder. This is the only particle that is not involved in simple G-Ms
with the low-mass particles. Two of its complex relations are the following:

mb =
√

ms (mH/K) (0.21%) , (35)

where K = 2/3 [15]; and

mH

mb
= 30.0 ' MA

me
(2.0%) . (36)

This relation shows how the Higgs boson manages to assign mass to the much lower-
mass bottom quark by using a novel mechanism not related to a G-M or Koide’s scale
factor (see below).

(5) The vacuum expectation value (VEV) of the Higgs field is v = 246.22 GeV/c2 [29]. To
within a deviation of 1.8%, we find for the compact 14 triplet H-t-v that

mt =
√

mH v , (37)

which shows exactly where the most massive quark is located at the top of the mass
ladder. Furthermore, the Higgs mass is the G-M of the top quark mass and the mass
of the Z0 boson mZ0 = 91.1876 GeV/c2 (a deviation of only 0.13%), viz.

mH =
√

mt mZ0 . (38)

Obviously, the top quark receives its mass from the Higgs mechanism, and then it
participates in the G-Ms that define the masses of the other particles (see Table A1
in Appendix A). The high-mass geometric sequence Z0-H-t-v appears to be very
compact indeed (Note 14), and its common ratio is about 1.3815. We note that W±

(mass mW± = 80.377 GeV/c2) is not a member of this sequence since
mZ0 /mW± = K−1/4 ' 1.1116. This relation provides another definition of Koide’s K in
terms of the decay products of the Higgs boson (deviation 2.5%), viz.

K1/4 =
mW±

mZ0
≡ cos θw, (39)

where θw is the Weinberg angle [16,20] (deviation 2.8 degrees; see also Appendix A.3.1).
(6) On the other hand, the G-M of mH and mW± is 10% larger than mZ0 , but using

empirically Koide’s constant, we find that

mZ0 =
√(

K1/2 mH
)

mW± , (40)

an important relation with a deviation of the G-M from the measured mZ0 value of
only 0.57%. Furthermore, the relation mW± =

√
(K mH)mW± also appears to hold

(1.9% deviation), which then implies that

mW± = KmH . (41)
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This relation helps us understand the important role of the exact constant
K = 2/3 [15]: K is a numerical scale factor that relates some close pairs of parti-
cle masses. Here, the Higgs field connects to Z0 by an inverse-mapping G-M17, viz.

mZ0 =
√

m 3
H (1/v) ,

and to W± by the simple scale factor K, as seen in Equation (41). In hindsight, the
Higgs mechanism could not assign two different (but comparable) masses to Z0 and
W±, both by using G-M averages, so it used two different couplings involving K and
1/v, respectively.

(7) Returning now to Equation (35), we see the Higgs mass is scaled by 1/K to participate
in a G-M with ms and mb. Although we have only a limited view of the dynamics of
the Higgs mechanism in the above equations, it is apparent that this mechanism uses a
set of scaling rules in the various coupling factors that appear in the Lagrangians. The
origin of these scaling rules is unknown to us at this moment, but we feel confident
that we have made a step in the right direction with this analysis (see Appendix A.3
for calculations of the free parameters of the Standard Model of particle physics).

(8) The next and considerably more difficult step concerns the assignment of mass to
the bottom quark, whose mass is much lower than the Higgs mass and the masses
of its decay products. We were surprised to find yet another method being used by
the Higgs mechanism for this coupling (no G-M can reach down to mb because the
barrier set by the Higgs VEV is not too high): the only way that we could find for this
coupling was the deflation factor of 1/30, which we discuss below.

Notice the unitless factor of 30.0 in Equation (36). This equation suggests that the mass
scale MA and the electron mass me are related to the mass ratio mH/mb. However, me is
not a mass scale and MA is not a particle mass, so the proportion in Equation (36) involving
the ratio MA/me would be at least obscure if it were not for similar mass and charge
ratios presented in Note 8 and in item (iii) following Equation (17). Using Equation (59)
derived below and the equations in Section 2.3, we can rewrite proportion (36) in a physical
form, viz.

mb
mH

=
1

30
' √αh (2.2%) , (42)

where αh = (861.022576)−1 is given by Equation (13) after the corrective substitution h→ /h
that restores Planck’s constant h [5,6] in the definition of the fine-structure constant.

Thus, the mass of the bottom quark mb, which is 30 times lower than mH, is determined
self-consistently from this scaling equation by effectively using the ratio of scales Mp/MA

in the intermediate steps and the Planckian fine-structure constant 18 αh = e2/(/ε0hc) in
the final step. This is the third method employed by the Higgs boson to couple with
other particles. In particular, it uses this

√
αh ' 1/30 scaling to get down to the bottom

quark and, then, into the regime of the lower particle masses (see Table A1 below). If
the mb coupling also involves the W− boson (which carries Koide’s scale factor K) to
deliver charge to the bottom quark, then Equations (41) and (42) combine to show that
mb = (mW−)(

√
αh/K) ' 0.05(mW−). The physical significance of Koide’s scale for the

high-mass quarks (c, b, t) and the vector bosons is discussed in detail in Appendix A.2.

3.2. The Planck Charge

The Planck charge qp is a prime example of the state of confusion in the field: not
understanding the meddling of geometry in the modern Planck units, people adopted
different definitions of qp by arbitrarily choosing between /ε0 and ε0 and between /h and h.
In the end, this unit, along with the Planck units of magnetic flux [/h/(/ε0c)]1/2 and ohmic
resistance (/ε0c)−1, fell out of favor 19.



Astronomy 2023, 2 247

Now, we know better. The definition of the Planck charge qp must be geometry-
free, viz.

qp ≡
√

/ε0/hc =
√

2ε0hc . (43)

Absence of geometry is required, first because this is a unit of charge, and second because
qp provides an alternative definition of the fine-structure constant (which is geometry-
independent in its current definition (13)), viz.

α/h =

(
e

qp

)2
. (44)

We find that qp = 1.8755× 10−18 C = 11.7062e (where 11.7062 =
√

137.036). Once again,
nature shows us here her principle of fairness (or impartiality). As in the case of the electron
mass me, the elementary charge e here is not related to the fundamental unit of charge qp
by a rational numerical factor; instead, qp is chosen as the UPS scale of charge, a scale that
does not correspond to a charge multiple of any specific particle or field.

3.3. A New Atomic Length Scale

Equation (1) can help us determine a new length scale for the UPS, a scale that certainly
does not correspond to any of the three atomic radii in Equation (1); based on nature’s
apparent principle of fairness, we understand that none of the known electronic radii can be
the fundamental unit of length. We know that scale values generally fall between particle
values and vice versa. To proceed, we use the G-M of re and rc to determine a new atomic
length scale, LA

20.
The G-M of re and rc gives

LA = rc
√
α/h =

√
/h

/ε0c3

(
e

me

)
, (45)

and LA = 3.2987× 10−14 m = rc/11.7062. The numerical value 11.7062 is the same as that
found for the ratio qp/e (Equation (44)) because

α/h = (LA/rc)
2, (46)

and then the following proportion (cross-multiplied) holds exactly:

LAqp = rc e . (47)

This relation implies that the G-M of the new scales LA and qp is equal to the G-M of the
traditional and widely-used electronic constants rc and e, and it brings to light a previously
unused combination of units with dimensions of [length][charge]. These dimensions are
equivalent to

[momentum flux]
[magnetic flux]

=
[momentum]

[magnetic field]
=

[energy]
[electric field]

;

these interesting units compare mass flows (“matter waves”) to EM waves (“energy flows”)
and energy/momentum to EM field components. These quotients also indicate a close
correspondence between the relativistic energy-momentum (E-p) equation

E = c p , (48)

and Maxwell’s EM amplitudes (E0, B0; [36]) relation

E0 = cB0 . (49)
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The above dimensional ratios of units are obtained easily by dividing these two equations.
We see then that B0 (current flow) is to EM waves what momentum p (mass flow) is to
dynamics, and similarly for amplitude E0 and energy E.

Length LA is much larger than the modern Planck length Lp =
√

/hG/c3 = 1.6163×
10−35 m. (The modern definition of Lp must be used here because rc in Equation (45)
brought its 2-D geometry into LA, and α/h is accidentally geometry-free.) In this case, LA
must be scaled down to produce Lp; thus, we find that Lp = LA

√
βG. This scaling-down of

LA should be contrasted to the scaling-up of MA to produce the original Planck mass Mp
(i.e., Mp = MA/

√
βG; see Section 2.3).

3.4. Cosmological Scales and Some Ambivalent Superatomic Particles

In Sections 2.3 and 3.3 above, we rescaled the fundamental scales of the UPS to obtain
the corresponding Planck scales. These “A” and “p” values do not describe any specific
particle or object in the universe. Now, we can extend both scales into the macrocosm by
running the G-Ms toward larger masses and lengths.

(a) Cosmological Mass Scales. We evaluate a geometric progression that starts with
scales MA and Mp and moves on to larger mass scales:

{MB, MC, MD} = {1.113× 1014, 2.271× 1035, 4.633× 1056} kg. (50)

Mass scale MD is 2–3 orders of magnitude larger than the current estimates of the mass of
the universe [1], so we can halt the sequence at MD. The common ratio of the geometric
progression is Mp/MA = 1/

√
βG = 2.041× 1021. The G-M of MB and MC is equal to

0.84 earth masses, and the G-M of MC and MD is 5× 1015 solar masses, which identifies
universal structures much larger than individual galaxies (e.g., galaxy clusters).

(b) Cosmological Length Scales.—We evaluate a geometric progression that starts with
scales Lp and LA and moves on to longer length scales:

{LB, LC} = {6.730× 107, 1.373× 1029}m. (51)

Length scale LC is 2–3 orders of magnitude larger than the current estimates of the size of
the universe [1], so we can halt the sequence at LC. The common ratio of this geometric
progression is LA/Lp = 1/

√
βG = 2.041× 1021, the same as the common mass ratio given

in item (a) above. The G-M of LB and LC is equal to 98.5 parsecs, a value typical of giant
molecular cloud complexes in spiral galaxies.

(c) Cosmic Microwave Background (CMB). We convert the temperature of the CMB,
TCMB = 2.7255 K, to an equivalent mass, mCMB = 3.52× 10−10 MeV/c2 (see also Ref. [37]).
Since mCMB � MA, we need to extend the geometric progression of mass scales to much
lower masses as well. At the low-mass end of the geometric sequence {M0, MA, Mp},
the tiny mass scale M0 is found to be M0 = 7.35 × 10−21 MeV/c2. Furthermore, the
G-M relation

mCMB =
√

M0MA , (52)

holds to within a 5.7% deviation between the two sides. This deviation is relatively small,
given the enormous difference in scales (by 21.3 orders of magnitude) involved on the
right-hand side of Equation (52).

(d) A Superatomic Particle Near the Planck Mass? The equivalent mass of the CMB
photons is so low that, by extending the geometric sequence of {mCMBandmH} to higher
masses, we obtain a potential particle mass of MS = m 2

H /mCMB = 4.453× 1016 GeV/c2 '
1.455× 10−3Mp, which is at the scales where the strong force supposedly joins in with
the other forces [38]. Since the Higgs mass is mH = 125.25 GeV/c2, then the energy ratio√
βW (analogous to

√
βG in Section 2.3) that scales the strong interaction down to the weak

interaction is √
βW =

√
EW

ES
=

√
mH

MS
= 5.30× 10−8. (53)
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This value is smaller by a factor of 20 compared with the usually quoted coupling constant
ratio of the weak to the strong interaction. One reason is that the quoted estimates of
this ratio in particle physics depend on microphysics [38]; these values are not really
constants since they show a secular dependence on particle energy [39,40]. In any case, it
is doubtful that the Higgs field can assign masses above its VEV of 246.22 GeV/c2 [41]; a
phase transition from the Higgs VEV up to the mass m = 1018 GeV/c2 (Note 8) may be
necessary, in which case there would be no particles in this mass range.

(e) Sub-TeV Particles? In the atomic world, the Higgs VEV appears to be a barrier
against growing more massive nuclei and particles 21. Nevertheless, researchers are search-
ing the TeV scales in hopes of discovering such particles [43]. If there is a way to jump
across the Higgs VEV (which we do not currently see; see also Ref. [41]), then the next
few particle slots generated by the high-mass geometric progression Z0-H-t-v. . . will have
rest-mass energies of 0.351, 0.502, 0.716, and 1.022 TeV.

4. Discussion
4.1. Pairs of Fundamental Dimensional Units

Equation (46) shows that two lengths are needed to produce the fine-structure constant
α/h in any system of units: the fundamental scale LA and a Compton-type scale such as rc.
This subsidiary scale cannot be defined by using the fundamental mass scale (then, one
gets α/h = 1). Therefore, Equation (46) defines rc independently of mass MA. In our case,
this definition is obtained easier from Equation (47): rc = LA(qp/e). Using the definition of
the fine-structure constant is an integral part of the above derivation of rc, and this example
justifies our statement that all systems besides the UPS are incomplete, missing at least
the unitless coupling constants, and thus incapable of describing all scales and forces in
the universe.

Next, we consider Planck’s original set of dimensional units {c, G, h}, with h in place
of /h to avoid misunderstandings from the introduction of geometry into the units. The
speed of light barrier is applicable to all systems of units, but h is not fundamental in the
cosmological system and G is not fundamental in the atomic system for “obvious” (now
obviously wrong) reasons: “negligibly weak influences should not be building blocks at
the core of a system.” We believe that all three constants are necessary building blocks and
that the vacuum-force pairs {c, G} and {c, h} serve two different complementary functions
within the UPS:

(a) The pair of constants {c, G} with its universal unit of force 22. F0 = c4/G, and
the corresponding unit imprint of the famous Tully-Fisher/Faber-Jackson relation [17,18]
c4 = GMa0 (where F0 = Ma0; [2–4]) was analyzed previously [1] within the cosmological
system of units. (We discuss the universality of this relation in Appendix B.) Combined
with Newton’s G, powers of c define units whose purpose is to monitor the effectiveness
of forces F in producing motion (speed V). Some of these units are very well-known:
c2/G ∼ F/V2 = M/RS, c3/G ∼ F/V = Zm, c4/G ∼ F, and c5/G ∼ FV = P. Here, M is
mass, RS is (Schwarzschild) radius, Zm is mechanical impedance, and P is power.

(b) With the notable exceptions of
√

h(ε0c) ∼ q (charge) and its Lie-type inversion√
h/(ε0c) ∼ ΦB (magnetic flux) (Section 2.1.2), the pair of constants {c, h} can only generate

composite units, which cannot be viewed as fundamental units in the physical world,
although these units do afford some interesting symmetries. For instance, examine the
sequence of units hc → [E][L], h → [E][T], h/c → [M][L], and h/c2 → [M][T], before
the next powers of c generate some lower-level subsidiary units, e.g., h/c3 → [M][a]−1.
Combining powers of c with Planck’s h, these units are designed to monitor the action
integral S (i.e., energy integrated over time) during motion, although they are not as well-
known: h/c3 ∼ S/V3, h/c2 ∼ S/V2, h/c ∼ S/V, h ∼ S , and hc ∼ SV. Since action S
determines both speed V and acceleration a, this sequence of units can also be interpreted
as: h/c3 ∼ (E/V2)/a = M/a, h/c2 ∼ (E/V)/a = p/a, h/c ∼ E/a, h ∼ (EV)/a, and
hc ∼ (EV2)/a, where E represents energy and p represents momentum.
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The above symmetries are naturally propagated to derivative units. As a typical
case, we discuss the sequence of composite units M/Tn (for integer n) generated by the
widely-used pair of units of mass and time {M, T}, because this sequence holds some
surprises. These units apparently measure resistive properties in the material world:

M/T ∼ F/(L/T) = Zm [mechanical impedance]
M/T2∼ F/L = Sm [mechanical stiffness]
M/T3∼ F/(LT) = σP [power][area]−1

, (54)

where L represents length and subscript P represents power. It is surprising that the unit
M/T (of the ubiquitous “mdot” in accretion physics) turns out to be a resistive property
of inflowing matter. It is also quite surprising that the “power surface density” σP is a
member of this sequence of units that describe the various types of mechanical resistance.
In Appendix B, we find that power surface density is a universal dynamical quantity,
although it appears prominently only in the Stefan–Boltzmann law [44,45]. Its resistive
character becomes apparent when we rewrite it in terms of force F and moment of inertia
I, viz.

σP = F2/(I/T) , (55)

where (I/T) represents resistance due to the rate of change of the moment of inertia. In
this equation, we recognize the importance of the force squared F2 in σP ∼ M/T3. Coming
full circle to expressing the resistances in terms of F2, we find for the impedance and
the stiffness that Zm = F2/P and Sm = F2/E, respectively, where E represents energy.
Therefore, the magnitude of F2 appears to be regulated by power in impedance, by energy
in stiffness, and by inertial changes in power surface density.

Furthermore, the inertial magnitude itself appears in the next term of the sequence (54),
i.e., M/T4 ∼ F2/I, and the integrated quantity (IT) appears next in M/T5 ∼ F2/(IT).
Obviously, then, the units of the sequence M/Tn describe resistive properties in which
F2 is regulated by the temporal variations of inertia according to the formula M/Tn =

F2/(I/T4−n)23.

4.2. The Varied Contributions of the Vacuum

The free space known as the vacuum is described by four interdependent constants
(ε0, µ0, c = 1/

√
ε0µ0, Z0 =

√
µ0/ε0). When the vacuum wishes to also affix geometry in

some parts of the natural world, then it introduces either /ε0 ≡ 4πε0 or /µ0 ≡ µ0/(4π) or
both, provided they are not introduced in a product (there is no geometry in /ε0/µ0 = 1/c2).

From the nongeometric vacuum quantities ε0 and µ0, only two additional purely
physical quantities can be constructed by simple G-Ms: the speed of light c and the
impedance of free space Z0 (Section 2.1.1). They both represent upper limits 24 in nature,
the only known upper limits communicated by the vacuum to all scales and in all directions
within the universe. Their origin is the least (but nonzero) resistance that the vacuum
mounts passively against all motions in the material world (see also Section 5 below).

Next, we wish to track down the geometry that is affixed selectively by the vacuum,
so we rewrite the fundamental G-Ms discussed in Section 2.1.1 as follows:√

/ε −1
0 /µ−1

0 = c , (56)

and √√√√/ε −1
0

(
1

/µ−1
0

)
=

Z0

4π
. (57)

The G-M (56) is clearly geometry-free, whereas G-M (57) attaches the 4π of 3-D space to
the geometry-free impedance of free space Z0. This is an important conclusion: when
/ε −1

0 or /µ−1
0 appear in equations, or they both appear in a combination other than their

product (56), then they carry 3-D geometry with them. These composite vacuum constants
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show us how free space manages to interfere in the construction and evolution of additional
(ready-to-interact with one another) physical entities, such as mass and electric charge, that
characterise the underlying force fields.

We emphasize here that mass and charge are not actually fundamental quantities, as is
widely believed; they can only be derived and clearly understood if the contributions of the
vacuum and the unitless coupling constants are also taken into account. We demonstrate
this point here, with exact calculations:

(a) Consider, first, Equation (13). Solving for the charge e, we obtain a scaled-down
G-M relation of the form

e = α 1/2
/h

√
h(2ε0c) = α 1/2

/h qp . (58)

Therefore, Planck’s physical constant h and the vacuum’s combination of (2ε0c) determine
e as a geometry-free, G-M quantity. From this point of view, we can also see how dimen-
sionless constants resize properties of the material world: this G-M is scaled down by the
geometry-free factor α 1/2

/h ' 1/
√

137 ' 1/11.7062 (see also Section 3.2).
(b) Consider, next, Equation (14). Solving for the mass me, we obtain a G-M relation of

the form

me =
(αG

2π

) 1/2
√(

h
G

)
c =

(αG
2π

) 1/2
Mp . (59)

In this case, me is determined by the G-M of the composite physical constant h/G and
the vacuum’s c. (G participates because a mass is determined here.) The G-M is scaled
down by a factor of [αG/(2π)]1/2 = 1.670× 10−23 relative to Mp. Due to the inclusion of
2π, this factor is geometry-free, and so is me (since the original Planck mass Mp is also
geometry-free).

(c) By dividing Equations (58) and (59) and neglecting for the moment the dimension-
less, geometry-free factor (4π/βG)

1/2 = 7.235× 1021, we obtain a geometry-independent
G-M for the electron’s charge-to-mass ratio, viz.

e
me

∝
√

ε0G . (60)

Thus, the ratio e/me is determined by the G-M of the nongeometric constants ε0 and G (vac-
uum and gravity, respectively), and the neglected scale factor carries the relative strength
of the two unitless coupling constants (

√
4π/βG =

√
4πα/h /αG) with the geometry due to

the electrostatic field eliminated by the 4π term.

4.3. Geometric-Mean Averaging and Particle-Mass Deflation in Nature

We think we understand why virtually all pairs of constants and units (U1, U2) combine
in G-Ms25, involving the direct form U1U2 or the inversion form U1U−1

2 (or U−1
1 U2).

Physically, two basic (lowest-power) G-M quantities can be derived from each pair of units.
Mathematically, these two operations result in mappings that are always “smooth” since
they involve constants; thus, the units of a system of units always form a Lie group [13],
and the associated Lie algebra can be carried out with ease.

One remaining question is why there are also square roots on top of the basic unit
combinations, thus establishing G-Ms. We fall back to what is already known about G-
Ms: compared with the commonly-used arithmetic means, G-Ms place significantly more
weight on the smaller of the two values. Thus, the most obvious property of the geometric

averages
√

U1U±1
2 is that they help smaller physical constants leave their indelible marks

when they combine with larger constants. In a sense, by not letting small constants
become negligible (or dominant) in combinations with large constants 26, nature seems
to subscribe to a principle of fairness or impartiality at all scales of the universe. The
degree of support for the small constants can be quite dramatic for much differing scales, as
Equations (15) and (19) vividly demonstrate: the G-M

√
βG gains 21.3 orders of magnitude
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relative to the pure ratio βG in connecting the Planck scale with the atomic world. Current
thinking, on the other hand, seems to be at ease with the assumption that both βG and

√
βG

are practically zero on atomic scales. Comparing the two practices, we must now realize
that nature is telling us that our assumption is wrong 27.

Consider next the subatomic particles discussed in Section 3.1. Nature did not make a
particle in each individual G-M slot. The mass spectrum is mostly empty, and only a few
actual particles have materialized on the subatomic scales of the universe [38]. Therefore,
there are additional selection criteria (scaling rules) on top of the G-Ms that regulate the
creation of particles. Besides the factors of 2 and

√
2 in the equations of Section 3.1, we have

seen that the Higgs boson does not rely on pure G-Ms to reach down to lower masses; it uses,
in addition, two different scale factors, Koide’s K = 2/3 and

√
αh ' 1/30 (Equation (42)),

to bypass many available particle slots (see also Table A1 below). In particular, the dramatic
drop by 121 GeV/c2 from the Higgs mass to the mass of the bottom quark can only be
described as a deflation of particle mass that bypasses 10 G-M particle slots intervening
between mZ0 and mb. In Appendix A.3, the deflation factor of 1/30 is identified with the
coupling constant of the weak interactions, αw = g2/(4π), where g = 0.653 is the weak
isospin g-factor [38].

5. Lingering Issues, Future Prospects, and a Brief Summary

The UPS was summarized in Equation (3). The system is not flawless yet, and several
issues must be investigated and resolved in the future (see, e.g., Note 28). These issues can
be traced to Dirac’s introduction of /h = h/(2π) in place of Planck’s h.

It is certainly true that in quantum mechanics, Dirac’s composite constant h/(2π)
always appears in form, and this also prompted Schrödinger [11,19] to absorb the 2π into
a convenient new constant K. This tactic tells us that Schrödinger was not aware that he
was including geometry in his constant K. Dirac [7–9], on the other hand, believed that
/h = K is the true constant (not h), so we can guess that he sensed that the two constants are
fundamentally different in their makeup (see Section 1.2 for more details).

Dirac’s reform has modified quite substantially the systems of units that have adopted
/h, but this modification came with a heavy price. Planck’s purely physical constant h cannot
be dropped so nimbly because then we introduce errors in the definitions of the coupling
constants. Dimensionless coupling constants should not include geometric dependencies
other than /ε0 or /µ0 (and these enter only via EM terms); geometry would give the constants
an additional descriptive unit of [rad] and it would alter their nature. On the dimensional
side of vacuum-asserted units, c and Z0 (Section 4.2) are also geometry-free constants for a
good reason: they represent upper limits set by the vacuum to be applicable in any direction
of space, irrespective of the dimensionality of space.

We note another issue concerning /h: In the dimensional part of the UPS, the constant
/h is the only fundamental dimensional unit that introduces geometry in the physical units.
This is an unusual and singular property. Although we were inclined to adopt Planck’s h
in place of /h, we did not do so because we did not know how to choose between the two
constants. It seems from the calculations above that the use of h in the definitions of scales
(Planck units, coupling constants) is mandatory, but then /h may be more appropriate to be
retained for particles and fields, as Dirac [7–9] also thought. Perhaps both constants should
be retained in a modified UPS, along with αh and βG (see the UPS as described in Note 28).

Examining now the definitions of the dimensionless units that we summarized in
Section 2.2 (Equations (13) and (14)), we see that α/h is indeed geometry-free (/ε0/h = 2ε0h),
but αG is not (αG ∝ 1//h ∝ 2π). We think this is an enormous oversight flying undercover,
at least since Dirac [8] introduced his “large numbers hypothesis”; and it has prevented
physicists from defining an atomic mass scale in the modern Planck system, thus creating
an insurmountable obstacle to force unification. The state of confusion can best be seen
in the widespread misconception “that G carries units into the action of general relativity,
thus gravity is not like the other forces of nature”, taught to thousands upon thousands
of physics students for nearly a century. We now understand that gravity is just like the
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other forces, and it enters the “ring” with one dimensionless (αG) and one dimensional (G)
constant, just as the EM forces and the short-range forces do too.

Owing to the omnidirectional nature of the gravitational force, both of its constants
should be geometry-free. For this reason, we tried to bypass the problem with the
definition (14) of αG (it effectively carries a descriptive unit of [rad], thus it cannot be
utilized) and to define new consistent atomic units within the UPS. First, we created a
dimensionless ratio βG = αG/α/h of the coupling constants that describes their relative
strength; the /h does not partake in this ratio, and the only geometric influence left comes
from the EM field. However, this does not affect the makeup of the relative strength βG,
since βG is expressed as a ratio of energies 28.

Next, we created a dimensionless geometry-free combination of fundamental units to
attach to βG, viz.

βG = GM 2
A /(hc) =

(
MA/Mp

)2 ,

where Mp is the mass scale of the original Planck [5] system of units. Finally, the new
atomic mass scale MA was derived from the known values of βG and Mp, viz.

MA = Mp
√

βG .

The interpretation of this relation is straightforward: the ratio of the two widely different
mass scales MA/Mp = 4.9× 10−22 is precisely equal to the square root of the relative ratio
of the two coupling constants βG = αG/α/h = 2.4× 10−43.

In Section 3, we tested the influence of this mass scale in the atomic and subatomic
worlds, and the results appear to be strong. The mass constant MA has no trouble meddling
in the G-Ms (Section 3.1) along with particle (sub)atomic masses that have been measured
by experiment [23,32]; but see also Note 10 for UPS′, an alternative system of units based
on the proton’s parameters. We worked out elements of UPS′ to show that it does not
matter which particle is chosen in the definitions of the various scale factors. In the process,
we also clarified the confusion surrounding the so-called Planck charge (Section 3.2), and
we also derived a new atomic length scale that had no trouble meshing in G-M calculations
with the already-known atomic radii (Sections 1.2 and 3.3).

In Sections 3.1 and 3.4, we calculated both mass scales and actual particle masses at
practically all scales of the universe. The Higgs mechanism uses a multitude of scalings
and couplings to distribute masses to (sub)atomic particles. This diversity of methods is, in
part, responsible for hindering progress in the effort to unify the four fundamental forces
of nature. The other part concerns the role of the vacuum (Sections 2.1.1 and 4.2). The
behavior of the vacuum is not at all what our books describe (e.g., [20,33,38]). As far as we
can see, the vacuum is not subject to forcing of any kind, and it seems to be impervious
to quantum fluctuations, which occur exclusively in fields. By and large, the vacuum
appears to be a passive, independent entity with no intrinsic properties of its own that
imposes implicitly certain rules (by resisting) on the material world that all inhabitants
must necessarily observe and obey (to within the bounds of the uncertainty principle, of
course; see also Appendix B.2). In these circumstances, there is no back reaction from the
material world on to the vacuum itself. In hindsight, this conclusion makes sense—how
can anything tangible manage to tangle up that which is the epitome of nothingness?

6. Highlights
6.1. Conclusions

(1) Current systems of units are incomplete and incapable of describing all aspects of this
universe. They do not include some of the fundamental dimensional constants, the
dimensionless coupling constants, and all the restrictions installed by the vacuum
itself on the material world.

(2) Each force of nature must be represented in a system of units with a dimensional
and a dimensionless coupling constant. If Planck’s h is dropped, then the system
cannot measure quantities related to quantum phenomena. If Newton’s G is dropped,
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then the system does not include gravity. The vacuum also comes in with any two
of its four interdependent constants {c, Z0, ε0, µ0}, and it inserts a stamp of the 3-D
geometry of space to the electric charge (the 4π term in e2//ε0), but not to the mass.

(3a) The fine-structure constant αh = (861.022576)−1, not multiplied by 2π, is the only
coupling constant that must be included in absolute terms. It has been measured
by experiment, and it provides the scale factor

√
αh ' 1/30 used by the Higgs

mechanism to deflate and couple to the bottom quark, and then to reach down to
all the other lower-mass particles (Table A1 below). Furthermore, the Higgs mass
is apparently related to the masses of vector bosons, quarks, and leptons by G-M
averaging and Koide’s scale of 2/3 in various incarnations. The above scales should
be present in the coupling constants of the various fields (see Appendix A.3).

(3b) All other unitless constants must be included in relative terms because only ratios of
coupling constants have physical meaning—such ratios provide relative strengths,
just like the ratios of dimensional quantities do too.

(3c) The modern definitions of the unitless coupling constants are incorrect because /h was
used instead of Planck’s physical constant h. Dirac’s /h is a composite constant that
also carries planar 2-D geometry and a descriptive unit of [rad]−1; the 2π term in /h
has inadvertently reversed the influence of geometry on the coupling constants.

(4) The vacuum is a passive entity impervious to forcing of any kind by the material
world. By providing the least (but nonzero) resistance to all motions that occur in its
domain, the vacuum installs upper limits on the material world (c and Z0 in nearly
perfect dielectrics), which must then be included in systems of units as well. These
two geometry-free constants also bring the composite constants 4πε0 and µ0/(4π)
with them, in which the influence of 3-D geometry (the 4π term) is apparent. (Here,
the vacuum’s ε0 and µ0 are both lower limits.) In unit combinations, such as 4πε0/h
and µ0/(4π/h), geometry inadvertently cancels out, leaving behind unitless numerical
imprints in the equations (see the three atomic radii in Section 1.2).

(5a) There exists a new atomic mass scale MA = 15.0 MeV/c2 that can be determined
by deflating the original Planck mass Mp by

√
βG = 4.900× 10−22, where βG is the

relative ratio of the coupling constants of gravity and fine structure. Of course, in our
expanding universe, the event took place in reverse (MA/

√
βG → Mp). This inflation

of scale accounted for 21.3 orders of magnitude in mass and explains how the Planck
scale is connected to the atomic world. (At the same time, the atomic scale of length
was deflated by the same factor to produce the tiny Planck length.)

(5b) No (sub)atomic particle is found to occupy a scale value, and the measured masses in
the atomic world are connected mostly by G-M averaging. By using G-M averaging,
nature (a) remains impartial to designating any particle as being more significant than
any other, and (b) assigns more weight to the smaller participant in the G-M, thereby
assisting smaller entities in leaving their marks on the universe.

(5c) We can relate characteristic atomic constants (charge e, mass me, the G-M √memp, the
Compton radius rc) to scale values (qp, Mp, MA, LA, respectively), but this is not how
these physical entities were created; they were created by the Higgs scalings (1/30
and 2/3) and by G-M averaging of other nearby physical entities.

(6) Leptons, quarks, and bosons get their masses from the Higgs field. The boson-quark-
lepton mass ladder is shown in Table A1 below. How the Higgs field acquires its
mass mH and its vacuum expectation value v remains a mystery; the only hints in
the known masses [32] are that mH ' v/2 (to within a deviation of 1.7%) and the
G-M mt =

√
mH v (Equation (37), deviation 1.8%). The EM fine-structure constant

αh ought to play a prominent role as well: in Appendix A.3, we find that it is likely
related to the coupling constant of weak interaction αw, viz. αw =

√
αh ' 1/30.

(7) Koide’s lepton constant K = 2/3 is one of the scaling constants used by the Higgs
field and its decay products in couplings to other particles. We derived it from the first
principles in Appendix A, and the same value is also applicable to the heavy quark
triplet c-b-t. We also derived two additional Koide-type constants: J = 4/7 (for the
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light quark triplet u-d-s) and B = 0.336 (for the vector bosons W±-Z0-H). Constant B
is barely 0.8% larger than the absolute minimum value of 1/3 that occurs for three
equal masses.

(8) In Appendix B, we pointed out four instances of a universal law that has the gen-
eral form

(a surface density) ∝ (a kinetic scalar quantity)4 ,

in which the power of 4 is the sum of the 3 spatial degrees of freedom and 1 additional
degree of freedom for the scale of the underlying scalar quantity. The three types
of surface density involved describe force F, power P, and moment of inertia I, all
divided by surface area A. Pressure F/A appears in the Higgs field and the Casimir
effect; intensity P/A appears in the Stefan–Boltzmann law; and mass I/A appears
in the Tully–Fisher/Faber–Jackson relation in spiral/elliptical galaxies. It certainly
appears that the dynamics of the present universe are driven by the surface densities
of various fundamental quantities (see also Appendix B.2).

6.2. Critical Questions and Answers

(Q1) How does Planck mass relate to the atomic world?
—The atomic mass scale MA = 15 MeV/c2 inflates precisely to the Planck mass, i.e.,
MA/

√
βG → Mp, where ratio

√
βG = 4.900× 10−22 is a comparative dimensionless

quantity (i.e., the ratio of two dimensionless constants).
(Q2) What is the physical meaning of the number 137?

Number 137 = 861/(2π), where the 2π is a geometric term carrying the descriptive
unit of radian [11]; so, 137 is a composite constant, and this is the reason that we
did not figure out its physical significance in the past 100 years. The actual physical
constant is 861, and the scale factor

√
861 ' 30 is used by the Higgs boson to assign

masses dynamically to much lighter particles, starting with the bottom quark and
moving on down the mass ladder (Table A1). Thus, the “deflation scale”

√
αh = 1/30

(or weak coupling constant αw) should appear in the Higgs couplings of the lower-
mass particles.

(Q3) What is the physical meaning of Koide’s constant?
Koide’s K = 2/3 is another scale factor used in the Higgs couplings to assign masses
to lighter vector bosons (the particles W±and Z0). Koide’s formula holds exactly for
the leptons e-µ-τ and for the heavy quarks c-b-t (corresponding proofs are given in
Appendix A.2).

(Q4) How does the top quark get its mass?
The top quark mass is the geometric mean of the Higgs mass and the Higgs vacuum
expectation value v = 246.22 GeV/c2, so that mt =

√
mHv to within a deviation of

1.8% from the experimentally measured mt value [32].
(Q5) How do Higgs vector bosons get their masses?

By two different mechanisms (couplings): In the ordered compact high-mass triplet,
Z0-H-t, the Higgs mass is the geometric mean of the Z0 mass and the top quark
mass, viz. mZ0 = m 2

H /mt. In contrast, the W± coupling involves Koide’s scale since
W± = KmH, where K = 2/3.

(Q6) How does the bottom quark get its mass?
By a third coupling mechanism: The Higgs mass is scaled down by the weak coupling
constant αw = 1/30, so that mb = mH/30. We have tried empirically several other
scalings and G-Ms, but none of these patterns approached the experimental value of
mb, which is much lower than mH (the rest-energy gap is 121 GeV; Table A1). The
assignment of mass to the bottom quark is becoming a major issue to resolve in the
future by any theory that purports to describe mass assignments to lower-mass quarks.

(Q7) Is Dirac’s /h, rather than Planck’s h, the true universal constant?
They both are, but h is a pure physical constant, whereas /h = h/(2π) is composite
and includes also the 2-D geometric term 2π and the descriptive unit of [rad]. Due
to this geometric content, a miscue was committed in the post-Planckian era when
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/h was adopted for the modern definitions of the fine-structure constant α/h and the
gravitational coupling constant αG: the 3-D geometry of the electric field in α/h was
eliminated, and αG acquired 2-D geometry against its generic 3-D nature.
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Appendix A. Physical Meaning of Koide’s Lepton Constant and Similar Constants

Koide’s constant of 2/3 involves the three lepton masses, and it is a puzzle in particle
physics [15]. This constant is not a mere numerical coincidence; it is a fundamental scale
that the Higgs boson uses to create the W± bosons, and then it is propagated to lower quark
masses according to the empirical relations given in Section 3.1 (and in Table A1 below).

Koide’s constant is defined for the three leptons e-µ-τ as

(me + mµ + mτ)/
(√

me +
√

mµ +
√

mτ

)2 ≡ 2/3 . (A1)

Mathematically, this relation is equivalent to an equation involving arithmetic means and
G-Ms of paired quantities, viz.

f ≡ (me + mµ + mτ)/
(√

memµ +
√

memτ +
√

mµmτ

)
= 4 , (A2)

where the numerator should be viewed as the triple sum of arithmetic means of paired
quantities, viz.

me + mµ + mτ =
1
2
(me + mµ) +

1
2
(me + mτ) +

1
2
(mµ + mτ) .

Equation (A2) reveals a special relationship between the three arithmetic means in
the numerator and the three G-Ms in the denominator: the ratio of their averages f
must be equal to 4; then, Equation (A1) is an identity, as Koide [15] discovered. This
special relationship is recovered from the equations in Section 3.1. We carried out several
reductions 29 by evaluating lower masses starting from the Higgs mass and the masses
of mW± , mZ0 , and mt. The endpoint is a pair of inversion G-M relations between lepton
masses, viz. √

mµ/me = 22K , (A3)
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and √
mτ/me = 40K−1 . (A4)

Their product is independent of K, and its value (880) carries an error of 4% as compared
with the experimental value of 848. The coefficients in these ratios were rounded off to
obtain a 2% accuracy in each individual ratio (not rounded; the coefficient in Equation (A4)
has a deviation of 5%, sufficiently large to produce a higher K-value of 0.70). Naturally, the
coefficients in Equations (A3) and (A4) are approximations to the factors 21 and 41, where
21× 41 = 861. Thus, the deviations in the experimental product (848) and in the theoretical
product (880) from 861 are −1.5% and +2.2%, respectively. These comparisons validate
Equations (A3) and (A4) and point to their physical significance; analogous equations
cannot be written for Dirac’s /h-based model because 137 is a prime number.

Substituting the above ratios into Equation (A2), we find a fourth-order polynomial
equation of the form

484K4 − 88K3 − 3519K2 − 160K + 1600 = 0 , (A5)

The solutions of the fourth-order equation can be obtained analytically, and they are all
real. The two positive roots are

K1 = 0.66641 and K2 = 2.7283 . (A6)

Root K1 is Koide’s constant; it determines the lepton mass ratios, and they, in turn, satisfy
Equation (A1) to within an error of 0.04% (Koide’s K = 2/3 is an extremely robust physical
constant, as experimenters have discovered).

Root K2 is rejected based on the experimental results. Substituting K2 into the equations
of the lepton mass ratios reverses the two values, resulting in mµ > mτ. This solution is
obviously incompatible with the measured masses of these two particles [32]. Despite the
rejection, K2 is of some theoretical interest: the ratio K2/K1 = 4, the same 4 that appears
in Equation (A2). Furthermore, we see that the f = 4 factor in Equation (A2) is the raw
physical constant, and Koide’s K is derived from it:

K =
f

f + 2
=

2
3

. (A7)

This relation is derived by substituting Equation (A2) into Equation (A1).

Appendix A.1. Physical Interpretation

The physical interpretation of nature’s choice of f = 4 is deduced from Equation (A2),
rewritten in the accessible form

1
3
(me + mµ + mτ) =

4
3
(√

memµ +
√

memτ +
√

mµmτ

)
. (A8)

The factor of 1/3 indicates that the left-hand side is the arithmetic mean of the lepton
masses. The factor of 4/3 on the right-hand side (also the G-M

√
K1K2 to within 1%) is CF,

the quadratic Casimir charge of the SU(3) fundamental representation [33]. It seems then
that the assignment of masses to the leptons is also constrained by the delivery of charge,
and this is why

f = 3CF , (A9)

appears in the right-hand side of Equation (A2). This last equation is a special case of the
general formula (Section 4.5 in Ref. [33]) of quantum chromodynamics, viz.

NA
2

= NCF , (A10)
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as applied to SU(3), where N = 3 dimensions, the indices 1, 2, · · · , NA label the NA × NA
color generators in the “octet” quark-antiquark state, NA = N2 − 1 = 8, and f = NA/2;
thus, we find that f = 4 and CF = 4/3 in SU(3). Finally, Koide’s constant turns out to
depend only on the SU(3) octet number NA, viz.

K =
NA

NA + 4
, (A11)

or, equivalently, on the dimensionality N = 3 of space, i.e., K = (N2 − 1)/(N2 + 3), in
which case f = (N2 − 1)/2 as well. This result does not support higher-dimensional
theories of space, such as strings and their variants. For as long as K = 2/3, space appears
to be three-dimensional, and there are no additional hidden dimensions (such as those
described in Ref. [50] and many other similar textbooks).

Table A1. Boson-Quark mass ladder in terms of the Higgs mass mH = 125.25 GeV/c2 [32]. Two
scales are used, Koide’s K = 2/3 and the αw =

√
αh = 1/30 deflation of mH down to the bottom

quark mass mb. Lepton masses and proton mass are also shown in terms of mH for a comparison
of scales.

Particle Mass-Energy Mass Relation (a) Deviation (b)

(MeV) (%)

VECTOR BOSONS

Z0 9.1188× 104 mZ0 = K3/4 mH +1.3
W± 8.0377× 104 mW± = KmH +3.9

QUARKS

top 1.725× 105 mt = K−3/4 mH −1.6
bottom 4.180× 103 mb = mH/30 = αw mH −0.12
charm 1.270× 103 mc = 2

√
K/303 mH −2.0

strange 93.4 ms =
(
K/302)mH −0.67

down 4.67 md = 2
(
K7/4/303

)
mH −2.3

up 2.16 mu =
(
K2/303)mH −4.5

LEPTONS & PROTON

electron 0.511 me =
√

K
2×307 mH −4.3

muon 105.66 mµ = 222 K5/2√
2×307 mH −0.45

tauon 1.777× 103 mτ = 402 K−3/2√
2×307 mH −0.93

&
proton 938.272 mp = 22

(
2K5

309

)1/4
mH

−0.12

Notes: (a) The top three masses do not depend on the deflation scale
√
αh = 1/30, whereas the mass of the bottom

quark mb is the only one that does not depend on Koide’s scale K = 2/3. (b) Deviation = [(right-to-left side) −1] ×
100% ; left side is taken from Ref. [32].

Appendix A.2. Additional Koide-Type Constants

The G-M relations in Section 3.1 may help us make physical sense of various other
combinations involving three particle masses. Here, we summarize the calculations for
three such triplets, the quarks c-b-t and u-d-s [51], and the bosons W±-Z0-H:

Heavy quarks c-b-t. Based on experimental masses, Equation (A1) with c-b-t values
in place of e-µ-τ values produces a constant of 0.669 on the right-hand side, only 0.35%
higher than K = 2/3. This is a solid physical result. From the equations of Section 3.1, we
find that mt = 30mbK−3/4, mc = 2mb

√
K/30, and a corresponding constant of 0.668 with a

deviation of 0.20% from K = 2/3.
Light quarks u-d-s. Koide’s K is not produced by the masses of the u-d-s triplet. Based

on their experimental masses, Equation (A1) with u-d-s in place of e-µ-τ produces the
constant J = 0.567 on the right-hand side, probably a value of no interest to numerology.
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We, on the other hand, have derived this constant analytically by utilizing the G-M relations
of Section 3.1 and by expressing the u-d-s quark masses in terms of the Higgs scales
mb/mH = 1/30 (deflation) and K = 2/3 (Koide), used in assignments of masses of light
quarks. It turns out that the entire boson-quark mass ladder has to be calculated in the
process. The results of our calculations are listed in Table A1. Using the values obtained for
the u-d-s masses at the bottom of the quark mass ladder, we find that

(mu + md + ms)/(
√

mu +
√

md +
√

ms)
2
= 0.570 , (A12)

a constant that deviates only by 0.53% from the experimental value of J = 0.567. In this
case, we find that 0.570 ≈ 4/7, f = 2CF = NA/N = 8/3, and J = NA/(NA + 2N) = 4/7
in SU(3) (in place of Equations (A9)–(A11)).

Higgs bosons W±-Z0-H.—Based on experimental masses, Equation (A1) with W±-Z0-
H masses in place of e-µ-τ masses produces a constant of B = 0.336 on the right-hand
side, only 0.80% higher than the lowest attainable value of 1/3 obtained in the generic
case of three equal masses. From Equations (40) and (41), we find that mZ0 = K3/4mH
and mW± = KmH (see also Table A1), and then, Equation (A1) for the W±-Z0-H triplet is
transformed to

1 + K3/4 + K = 0.336
(

1 + K3/8 + K1/2
)2

, (A13)

with an accepted root at K1 = 0.662 (deviation 0.70% from K = 2/3) and a rejected root
at K2 = 1.541. We conclude that K1 is Koide’s constant, in which case, f = 1.012 on
the right-hand side of Equation (A2) and B = f /( f + 2) (let B → K in Equation (A7)).
The quark-antiquark color octet number NA and the quadratic Casimir charge CF are not
involved in these calculations (Equations (A9)–(A11) are not applicable to vector bosons).

Appendix A.3. Determination of Various Coupling Factors and Constants of the Standard Model

Although approximate, the empirical equations for the mass ladder listed in Table A1
constitute a scaling model, and we can use them to calculate theoretical values for various
constants of the Standard Model, thereby eliminating many of the free gauge couplings
and particle masses from the model (currently being considered out of reach and expected
to be measured by experiment). We describe the determinations of several such constants
below, and we collect the results in Table A2 for comparisons with the corresponding
experimental measurements.

Appendix A.3.1. The Weinberg Angle

The weak mixing angle, or Weinberg angle θw, is usually defined by [16,20]

cos θw ≡
mW±

mZ0
. (A14)

Its experimental value is 0.492 radians. Substituting the boson masses of the mass ladder
(Table A1), we find that

cos θw = K1/4 , (A15)

that gives the theoretical value of 0.443 radians (effectively 2.8 degrees smaller). CODATA [23]
tabulates the value of sin2 θw = 0.223, whereas our θw = 0.443 gives sin2 θw = 0.184. The
Weinberg angle appears in several of the equations that follow.

Appendix A.3.2. Vector-Boson g-Factors and Electric Charge

We determine first an equation for the Higgs VEV: using Equation (37) and the top-
quark relation in the mass ladder (Table A1), we find that

v = K−3/2 mH . (A16)

This relation gives the ratio mH/v = 0.54, whereas its experimental value is 0.51 [23].
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The masses of the vector bosons are given by [16,20]

mW± = g (v/2) , (A17)

and
mZ0 =

√
g2 + g′ 2 (v/2) , (A18)

where g is the SU(2) weak isospin coupling and g′ is the U(1) weak hypercharge coupling.
Substituting the boson masses of the mass ladder and the VEV of Equation (A16), we

find that
g = 2 K5/2 , (A19)

and

g′ = 2 K9/4
√

1−
√

K . (A20)

These relations give g = 0.726 and g′ = 0.344. The experimental values are 0.653 and
0.350, respectively. The calculated g-factor shows a larger deviation (+11%) because of the
relatively large (+3.9%) deviation of the calculated ratio mW±/mH in Table A1.

The electric charge in particle physics is defined in natural units as 30

e ≡
√

4πα/h = 0.303 . (A21)

This is a constant of the EM interaction obtained in the Standard Model from the
equation [16,20]

e = g sin θw = g′ cos θw = 0.308 . (A22)

Using the equations of the mass ladder, we find that

e = 2 K5/2
√

1−
√

K = 0.311 . (A23)

Just as the constant of EM interaction e is defined in terms of the fine-structure constant
α/h in Equation (A21), so is the weak isospin g-factor in terms of the intrinsic strength of the
weak interaction αw [38], viz.

g ≡
√

4παw = 0.653 , (A24)

where the value of g was calculated from the reduced Fermi constant G0
F [23] and the mass

of the W boson [32], i.e., g = 2 mW(
√

2 G0
F )

1/2 = 2 mW/v, where, in the Standard Model,
v = (

√
2 G0

F )
−1/2 = 246.22 GeV. From the second equality in Equation (A24), we get

αw = 0.0339 ' 1
30

, (A25)

which is effectively the deflation scale
√
αh that we also found for m?/Mp in Note 8 and for

me/MA in Equation (36) above. Therefore, the deflation scale appears to be the strength of
the weak interaction (i.e., the weak coupling constant αw). Furthermore, these coincidences
involving the scale 1/30 suggest that a particle of mass m? = Mp/30 ' 1.8× 10−9 kg could
exist at the unification scale of 1018 GeV (i.e., 30 times below the Planck mass), just as the
electron does at 30 times below the new subatomic scale of 15 MeV (Equation (21)).
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Table A2. Free parameters of the Standard Model: Comparison of empirical values with the corre-
sponding experimental measurements. Details and references are provided in Appendix A.3.

Parameter Equation Determined Value Measured Value

Weingberg angle (θw) [degrees] (A15) 25.4 28.2
Higgs mass to VEV ratio (mH/v) (A16) 0.54 0.51
Weak isospin coupling (g) (A19) 0.726 0.653
Weak hypercharge coupling (g′) (A20) 0.344 0.350
Electric charge (e) [natural units] (A23) 0.311 0.308
Weak coupling constant (αw) (42), (A24) 0.0341 0.0339
Electron Yukawa coupling (ye) (A27) 3.005× 10−6 2.935× 10−6

t-quark Yukawa coupling (yt) (A28) 1.043 0.991
u-quark coupling factor (gu) (A31) 1.267× 10−5 1.241× 10−5

d-quark coupling factor (gd) (A32) 2.805× 10−5 2.682× 10−5

b-quark coupling factor (gb) (A34) 2.566× 10−2 2.401× 10−2

Appendix A.3.3. Electron and Top-Quark Yukawa Coupling Factors

The Higgs Yukawa coupling to the electron ye [20,52] determines the mass of the
electron, viz.

me = ye

(
v/
√

2
)

. (A26)

Its experimental value is ye = 2.935 × 10−6. Using the mass relation for the electron
(Table A1) and Equation (A16) for VEV, we find that

ye =
K2

307/2 = 3.005× 10−6 . (A27)

On the opposite end of the mass spectrum, the Higgs Yukawa coupling to the top
quark, yt =

√
2(mt/v) = 0.991 [20,32], is the largest y-factor and one of the main targets

of ongoing experiments [53,54]. Using the mass relation for the top quark (Table A1) and
Equation (A16) for VEV, we find that

yt =
√

2K3/4 = 1.043 , (A28)

independent of the deflation scale of the weak interaction 1/30 (Equation (A25)), which
explains its large numerical value.

Appendix A.3.4. Quark g-Factors

In the Glashow–Weinberg–Salam theory of electroweak interactions [20], the lowest-
mass quarks (u and d) have masses

mu = gu

(
v/
√

2
)

, (A29)

and
md = gd

(
v/
√

2
)

, (A30)

where gu and gd are the coupling constants of the corresponding Higgs interactions with
experimental values of gu = 1.241× 10−5 and gd = 2.682× 10−5. Using the corresponding
mass relations (Table A1) and Equation (A16), we find that

gu =

√
2K7/2

303 = 1.267× 10−5 , (A31)

and

gd =
2
√

2K13/4

303 = 2.805× 10−5 . (A32)
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Finally, we use the coupling equation for the mass of the bottom quark, viz.

mb = gb

(
v/
√

2
)

, (A33)

where gb is the coupling constant of the Higgs interaction with an experimental value of
gb = 2.401 × 10−2. Using the mass relation for the bottom quark (Table A1) and
Equation (A16), we find that

gb =

√
2K3/2

30
= 2.566× 10−2 . (A34)

Appendix B. A Universal Natural Law Discovered in Widely Separated Scales

The work that we presented in this paper was triggered by the realization that the
unit of force F0 = c4/G is precisely the same in the cosmological and the Planck systems
of units. Furthermore, this unit displays the unusual form [speed]4/[Newton’s G] also
found in the Tully–Fisher/Faber–Jackson relation [17,18] discovered in spiral/elliptical
galaxies, respectively (Section 4.1). This is astonishing, given the enormous difference in
scales between the two systems of units.

The implication is that similar fundamental relations between variables ought to exist
on the Planck scale and on the microcosmic scale as well. Indeed, the first such relation
dates back to Stefan [44], who discovered the famous [temperature]4 dependence of an
emitting blackbody’s intensity (or “power surface density”) with units [power][area]−1.
We searched and found that such a universal law has been discovered in all of the above
scales, but comparisons were not previously made because the corresponding subfields of
physics have always been disjoint.

The universal law involves the surface densities of various fundamental quantities.
(Such surface-density dynamical variables have become of primary importance in the
work presented in Ref. [1]). These surface densities are all related to the fourth power of
kinetic terms (such as speed and temperature), which are limited by the various essential
resistances imposed by the vacuum. Specifically:

(1) In quantum gravity, the energy-density shift of the Higgs field UH resulting from
spontaneous symmetry breaking (that prevents ultraviolet divergence) is UH ∝ v4,
where v is the Higgs vacuum expectation value [20,55]. This relation is equivalent to

σF ∝ v4 , (A35)

where the “force surface density” σF ≡ F/A (where F is force, A is area, and
UH = F/A has dimensions of [pressure]).

(2) In the macroscopic realization of the Casimir effect, the same force per unit area is
proportional to the fourth power of the reciprocal of distance D between parallel
plates [56,57], viz.

σF ∝ (1/D)4 . (A36)

The units agree in the last two relations since the VEV v has dimensions of [length]−1

in natural units (see Note 30 and Ref. [20]).
(3) In atomic physics, the celebrated Stefan-Boltzmann law [44,45] takes the equiva-

lent form
σP ∝ Θ4 , (A37)

where the power surface density (or intensity) σP ≡ P/A, P is power, and Θ is the
mean temperature of the source of radiation.
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(4) In astrophysics, galaxies obey the relation M ∝ V4, where M is mass and V is rotational
speed or stellar velocity dispersion in spiral [17,58–60] and elliptical [18,61,62] galaxies,
respectively. This relation is equivalent to

σI ∝ V4 , (A38)

where the “moment-of-inertia surface density” σI ≡ I/A (where I is the moment of
inertia and I/A has dimensions of [mass]).

Appendix B.1. Dimensional Analysis of Surface Densities

Dimensional analysis can help us understand the physics of these surface densities,
but not by reducing their definitions to the fundamental units of the UPS. We have to search
a little deeper to find common properties. We begin with the power surface density (wave
intensity) σP that assumes the simplest form among the surface densities and has a resistive
character (Equation (55) in Section 4.1):

σP =
F2

(I/T)
. (A39)

In EM interactions, the rate of change of moment of inertia can be replaced by

I/T = q2Z0 , (A40)

where q is charge and Z0 =
√

µ0/ε0 is vacuum impedance; we find that

σP = Z−1
0 E

2 , (A41)

where the electric field is given by E = F/q. In these equations, the terms (I/T) and Z0
express vacuum resistance to forces and fields.

For gravitational power, the force in Equation (A39) is also contains vacuum resistance
that couples to Newton’s G: rewriting Equation (A39) in terms of the gravitational field
(i.e., acceleration) a, we find that

σP =
( c

G

)
a2 . (A42)

In units, force is F = P/c in terms of power P, and the force surface density σF takes
the corresponding forms

σF =
σP
c

= ε0E2 = G−1a2 , (A43)

where the vacuum (c) drops out from gravity’s σF. This is a fundamental difference as
compared with the EM field’s σF, in which the vacuum (ε0) is permanently attached to the
electric field.

Finally, as was probably expected, the moment-of-inertia surface density σI = M does
not quite conform to the above picture. We find that

σI =
F2

(I/T4)
=

J 2

(I/T2)
, (A44)

where J is impulse and I/T2 is energy. Mass is already built with inertia, so it is not
surprising that it does not scale as (I/T)−1, as the other densities do. To find out how force
squared and impulse squared are regulated, we rewrite the terms in the denominators. It
turns out that power P has the form

P = I/T3 , (A45)
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so that Equation (A44) can be recast in the equivalent form

σI =
F2

(P/T)
=
J 2

PT
, (A46)

where the integrated quantity PT represents energy E. Thus, the F2 term is regulated by
the rate of change of power P/T (see also Note 23, and impulse squared J 2 is regulated by
integrated power (or energy) PT, both of which are limited by the speed of light.

Appendix B.2. Physical Properties of the Various Surface Densities

We conclude with a summary of the properties of the above surface densities:

(a) The densities σP and σF (wave intensity and pressure, respectively) are both regulated
by the rate of change of inertia (I/T) at all scales (Equations (A39) and (A43)).

(b) Density σI (i.e., mass) is not regulated by inertia; mass already possesses inertia;
instead, we can say that mass is force squared F2 regulated by the rate of change of
power (P/T) or impulse squared J 2 regulated by energy E (Equation (A46)), where
E could also be viewed as the rate of change of the action integral, i.e., (S/T).

(c) Vacuum constants are explicitly present in the σP Equations (A41) and (A42), when σP
is written in terms of the force fields squared (E2 and a2, respectively).

(d) The vacuum remains present in the σF of the EM field, but it drops out from the σF of
the gravitational field (both distinct behaviors are shown in Equation (A43)).

(e) Force surface density σF (Equation (A43)) represents the conventional energy density
of the force fields, whereas σP (Equation (A39)) shows that vacuum inertial resistance
(I/T) is present during the action of all forces; and this inertial resistance appears also
in Equations (A41) and (A42) (Z−1

0 and c, respectively).
(f) Both sides of Equation (A40) have dimensions of Planck’s constant [h], thus

I/T ∼ q2Z0 = [action]. Higher powers of T in I/Tn (n = 2, 3), i.e., higher-order
derivatives, are also physically important: I/T2 = [energy] and I/T3 = [power].
Equation (A45) for I/T3 then implies that power stems from the third time derivative
of the moment of inertia, a property that is fundamental to the emission of gravita-
tional waves. The same relation, applied to EM waves, produces ohmic power (divide
Equation (A40) by T2) with dimensions of [electric current]2 [ohmic resistance].

(g) Equations (A35)–(A38) all have the characteristic form

[surface density X/A] = [constant C]× [kinetic scalar quantity Y]4 ,

in which A is area and the power of 4 represents N + 1 degrees of freedom, with N = 3
for the spatial dimensions, plus 1 degree of freedom for the scale of the underlying
scalar Y. This form implies the differential equation dX/dA = CY4, relating X to Y.

Notes
1 Similarly, /µ0 ≡ µ0/(4π) is the reduced vacuum permeability, and then, /ε0/µ0 = 1/c2. The stereometric 4π terms cancel out nicely

to produce the “definition” of c, which is a purely physical quantity. Furthermore, Dirac’s 2π term in /h tells us that Planck’s
free photons only “see” two dimensions, no matter how they move in stereometric (3-D) space (in curves, or circles, or ellipses,
etc.). We also learn that the fundamental natural constant c is produced by the vacuum itself, and it is the geometric mean of two
smooth inverse Lie mappings [13] of /ε0 and /µ0 (i.e., the geometric mean of 1//ε0 and 1//µ0).

2 In Bohr’s model, the (nongeometric) number-parts of energies En and radii rn are related by En ∝ 1/rn = 1/n2. Therefore, for
pure numbers, we see that

√
rn = n, and the coefficients of the quantized radii are essentially produced by geometric averaging,

viz., rn+1 =
√

rnrn+2 + 1. The +1 extends the sequence back to n = 0, r0 = 0.
3 Unless the calculations can be repeated successfully within another system of units in which another particle is chosen as a

building block (see Note 10 below for the case at hand).
4 Going as far back as 1948, some fundamental equations signaled that the introduction of 2π in α/h may not be appropriate, but

the warning was brushed off as a mere simplification between pure numbers. The electron vertex functions and the corrections
to the form factors (Ref. [20], pp. 194–196) all show the coefficient α/h /(2π), in which the visible (2π) term eliminates the 2-D
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geometry from α/h , and the correction to the g-factor of the electron becomes ae ≡ (g− 2)/g = αh = 1/861.0 (equation (6.59) in
Ref. [20]). This result was first obtained by Schwinger in 1948 [21], and it was confirmed by experiments to 8 significant figures,
the most accurate ones using an ingenious technique developed by Van Dyck et al. in 1987 [22]. Therefore, unknowingly, these
experiments were measuring αh by mesuring the correction ae to the g-factor of the electron.

5 The unit of [area] justifies the deduced geometric factor 1/(2π) in the second G-M of Equation (10). The additional factor of
2 attached to ε0 is a unitless imprint, but it has a geometric origin. This type of imprinting is difficult to track down in the
various equations of physics when they are presented in reduced, simplified form (see also the discussion in Section 1.2 about the
numerical factor of 1/4 imprinted by geometry to the Rydberg energy).

6 The reference unitless constant (αh here) plays the exact same role that the standard 1-meter ruler and the standard 1-kg cylinder
play in the SI system of units for length and mass, respectively.

7 Had we used the mass and the charge of a supermassive black hole (e.g., [30]) in Equation (15), we would have obtained a relative
strength of couplings βG � 1 and a different system of units, which would be hard to relate to the Planck scale and even harder
to use in the atomic world.

8 In fact, βG = 1 near the Planck scale, for a particle of mass m? = Mp/30 = 1.0× 1018 GeV/c2, where Mp =
√

hc/G is the original
Planck mass. The deflation factor of 1/30 is also used by the Higgs boson to couple to the bottom quark (see Section 3.1 below)

9 We point out again that using /h in definitions (13) and (14) reverses what nature intended. It makes α/h be a geometry-free value,
although the geometry should have been that of /ε0 coming from the electric field; and αG ends up with 2π radians, although it
should have been geometry-free. This setup reveals that mass elements know they exist in a 3-D space, but elementary charges
do not know, and they are taught accordingly by the vacuum’s insertion of /ε0 ∝ 4π and/or /µ0 ∝ 1/4π into the equations of the
EM field.

10 An alternative choice, such as of two interacting protons with masses mp, leads to another complete system of units, say UPS′. In

this case, we find that M′A = 27.5 GeV/c2 and (β′G)
1/2 = 9.00× 10−19, but Equation (18) is still valid, and connects M′A with the

original Planck mass Mp =
√

hc/G. Furthermore, the scaling M′A/MA = mp/me holds precisely between the two systems of
units; and the relation MA M′A = (memp)/αh is exact as well. Finally, referring to the upcoming UPS results in Section 3.1 below,
the relation M′A =

√
mtmb holds to within 2.5% in the UPS′, where mt and mb are the masses of the top and bottom quarks,

respectively; thus, M′A actively participates in the mass ladder of the UPS′, just as MA does in the UPS mass ladder of Section 3.1
and Appendix A.

11 We knew that a rescaling of the Planck mass Mp =
√

hc/G by some power of βG would produce an atomic mass. However, we
did not know which power is appropriate to use. Here, we have shown that the appropriate coefficient of Mp is

√
βG, the G-M of

Egrav and (Eelec)
−1 when scaling Mp down to lower masses. If we are scaling up, then the −1 exponent naturally moves on top

of Egrav in the G-M (see Section 3.4 below). In retrospect, these two Lie-type G-M averages make sense in a “fair” universe that
uses such impartial averaging to combine pairs of interacting physical quantities and units.

12 The realization that the vacuum also leaves unitless numerical imprints (in addition to its dimensional constants /ε0, /µ0, c, Z0) is
new, unexpected, and it may prove important in future work. In the future, we will have to investigate such imprints of the
vacuum to the nuclear world, especially in the strong interactions and the so-called beta functions [20].

13 The charm and bottom quarks have masses of mc = 1270 MeV/c2 and mb = 4180 MeV/c2, respectively [32]. At such high masses,
something must be changing in the dynamics: for the ordered by mass triplet s-c-b, we find, to within a 1.6% accuracy, that
mc = 2

√
msmb. We also find that the charm quark participates rather “reluctantly” in just one pure/unscaled G-M (Equation (28),

referring to the compact triplet p-c-τ); and even that one is unusual, as it involves the proton mass mp.
14 No other available particle slots in the domain.
15 It will become apparent in Appendix A that the ratio 1.38 approximates CF = 4/3 (to within a deviation of 3.5%), where CF is the

quadratic Casimir charge of the SU(3) fundamental representation of the quark potential (equation (4.45) in Ref. [33]).
16 Eliminate mH between Equations (40) and (41).
17 Eliminate mt between Equations (37) and (38).
18 We cannot help but wonder—if A. Sommerfeld, W. Pauli, C. Jung, R. Feynman, and many others [34] became familiar with this

result, would they show the same fascination for number 861 as with 137? The particle-to-scale mass and charge ratios discussed
above strongly indicate that we should turn our attention to the physics behind 861 rather than trying to find the same physics in
the geometry-dependent composite ratios 137 = 861/(2π) and /h = h/(2π).

19 See Ref. [35] and article https://en.wikipedia.org/wiki/Planck_units in Wikipedia (accessed on 20 May 2023).
20 The remaining choice, the G-M of rb and rc, would give an equivalent result, scaled by a different power of α/h (L′A = LA/α/h ),

such that the rc =
√

LAL′A.
21 For comparison, the atomic rest-energies [42] of naturally occurring primordial uranium U238

92 and synthetic fermium Fm257
100 are

90% and 97% of the Higgs VEV, respectively.

https://en.wikipedia.org/wiki/Planck_units
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22 Besides combining with G to produce the units of force and power in the cosmological and Planck systems, c does something
else that is notable: it combines with ε0 or µ0 to produce a surprise unit for ohmic resistance: µ0c = 1/(ε0c) = Z0 = h/e2 (see
Section 2.1.1).

23 Mass M is a special case for n = 0 in which M = F2/(I/T4) (see also Appendix B). This relation sketches the complex G-M
interaction between mass and inertial change that regulates the kinematics of an object: dp/dt =

√
M (d4 I/dt4), where p is

momentum, or equivalently, d4 I/dt4 = Ma2.
24 In a nearly perfect dielectric, the wave impedance is Z = Z0/(1 + χe) < Z0, where χe > 0 is the electric susceptibility.
25 Note that even actual planetary orbits [46] and also theoretical orbits in the virtual Hooke potential [47] show G-M averaging in

many of their properties [48,49]. The two types of elliptical orbits have fundamentally different centers and forces, but this is not
enough to suppress or modify the ubiquitous geometric averaging that is so obvious in the parameters of the two sets of ellipses.

26 Arithmetic averaging would favor the large constant, whereas harmonic averaging would turn the tables and clearly favor the
small constant. Compared to G-Ms, either one of these extreme averages treats “unfairly” one or the other participant.

27 Dirac [8,9] was the first physicist to come to this realization, although he chose to find a way to instill many more orders of
magnitude into G in the early universe, rather than accept its miniscule value and investigate its properties.

28 We also timidly attempted a preliminary calculation of the scaling between weak and strong interactions, as a ratio of energies βW
(Equation (53). It seems that such energy ratios/comparisons are the way to incorporate consistently the dimensionless constants
into the UPS. We can then imagine a complete UPS := {c, Z0, G, h,αh,βG,βW , . . . ; /ε0, /µ0, /h} that includes geometry-free units
and a set of geometry-dependent units, along with relative β-ratios� 1 of unitless constants.

29 From (35) and (36), we get mb = 30ms/K (#1). From (32), (36), (38)–(40), we get mb = 30K−3/4mµ (#2). From (#1) and (#2), we get
ms = K1/4mµ (#3). From (29), (#3), and (#2), we get mµ = 30K−5/4mu (#4). From (26), (#3), (#4), and (30), we get Equation (A4).
Finally, from (34), (36), and (A4), we get Equation (A3). Equations (28), (31), (33) and (37) were not used.

30 In natural units, /h = c = ε0 = 1. By suppressing the 2-D geometry present in /h and by setting ε0 = 1 (not 4πε0 = 1, as in
Gaussian units [36]), the 3-D geometry (the

√
4π dividing e) imprinted on to the electric charge by the vacuum remains present in

definition (A21).
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