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Abstract: Black holes are one of the most extreme phenomena in the Universe, bridging the gap
between the realms of general relativity and quantum physics. Any matter that crosses the event
horizon moves towards the core of the black hole, creating a singularity with infinite mass density—a
phenomenon that cannot be comprehended within present theories of relativity and quantum physics.
In this study, we undertake an investigation of non-rotating, non-charged Schwarzschild black holes
in an extended spacetime framework with two time dimensions. To accomplish this, we extend
Einstein’s field equations by one more temporal dimension. We solve the corresponding equations
for a spherical central mass, which leads to an Abel-type equation for the 5D Schwarzschild metric.
By exploring distinct solution classes, we present an approximate solution for the 5D metric. Our
proposed solution maintains consistency with Schwarzschild’s 4D solution. Finally, we address the
central black hole singularity and demonstrate a potential breakthrough, as our solution effectively
avoids the singularity quandary, providing valuable insight into the fundamental properties of black
holes in this augmented framework.
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1. Introduction

Black holes are one of the most extreme phenomena in our Universe. They are
spherical bodies consisting of masses ranging from tens to millions of solar masses [1]
and are purely characterized by their mass, angular momentum, and charge, which is also
known as the “No-Hair theorem” [2]. After Einstein had finalized the concept of general
relativity in 1915 [3], Schwarzschild calculated its first exact solution [4] which describes
spacetime around spherical, non-rotating, non-charged massive bodies, including black
holes. Building upon Schwarzschild’s work, other notable solutions have emerged for
black holes that are rotating or are electrically charged [5–10]. Roger Penrose showed that
black holes are common objects in our Universe [11], and recent observational efforts by
the Event Horizon Telescope have provided visual evidence of black holes, such as M87* in
the galaxy Messier 87 [12] and Sagittarius A* in our own Milky Way [13].

The intense gravitational pull of black holes curves spacetime to such an extent that
any particle in their vicinity is drawn towards their interior, which is separated from its
exterior by the event horizon. Every particle, including photons, passing through the event
horizon inevitably moves to the black hole center, where all the mass accumulates in a
single point, generating an infinitely large mass density—a singularity. The interior of
black holes poses challenges from both observational and theoretical viewpoints. Due to
the event horizon’s nature, no information can escape from the inside, making it currently
impossible to observationally gain information about the inner workings of black holes.
From a theoretical perspective, the laws of general relativity collapse at the center because
of the singularity, calling for a future theory of quantum gravity [14] which would unify
the principles of relativity with subatomic quantum principles.
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Promising candidates for quantum gravity are loop quantum gravity [15] and string
theory [16]. Following Hawking’s recent proposal that gravitational collapse may not
produce event horizons, Vaz introduces a unique perspective on black holes without
event horizons. He instead suggests they are quantum objects with matter condensing on
the apparent horizon during a quantum collapse [17]. Corda expanded on this concept,
showing that these black holes possess an atomic structure governed by quantum mechanics
and deriving mass and energy using a Schrödinger-like approach [18]. String theory, on
the other hand, suggests the existence of 10 or 26 spatial dimensions, which is significantly
more than the commonly experienced three space dimensions. These extra dimensions are
assumed to be compactified and are consequently too small to be observed. In exploring the
concept of extra dimensions, Bars et al. demonstrated that a certain class of string theories
could also obtain more than one time dimension [19]. This idea was further developed by
Bars and Kounnas when they constructed actions for interacting p-branes within two time
dimensions and presented a Kaluza–Klein-like dimensional reduction mechanism, along
with an action for a string in two time dimensions [20,21]. However, one of the difficulties
with such theories is that extra macroscopic temporal dimensions might violate causality or
cause to an unstable or unpredictable universe [22], especially for three spatial dimensions.
Therefore, any extra time dimension must be microscopic or act on spatial scales in the
order of the Planck length [23].

The idea of additional time dimensions was taken over by Chen who interpreted two
extra time dimensions as hidden quantum variables. He demonstrated that the concept of
matter waves, using the de Broglie wavelength, naturally arises from the action of a free
particle in several time dimensions [24]. Köhn later proposed that the existence of a second
time dimension could explain the constancy of the speed of light and provide a theoretical
foundation for the existence of a minimumlength scale known as the Planck length [23].
When extending the EinsteinFriedmann equations for the evolution of the Universe, Köhn
could constrain the value of the cosmological constant and provide a possible solution to
the cosmological constant problem [25]. More recently, a two-time-dimensional version of
Maxwell’s equations has allowed symmetrizing them and introducing magnetic monopoles.
This framework also provides a plausible explanation for why magnetic monopoles have
not been observed, suggesting that they are hidden in the second non-observable time
dimension [26]. While physical arguments have not necessarily favored theories with more
than one time dimension, Weinstein and Craig [27,28] arrived at well-posed solutions for
equations such as the five-dimensional wave equation, indicating the feasibility of known
mathematics in a universe with two time dimensions and hence of its physical reality.

In this study, we aim to investigate the modifications in the properties of Schwarzschild
black holes when considering an extended spacetime with three spatial and two temporal
dimensions. Our primary focus is on understanding how the Schwarzschild metric changes
within its extended spacetime framework and exploring different classes of solutions.
Ultimately, we seek to evaluate the nature of singularity at the centers of black holes in this
extended spacetime.

In Section 2, we present the derivation of the 5D Schwarzschild equations. Section 3
explores solutions for these 5D equations. Firstly, we examine the existence of such solutions
in both 4D and 5D contexts. Subsequently, we investigate various solution classes. Finally,
in Section 4, we provide a physical interpretation of our findings, considering the limits
in which the 5D framework behaves like the familiar 4D scenario. This contributes to
resolving the singularity problem.
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2. 5D Schwarzschild Equations

In this section, we derive the Einstein field equations for the five-dimensional
Schwarzschild metric. The starting point is to extend the four-vector of spacetime to
a five-vector:

→
xµ =


x0

x1

x2

x3

x4

 =


ct
γτ
r

θ(r)
ϕ(r)

 (1)

where γ represents a characteristic velocity for the second time, equivalent to the speed of
light c for the first time t. Similarly, we extend the four-dimensional ansatz for the metric of
spacetime in the vicinity of a spherical body to five dimensions,

gµν =


A(r) 0 0 0 0

0 Z(r) 0 0 0
0 0 −B(r) 0 0
0 0 0 −r2 0
0 0 0 0 −r2sin2(θ)

 (2)

where A(r) and B(r) correspond to the first, macroscopic time dimension and Z(r) de-
scribes the contribution of the second time dimension.

For this ansatz (2), there exist 16 nonzero Christoffel symbols,

Γ0
02 = Γ0

20 = A′
2A

Γ1
12 = Γ1

21 = Z′
2Z

Γ2
00 = A′

2B
Γ2

11 = Z′
2B

Γ2
22 = B′

2B
Γ2

33 = − r
B

Γ2
44 = − rsin2(θ)

B
Γ3

23 = Γ3
32 = Γ4

24 = Γ4
42 = 1

r
Γ3

44 = −cos(θ)sin(θ)
Γ4

34 = Γ4
43 = cot(θ)

(3)

where the prime denotes the derivative with respect to r. These lead to the following Ricci
tensor components

R00 =
A′′

2B
− A′B′

4B2 +
A′

Br
− (A′)2

4AB
+

A′Z′

4ZB
(4)

R11 =
Z′′

2B
− Z′B′

4B2 +
Z′

Br
− (Z′)2

4ZB
+

A′Z′

4AB
(5)

R22 = −A′′

2A
+

(A′)2

4A2 +
A′B′

4AB
+

B′

Br
− Z′′

2Z
+

(Z′)2

4Z2 +
Z′B′

4ZB
(6)

R33 = − 1
B
+ 1− rA′

2AB
+

rB′

2B2 −
rZ′

2ZB
(7)

R44 = R33 sin2(θ). (8)

The Ricci scalar then becomes
R =

10
3

Λ. (9)
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For the Schwarzschild solution, we consider a vacuum around the central mass,
Tµν = 0. Hence, the 5D Einstein equations

Rµν −
1
2

Rgµν + Λgµν = 0 (10)

For the ansatz (2), together with (4)–(9 ), lead to a set of four equations:

2ABrA′′ − ArA′B′ − Br
(

A′
)2

+
ABrA′Z′

Z
+ 4ABA′ − 8

3
A2B2rΛ = 0 (11)

2ZBrZ′′ − ZrZ′B′ − Br
(
Z′
)2

+
ZBrA′Z′

A
+ 4ZBZ′ − 8

3
Z2B2rΛ = 0 (12)

−2ABrA′′ + ArA′B′ + Br(A′)2 − 2A2BrZ′′
Z + A2Br(Z′)2

Z2 + A2rB′Z′
Z

+4A2B′ + 8
3 A2B2rΛ = 0

(13)

−2AB + ArB′ − BrA′ − ABrZ′

Z
+ 2AB2 +

4
3

AB2r2Λ = 0. (14)

Equations (11)–(14 ) are equivalent to the field equations in 4D but with additional
terms involving Z associated with the second time dimension. Equation (12) is an addi-
tional equation purely based on the second time dimension and is identical to
Equation (11) except with Z substituting A. The set of Equations (11)–(14 ) can be re-
duced to first order by defining a = A′

A , z = Z′
Z , and b = B′

B :

2ra′ + ra2 − rab + raz + 4a− 8
3

BrΛ = 0 (15)

2rz′ + rz2 − rzb + raz + 4z− 8
3

BrΛ = 0 (16)

−2ra′ − 2rz′ − ra2 − rz2 + rab + rzb + 4b +
8
3

BrΛ = 0 (17)

−2− ra− rz + rb + 2B +
4
3

Br2Λ = 0. (18)

This set is reduced to the 4D field equations for the Schwarzschild metric when z = 0.
Additionally, the system (15)–(18 ) is overdetermined as it contains four equations for the
three functions A, Z, and B, which define a, z, and b. Note that these equations explicitly
still contain B, which defines b. We will discuss this in the next section.

3. Solution of 5D Equations

As mentioned previously, the system (15)–(18 ) is overdetermined. Therefore, we
first demonstrate the existence of a solution. Subsequently, we derive and discuss several
classes of solutions before presenting an approximate solution to Equations (15)–(18 ).
As we show below, the system can be reduced to an Abel equation, which cannot be
solved analytically.

3.1. Existence of a Solution

To show the existence of a solution, we begin by adding Equations (15)–(17), yielding:

2b− 4
3

rΛB = −2a− 2z− raz. (19)
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Together with Equation (18), this generates an algebraic system of two linear equations
for the unknowns b and B. The solution, depending on a and z, is given by

B =
1 + ra + rz + r2az

4
1 + r2Λ

, (20)

b =
2
3

rΛB− a− z− raz
2

=
2
3 rΛ− 1

3 r3azΛ− a− z− raz
2 −

1
3 r2Λ(a + z)

1 + r2Λ
. (21)

Furthermore, (18) can be written as

rb = 2 + ra + rz−
(

2 +
4
3

r2Λ

)
B. (22)

Multiplying (22) by a,

rab = 2a + ra2 + raz−
(

2 +
4
3

r2Λ

)
aB, (23)

And inserting it into (15), we obtain

2ra′ + 2a +
(

2a +
4
3

r2aΛ− 8
3

rΛ

)
B = 0. (24)

Similarly, multiplying (22) by z and introducing it into (16), we obtain

2rz′ + 2z +
(

2z +
4
3

r2zΛ− 8
3

rΛ

)
B = 0. (25)

By introducing Equation (20) into Equations (24) and (25), we obtain a self-contained
system of two first-order nonlinear differential equations involving a and z:

a + ra′

1 + ra + rz + r2az
4

=
−a− 2

3 r2aΛ + 4
3 rΛ

1 + r2Λ
(26)

z + rz′

1 + ra + rz + r2az
4

=
−z− 2

3 r2zΛ + 4
3 rΛ

1 + r2Λ
. (27)

This reduced system obeys the conditions of the local existence and uniqueness
theorem [29], and thus provides a solution to the full system (15)–(18) if we can also show
that b = B′

B is automatically satisfied. By differentiating (20), we obtain

B′ =

(
a + z + ra′ + rz′ + raz

2 + r2a′z
4 + r2az′

4

)
(1 + r2Λ)

−

(
1 + ra + rz + r2az

4

)
2rΛ

(1 + r2Λ)
2 . (28)

To force the appearance of the factor B on the right-hand side, we rewrite (28) as

B′ = B

(
a + z + ra′ + rz′ + raz

2 + r2a′z
4 + r2az′

4

1 + ra + rz + r2az
4

− 2rΛ

1 + r2Λ

)
. (29)

We observe the identity

a + z + ra′ + rz′ +
raz
2

+
r2a′z

4
+

r2az′

4
=
(
a + ra′

)(
1 +

rz
4

)
+
(
z + rz′

)(
1 +

ra
4

)
(30)
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which, coupled with the system (26)–(27), leads to

B′ = B


(
−a− 2

3 r2aΛ + 4
3 rΛ

)(
1 + rz

4
)
+
(
−z− 2

3 r2zΛ + 4
3 rΛ

)(
1 + ra

4
)
− 2rΛ

1 + r2Λ

. (31)

Comparing (31) with (21), we observe that the fraction on the right-hand side indeed
equals b, and thus b = B′

B is satisfied. This concludes the proof of the existence of a solution
to the 5D equations. As the 4D case results from (15)–(18) for z = 0, this also proofs the
existence of a solution for four spacetime dimensions.

3.2. Solution Classes

In this section, we will derive an Abel equation for the variable a. It is important to
note that the cosmological constant Λ ∼= 10−52 m2 has a negligible contribution to the final
solution of the metric around and inside the event horizon. Therefore, we set it to 0. The
resulting system of Equations (15)–(18) becomes

2ra′ + ra2 − rab + raz + 4a = 0 (32)

2rz′ + rz2 − rzb + raz + 4z = 0 (33)

−2ra′ − 2rz′ − ra2 − rz2 + rab + rzb + 4b = 0 (34)

−2− ra− rz + rb + 2B = 0. (35)

By isolating b in (32), we obtain

b =
4a + ra2 + raz + 2ra′

ra
(36)

which we insert into (33), resulting in

z = aC1. (37)

Here, without the loss of generality, we assume C1 > 0. Therefore, knowing a solution
for a (thus A) allows us to calculate solutions for b and z, and thus finally for B and Z.

When substituting expression (37) for z into the system (32)–(35), Equation (32)
equals (33), simplifying the system with the resulting equations:

2ra′ + ra2 − rab + ra2C1 + 4a = 0 (38)

−2ra′ − 2ra′C1 − ra2 − ra2C1
2 + rab + rabC1 + 4b = 0 (39)

−2− ra− raC1 + rb + 2B = 0. (40)

By inserting (36) into (38), we obtain an Abel equation for a:

a + ra′ + a
(

1 + raC1 + ra +
r2a2C1

4

)
= 0. (41)

It is worth noting that when C1 = 0, this equation is reduced to

2a + ra′ + ra2 = 0 (42)
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and

b =
2ra′ + ra2 + 4a

ra
(43)

which, together with (36), are the corresponding equations for the 4D Schwarzschild metric
with z = 0.

Hence, neglecting the influence of the second time dimension. The 4D Equations (42) and (43)
yield the exact solutions

a4D =
1

r
(

r
rS
− 1

) (44)

b4D = − rS
r(r− rS)

(45)

where the Schwarzschild radius rS = 2GM
c2 is related to the mass of the central object [4].

The corresponding solutions for A and B are

A4D = 1− rS
r

(46)

B4D =
r

r− rS
=
(

1− rS
r

)−1
. (47)

Let us now continue analyzing Equation (41).
Using the definitions

α> =
−(1 + C1) +

√
1 + C1 + C2

1
C1
2

(48)

α< =
−(1 + C1)−

√
1 + C1 + C2

1
C1
2

(49)

The Abel Equation (41) can be rewritten as

(ra)′ = −a
(

C1

4

)
(ra− α<)(ra− α>) (50)

with the implicit solution

ln|ra|+ α<ln|ra− α>| − α>ln|ra− α<|
α> − α<

= ln
( rS,5D

r

)
, (51)

using rS,5D as the integration constant. Note that both α> and α< are negative for C1 > 0.
For C1 → 0 , the asymptotic behaviors are as follows:

α> ∼ −1 (52)

C1α> ∼ −C1 (53)

C1α2
> ∼ −4C2

1 (54)

α< ∼ −
4

C1
(55)

C1α< ∼ −4 (56)
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C1α2
< ∼

16
C1

. (57)

Similarly, the asymptotic behaviors for C1 → ∞ are

α> ∼ −
1

C1
(58)

C1α> ∼ −1 (59)

C1α2
> ∼

1
C1

(60)

α< ∼ −4 (61)

C1α< ∼ −4C1 (62)

C1α2
< ∼ 16C1. (63)

Based on the initial condition a(r0), we can classify the solutions into different classes.
The first three cases cover situations where r0a(r0) < 0↔ a(r0) < 0 , which, due to the 4D
solution (44), we can interpret as being inside the event horizon. Case (iv) with r0a(r0) > 0
is supposed to be outside of the event horizon. An overview is found in Table 1:

Table 1. Overview of solution classes.

Solution Classes

(i) α< < r0a(r0) < α> < 0

(ii) α< < α> < r0a(r0) < 0

(iii) r0a(r0) < α< < α> < 0

(iv) 0 < r0a(r0)

For these different cases, we explore the asymptotic behavior of the solutions for r → 0 ,
r → ∞ , and r → rS,5D where needed. Note that for a complete description of the metric
in the limit r → ∞ , the cosmological constant would be needed. However, since we only
use the limits to check the consistency with the 4D Schwarzschild solutions (46) and (47)
for C1 → 0 without cosmological constant [4], and since we focus on the environment and
interior of black holes, we refrain from including the cosmological constant in our solutions.

(i) α< < r0a(r0) < α> < 0: In this case, it follows from (50) that (ra)′ < 0 for all r > 0.

Taking the limit r → 0 in (51), ra converges to α> as α<
α>−α<

< 0 and thus a behaves
like a ∼ α>

r , such that
A ∼ rα> . (64)

Similarly, z ∼ C1α>r, leading to

Z ∼ rC1α> . (65)

Then, with the help of (53),

B ∼ 1 + α> + C1α> +
1
4

C1α2
>. (66)
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We now consider the limits C1 → 0 and C1 → ∞, which yield the following asymp-
totic behaviors:

A ∼ r−1 (67)

Z ∼ r−C1 (68)

B ∼ −C1 − C2
1 (69)

for C1 → 0 and

A ∼ r−
1

C1 (70)

Z ∼ r−1 (71)

B ∼ − 3
4C1

(72)

for C1 → ∞ .
Moreover, if r → ∞ , then ra→ α< . Subsequently, a ∼ α<

r , and using the same
analysis as for r → 0 , we find:

A ∼ rα< (73)

Z ∼ rC1α< (74)

B ∼ 1 + α< + C1α< +
1
4

C1α2
<. (75)

The asymptotic behaviors of (73)–(75) are

A ∼ r−
4

C1 (76)

Z ∼ r−4 (77)

B ∼ −3 (78)

for C1 → 0 and
A ∼ r−4 (79)

Z ∼ r−4C1 (80)

B ∼ −3 (81)

for C1 → ∞ .
The results for A, Z, and B are summarized in Table 2. Note that for C1 → 0 , which

represents the limit of a vanishing second time dimension, the solutions for A and B exhibit
the same asymptotic behavior as A4D (46) and B4D (47), thus remaining consistent with
the 4D solution.
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Table 2. Asymptotic solution for case (i), α< < r0a(r0) < α> < 0 for r → 0, ∞ and C1 → 0, ∞ .

r→0 r→∞

A
C1 → 0 r−1 r−

4
C1

C1 → ∞ r−
1

C1 r−4

Z
C1 → 0 r−C1 r−4

C1 → ∞ r−1 r−4C1

B
C1 → 0 −C1 − C2

1 −3

C1 → ∞ − 3
4C1

−3

(ii) α< < α> < r0a(r0) < 0: In this case, (ra)′ > 0.

In the limit r → 0 , a behaves similarly to case (i), with a ∼ α>
r . As r approaches

infinity, a behaves as a ∼ − 1
r2 , which implies the following asymptotic solutions:

A ∼ e
1
r (82)

Z ∼ e
C1
r (83)

B ∼ 1− 1
r
− C1

r
+

C1

4r2 . (84)

Performing a similar analysis as for case (i), we can determine the asymptotic behavior
for C1 → 0 and C1 → ∞ , as summarized in Table 3.

Table 3. Asymptotic solution for case (ii), α> < r0a(r0) < 0 for r → 0, ∞ and C1 → 0, ∞ .

r→0 r→∞

A
C1 → 0 r−1 e

1
r

C1 → ∞ r−
1

C1 e
1
r

Z
C1 → 0 r−C1 e

C1
r

C1 → ∞ r−1 e
C1
r

B
C1 → 0 −C1 − C2

1 1− 1
r −

C1
r + C1

4r2

C1 → ∞ − 3
4C1

1− 1
r −

C1
r + C1

4r2

Note that for r → ∞ and C1 → 0 , e
1
r ∼ 1 + 1

r +
1

2r2 + · · · , which tends to 1 + 1
r , has

the same asymptotic behavior as in 4D. However, this specific behavior highlights that the
second time dimension, even in the limit of C1 → 0 , generates a solution that includes the
four-dimensional solution, but adds supplementary terms.

(iii) r0a(r0) < α< < α> < 0: In this case, (ra)′ < 0.

For r → 0 , a behaves similarly to case (i) and (ii), with a ∼ α>
r . As r → ∞ , a behaves

as a ∼ − 1
r2 . We perform a similar analysis as for cases (i, ii) and provide a summary of the

asymptotic behavior for C1 → 0 and C1 → ∞ in Table 4.
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Table 4. Asymptotic solution for case (iii), r0a(r0) < α< < α> < 0 for r → 0, ∞ and C1 → 0, ∞ .

r→0 r→∞

A
C1 → 0 r−1 e

1
r

C1 → ∞ r−
1

C1 e
1
r

Z
C1 → 0 r−C1 e

C1
r

C1 → ∞ r−1 e
C1
r

B
C1 → 0 −C1 − C2

1 1− 1
r −

C1
r + C1

4r2

C1 → ∞ − 3
4C1

1− 1
r −

C1
r + C1

4r2

(iv) r0a(r0) > 0: In this last case, ra > 0 and (ra)′ < 0 for all r > 0. With α>< < 0,
Equation (51) can be written as

α<ln
(

1− α>
ra

)
− α>ln

(
1− α<

ra

)
= ln

( rS,5D

r

)
. (85)

In the limit r → ∞ , a behaves like a ∼ 1
r2 , which is remarkably similar to cases (ii, iii).

Now, let us explore a solution close to rS,5D for slightly larger r. In this case, we can Taylor
expand both sides of (85) and obtain

a ∼
2√
C1

r
√

r
rS,5D
− 1

(86)

z ∼ 2
√

C1

r
√

r
rS,5D
− 1

. (87)

Thus, we have

A(r) ∼ e

4arctan(
√

r
rS,5D

−1)
√

C1 (88)

Z(r) ∼ e
4
√

C1arctan(
√

r
rS,5D

−1)
(89)

B(r) ∼ 1 +
2√
C1√

r
rS,5D
− 1

+
2
√

C1√
r

rS,5D
− 1

+
1

r
rS,5D
− 1

. (90)

Note that in (90), 1+ 1
r

rS,5D
−1 =

(
1− rS,5D

r

)−1
= B4D when identifying the Schwarzschild

radius rS with rS,5D. Therefore, B(r) ∼ B4D(r) as C1 → 0. Additionally,
(

1− rS,5D
r

)−1

dominates over 1√
r

rS,5D
−1

for all r > rS,5D. Thus, the singularity of B at r = rS,5D is of the form(
1− rS,5D

r

)−1
. However, as seen for the 4D solution, this singularity is purely mathematical

and can be eliminated through coordinate transformations [30]. In that sense, the solutions for
A, Z, and B can be extended beyond the Schwarzschild radius towards the interior of the event
horizon, r < rS,5D.

For the two cases r & rS,5D and r → ∞ , Table 5 summarizes their behavior for C1 → 0
and C1 → ∞ . It is worth noting, once again, that for C1 → 0 , the behavior of A and B
resembles that of A4D and B4D.
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Table 5. Asymptotic solution for case (iv), r0a(r0) > 0 for r & rS,5D, ∞, and C1 → 0, ∞ .

r & rS,5D r→∞

A
C1 → 0 4

(
r

rS,5D
−1
)

√
C1

e−
1
r

C1 → ∞ 1 e−
1
r

Z
C1 → 0 1 e−

C1
r

C1 → ∞ 4
√

C1

(
r

rS,5D
− 1
)

e−
C1
r

B
C1 → 0

(
1− rS,5D

r
)−1 1 + 1

r +
C1
r + C1

4r2

C1 → ∞ 2
√

C1√
r

rS,5D
−1

1 + 1
r +

C1
r + C1

4r2

3.3. Approximate Solution Close to r = 0

In this section, Equation (51) provides an implicit solution for a, which cannot be
solved explicitly. However, since our focus is on understanding the physics near the central
singularity, we can derive an approximate solution for a and, consequently, for the entire
metric around r = 0 using the implicit function theorem.

As seen in the previous section, all solution classes for r0a(r0) < 0 (i–iii) exhibit
similar behavior as r approaches zero, with the asymptotic behavior ra ∼ α>. To derive an
approximation for a around α>, we make the ansatz

ra = α> − rαg(r) (91)

where α = 1− α>
α<
∈ (0, 1). Inserting Equation (91) into (53) yields

ln(rS,5D) = ln(−α> + rαg(r)) +
α<

α> − α<
ln(g(r))− α>

α> − α<
ln (α> − α< − rαg(r)). (92)

Defining

F(u, v) = −ln(rS,5D) + ln(−α> + uv) +
α<

α> − α<
ln(v)− α>

α> − α<
ln (α> − α< − uv), (93)

when v > 0 and u are restricted to a small interval around 0, we observe that there exists a
unique v0, such that

F(0, v0) = −ln(rS,5D) + ln(−α>) +
α<

α> − α<
ln(v0)−

α>
α> − α<

ln(α> − α<) = 0. (94)

Additionally, ∂F
∂v(0,v0)

6= 0. Therefore, according to the implicit function theorem,
there exists an approximate solution v(u) = v0 + · · · such that F(u, v) = 0 for small u.
Translating u with rα and v = v0 + · · · with g(r), we find that (91) can be written as
ra = α> − rαv0 + · · · . Solving Equation (94) for v0 and inserting into (91) leads to the
approximate solution

a ≈ −
2
(

1+C1−
√

1+C1+C2
1

)
C1r − 2

2(1+C1)

1+C1+
√

1+C1+C2
1

(
C1r√

1+C1+C2
1

)−1+C1+
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1

((
1 + C1 +

√
1 + C1 + C2

1

)
rS,5D

) 2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1

(95)

around r = 0.
By performing similar calculations as in Section 3.2, we derive the set of solutions

A = A(r), Z = Z(r), and B = B(r):
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A(r) ≈ K1r−
2(1+C1−

√
1+C1+C2

1 )
C1 e

2

1−
2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1 (

C1r√
1+C1+C2

1

)

2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1 ((1+C1+

√
1+C1+C2

1 )rS,5D)

1−
2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1

C1rS,5D , (96)

Z(r) ≈ K2r−2(1+C1−
√

1+C1+C2
1)e

2

1−
2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1 (

C1r√
1+C1+C2

1

)

2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1 ((1+C1+

√
1+C1+C2

1 )rS,5D)

1−
2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1

C1rS,5D , (97)

B(r) ≈ 2
−2+ 2(1+C1)

1+C1+
√

1+C1+C2
1 C1r2

(
C1r√

1+C1+C2
1

)− 2(1+C1)

1+C1+
√

1+C1+C2
1
((

1 + C1 +
√

1 + C1 + C2
1

)
rS,5D

) −4
√

1+C1+C2
1

1+C1+
√

1+C1+C2
14

1+C1
1+C1+
√

1+C1+C2
1

(
C1r√

1+C1+C2
1

) 2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1 − 4

((
1 + C1 +

√
1 + C1 + C2

1

)
rS,5D

) 2
√

1+C1+C2
1

1+C1+
√

1+C1+C2
1

,

(98)

such that the total spacetime line element reads

ds2 = A(r)c2dt2 + Z(r)γ2dτ2 − B(r)dr2 − r2
(

dθ2 + sin2 θdϕ2
)

. (99)

K1,2 are integration constants. As mentioned in Section 3.2, A ∼ r−1 and B→ 0
for r → 0 and C1 → 0 , which is consistent with the solutions A4D (46) and B4D (47) for
four-dimensional spacetime. Specifically, we have

lim
C1→0

A = K1
e
− r

rS,5D

r
≈ K1

(
1
r
− 1

rS,5D

)
. (100)

For this limit to match the behavior of A4D, we identify K1 = −rS,5D and rS,5D = rS = 2GM
c2 .

Similarly, the limits of Z for C1 → 0 and C1 → ∞ are

lim
C1→0

Z = K2 (101)

lim
C1→∞

Z = K2
e
− r

rS,5D

r
. (102)

Since the 4D solution (C1 → 0) does not include Z, we set K2 ≈ 0 to be a small value.
This choice also eases the singularity at r = 0 for C1 → ∞ . It is interesting to observe that
even for small K2, A exhibits a distinct behavior from A4D.

Note that the method of using the implicit function theorem can be applied to approx-
imate solutions at any other point in spacetime. This implies that the approach presented
here can be extended to investigate the behavior of the metric at various locations beyond
the central singularity.

4. Physical Interpretation

In the case of A4D, it is well known that it diverges to infinity as r → 0 , resulting in a
singularity in spacetime. Given Equations (96)–(98) for r ≈ 0, let us explore how A and B
behave close to r = 0. Figure 1 depicts the absolute values |A| and |B| for the black hole
Sgr A* for different values of C1, comparing them with the four-dimensional solutions
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|A4D| (46) and |B4D| (48). To accommodate a logarithmic scale and account for the fact
that both A and B are negative for r < rS, we plot the absolute values.

Figure 1 illustrates that A and B indeed tend to the four-dimensional solutions as C1
decreases towards zero. Moreover, it shows that B converges to zero when r → 0 , aligning
with the behavior observed in the four-dimensional solution. However, for large values of
C1, the magnitude of A tends to rS which is consistent with the limit

lim
C1→∞

|A(r)| = |K1| = rS < ∞. (103)

Thus, A remains bounded and finite. This observation is in alignment with the
asymptotic behavior for r → 0 and C1 → ∞ discussed in Section 3.2 (see Tables 2–4).
Also note that for such large values of C1, |A(r)| ≈ rS for small r . lPlanck, where
lPlanck ≈ 10−35 m denotes the Planck length. At scales below the Planck length, the
laws of general relativity break down [31]. Previous calculations have indicated the poten-
tial influence of a second time dimension on small spatial scales in the order of the Planck
length [23], including the vicinity of a black hole’s central mass. Subsequently, we cannot
necessarily assume that C1 → 0 within the event horizon. The existence of a second time
dimension could potentially provide a viable solution to overcome the singularity at r = 0.

For large C1 around r = 0, the metric elements are regular, and so is the line el-
ement (99). Figure 2 shows the line element (99) and its four-dimensional equivalent
ds2

4D = A4D(r)c2dt2− B4D(r)dr2− r2(dθ2 + sin2 θdϕ2)with constants θ and ϕ for the same
situation depicted in Figure 1. While θ = const. is justified by considering particle motion
in the equatorial plane, we have chosen ϕ = const. to ease plotting. However, since there
is no singularity in ϕ, this choice does not alter our conclusions. Figure 2 shows that the
four-dimensional line element and the five-dimensional line element for small C1 diverge,
as expected. On the contrary, for large C1 the 5D line element is regular beyond the Planck
length. Hence, we conclude that the particle motion integrated over the infinitesimally
small line element is non-singular as well.
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Figure 1. The absolute values of the solutions (a) A(r) (96) and (b) B(r) (98) as a function of distance
r from the central point at r = 0 for Sgr A* (rS ≈ 1.227·1010 m [32]) for different C1. The crosses
indicate the four-dimensional solutions |A4D(r)| and |B4D(r)| (46, 47). The dotted line indicates the
Planck length lPlanck.
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Figure 2. The five-dimensional line element (99) for the same situation as in Figure 1. The crosses
indicate the four-dimensional line element ds2

4D = A4D(r)c2dt2 − B4D(r)dr2 − r2(dθ2 + sin2 θdϕ2).
As numerical values, we have chosen γ = c [25], dr = lPlanck, dt = dτ = tPlanck, the Planck time, and
K2 = 10−40.

5. Conclusions and Outlook

We have investigated the properties of non-rotating, non-charged Schwarzschild black
holes within an extended spacetime incorporating two temporal dimensions with the
aim of understanding the physics at the central singularity. We extended Einstein’s field
equations by one more time dimension and derived the corresponding equations for the
5D Schwarzschild metric. We have shown the existence of a solution which can also be
applied to the 4D Schwarzschild metric. We explored various solution classes both inside
and outside of the black hole’s event horizon, and presented an approximate solution for
the Schwarzschild metric in the proximity of the central singularity that remains consistent
with the 4D solution. Notably, our proposed solution effectively overcomes the singularity
quandary associated with black holes, providing valuable insights into their fundamental
properties within this augmented framework. As we currently cannot investigate the
interior of black holes, we cannot exclude the potential influence of additional dimensions
effectively acting on small spatial scales in the order of the Planck length [25]. Thus, we
have seen that in the vicinity of the central black hole mass, a second time dimension keeps
the metric bounded rather than diverging to infinity. Thus, we have found a solution to
the singularity problem of black holes. This work serves as a steppingstone for further
investigations into black holes, alternative spacetime metrics, additional dimensions, and
the underlying mathematical implications, ultimately providing a deeper understanding of
the nature and significance of black holes in the Universe.

In the future, we are planning to extend our work to more dimensions and metrics
and make predictions of observational effects of additional time dimensions. This includes
the solution of Einstein’s field equations for the Kerr metric describing rotating black holes,
which will be based on the current work on Schwarzschild black holes. Additionally, we
plan to develop a numerical framework to solve the geodetic equations in the vicinity of
the central mass. By doing so, we will be able to investigate particle orbits around the event
horizon in extended spacetime which will let us predict the particle motion around black
holes. This will finally allow us to make observational predictions of the physics around
the event horizon and ergosphere of rotating black holes, which can be compared with
future observations.
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Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way.
Astrophys. J. Lett. 2022, 930, 21.

14. Gambini, R.; Pullin, J. Black Holes in Loop Quantum Gravity: The Complete Space-Time. Phys. Rev. Lett. 2008, 101, 1301.
[CrossRef] [PubMed]

15. Pullin, J.; Gambini, R. A First Course in Loop Quantum Gravity; Oxford University Press: Oxford, UK, 2011.
16. Zwiebach, B. A First Course in String Theory; Cambridge University Press: Cambridge, UK, 2004.
17. Vaz, C. Black holes as gravitational atoms. J. Mod. Phys. 2014, D23, 1441002. [CrossRef]
18. Corda, C. Black Hole Spectra from Vaz’s Quantum Gravitational Collapse. Fortschr. Phys. 2023, 71, 2300028. [CrossRef]
19. Bars, I. Supersymmetry, p-brane duality, and hidden spacetime dimensions. Phys. Rev. D 1996, 54, 5203. [CrossRef]
20. Bars, I.; Kounnas, C. Theories with Two Times. Phys. Lett. B 1997, 402, 25–32. [CrossRef]
21. Bars, I.; Kounnas, C. String and particle with two times. Phys. Rev. D 1997, 56, 3664. [CrossRef]
22. Tegmark, M. On the dimensionality of spacetime. Class. Quantum Gravity 1997, 14, L69. [CrossRef]
23. Köhn, C. The Planck Length and the Constancy of the Speed of Light in Five Dimensional Spacetime Parametrized with Two

Time Coordinates. J. High Energy Phys. Gravit. Cosmol. 2017, 3, 635–650. [CrossRef]
24. Chen, X. Three Dimensional Time Theory: To Unify the Principles of Basic Quantum Physics and Relativity. arXiv 2005,

arXiv:quant-ph/0510010.
25. Köhn, C. A Solution to the Cosmological Constant Problem in Two Time Dimensions. J. High Energy Phys. Gravit. Cosmol. 2020, 6,

640–655. [CrossRef]
26. Elsborg, J.; Köhn, C. Magnetic monopoles in two time dimensions. Int. J. Mod. Phys. A 2022, 37, 2250141. [CrossRef]
27. Weinstein, S. Multiple Time Dimensions. arXiv 2008, arXiv:0812.3869.
28. Craig, W.; Weinstein, S. On determinism and well-posedness in multiple time dimensions. Proc. R. Soc. A 2009, 465, 3023–3046.

[CrossRef]
29. Lindelöf, E. Sur l’application de la méthode des approximations successives aux équations différentielles ordinaires du premier

ordre. C. R. Hebd. Séances Acad. Sci. 1894, 118, 454–457.
30. Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 3rd ed.; Pergamon Press: London, UK, 1971; Volume 2.

https://doi.org/10.1073/pnas.201365798
https://www.ncbi.nlm.nih.gov/pubmed/11553801
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1063/1.1704351
https://doi.org/10.1002/andp.19163550905
https://doi.org/10.1002/andp.19173591804
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.101.161301
https://www.ncbi.nlm.nih.gov/pubmed/18999656
https://doi.org/10.1142/S0218271814410028
https://doi.org/10.1002/prop.202300028
https://doi.org/10.1103/PhysRevD.54.5203
https://doi.org/10.1016/S0370-2693(97)00452-8
https://doi.org/10.1103/PhysRevD.56.3664
https://doi.org/10.1088/0264-9381/14/4/002
https://doi.org/10.4236/jhepgc.2017.34048
https://doi.org/10.4236/jhepgc.2020.64043
https://doi.org/10.1142/S0217751X2250141X
https://doi.org/10.1098/rspa.2009.0097


Astronomy 2023, 2 285

31. Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23.
[CrossRef]

32. Lo, K.Y.; Shen, Z.-Q.; Zhao, J.-H.; Ho, P.T.P. Intrinsic Size of Sagittarius A*: 72 Schwarzschild Radii. Astrophys. J. 1998, 508, L61.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/universe2040023
https://doi.org/10.1086/311726

	Introduction 
	5D Schwarzschild Equations 
	Solution of 5D Equations 
	Existence of a Solution 
	Solution Classes 
	Approximate Solution Close to r = 0  

	Physical Interpretation 
	Conclusions and Outlook 
	References

