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Abstract: The glutamate ionotropic kainate receptors, encoded by the GRIK gene family, are composed
of four subunits and function as ligand-activated ion channels. They play a critical role in regulating
synaptic transmission and various synaptic receptors’ processes, as well as in the pathophysiology of
schizophrenia. However, their functions and mechanisms of action need to be better understood and are
worthy of exploration. To further understand the exact role of the kainate receptors in vitro, we generated
kainate-receptor-knockout (KO) isogenic SH-SY5Y cell lines using the CRISPR/Cas9-mediated gene edit-
ing method. We conducted RNA sequencing (RNA-seq) to determine the differentially expressed genes
(DEGs) in the isogenic edited cells and used rhodamine-phalloidin staining to quantitate filamentous
actin (F-actin) in differentiated edited cells. The RNA-seq and the Gene Ontology enrichment analysis
revealed that the genetic deletion of the GRIK1, GRIK2, and GRIK4 genes disturbed multiple genes in-
volved in numerous signal pathways, including a converging pathway related to the synaptic membrane.
An enrichment analysis of gene–disease associations indicated that DEGs in the edited cell lines were
associated with several neuropsychiatric disorders, especially schizophrenia. In the morphology study,
fluorescent images show that less F-actin was expressed in differentiated SH-SY5Y cells with GRIK1,
GRIK2, or GRIK4 deficiency than wild-type cells. Our data indicate that kainate receptor deficiency
might disturb synaptic-membrane-associated genes, and elucidating these genes should shed some light
on the pathophysiology of schizophrenia. Furthermore, the transcriptomic profiles for kainate receptor
deficiency of SH-SY5Y cells contribute to emerging evidence for the novel mechanisms underlying the
effect of kainate receptors and the pathophysiology of schizophrenia. In addition, our data suggest that
kainate-receptor-mediated F-actin remodeling may be a candidate mechanism underlying schizophrenia.

Keywords: schizophrenia; GRIK1; GRIK2; GRIK4; kainate receptor; CRISPR/Cas9; synaptic membrane;
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1. Introduction

Glutamate receptors mediate a vital part of neurotransmission in the mammalian central
nervous system and play a necessary role in synaptic plasticity, neurodevelopment, and cogni-
tive functions [1,2]. The predominant excitatory neurotransmitter glutamate receptor ionotropic
forms are activated in various normal neurophysiologic processes [3,4]. There are three classes
of glutamate receptor ionotropic forms, namely N-methyl-D-aspartate (NMDA), alpha-amino-3-
hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA), and kainate receptors [5].

The kainate receptors encoded by the GRIK gene family are composed of five subunits
(GRIK1, GRIK2, GRIK3, GRIK4, and GRIK5) and function as ligand-activated ion channels [6].
The kainate receptors dominate brain regions and play critical roles in synaptic plasticity,
transmission, learning, and memory [4,7,8]. Several studies show that abnormal kainate
receptor expression in the brain was observed in subjects with schizophrenia [9–13]. Rare
variations in a group of genes linked to synaptic development, function, and plasticity were
burdened in patients with schizophrenia [14]. Notably, several reports identified rare novel
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mutations of the GRIK gene family, suggesting a potential role for rare and significant effects
of mutations of the GRIK gene family for susceptibility to schizophrenia [15–18]. Recently,
we identified four ultra-rare truncating mutations, including two frameshift deletion mu-
tations (GRIK1p.Phe24fs and GRIK1p.Thr882fs) and two nonsense mutations (GRIK2p.Arg300Ter

and GRIK4p.Gln342Ter), in four unrelated patients with schizophrenia [19]. Taken together,
rare pathologic mutations of the genes encoding kainate receptor protein alter biological
processes of synaptic function in patients with schizophrenia.

Innovative CRISPR-based approaches have been used for studying the molecular
mechanisms of schizophrenia in cellular models [20]. Functional genomic studies using
cell models carrying the deleterious kainate receptor gene mutations are necessary to
understand the role of kainate-receptor-interacting genes and how they contribute to the
etiology of schizophrenia. To explore the novel mechanism underlying the effect of kainate
receptors, we used the CRISPR/Cas9 genome editing system to create the isogenic kainate-
receptor-gene-deficiency SH-SY5Y cell lines. We conducted RNA sequencing (RNA-seq)
to determine the differentially expressed genes (DEGs) in these isogenic edited cell lines.
Furthermore, we induced these edited SH-SY5Y cells into the differentiated forms and
compared the morphology of edited differentiated cells with the wild type.

2. Results
2.1. Generation of the Isogenic Kainate-Receptor-Gene-Knockout (KO) SH-SY5Y Cell Lines with
CRISPR/Cas9 Editing

Isogenic GRIK1-KO, GRIK2-KO, and GRIK4-KO cell lines were generated with
CRISPR/Cas9 genome editing from SH-SY5Y cell lines. The gRNAs were designed to target
the unique sequences in the GRIK1, GRIK2, and GRIK4 genes (Figure 1A–C, Supplementary
Table S1) according to the CHOPCHOP online design website
(http://chopchop.cbu.uib.no/; last accessed on 4 December 2023). The potential off-target
sites for these gRNAs are listed in Supplementary Table S1. Considering the off-target effects
of the CRISPR/Cas9, we carried out a confirmation with Sanger sequencing and revealed
null off-target results in each edited cell line (Supplementary Figure S1). The pCas-guide
vector containing target gRNA was transfected to SH-SY5Y cells. After single-cell isolation,
five mutant cell lines (GRIK1p.L25Pfs*?/WT, GRIK1p.L25Pfs*?/p.L25Pfs*?, GRIK2p.L301Ffs*?/WT,
GRIK2p.L301Ffs*?/p.L301Ffs*?, and GRIK4p.H343Afs*?/p.H343Afs*?) were found. The edited cell
lines were confirmed with Sanger sequencing (Figure 1A–C) and RT-qPCR (Figure 1D).
An analysis of highly variable STR markers can be used in authenticating human cell
lines. Here, the edited cell lines were authenticated by analyzing the 16 STR markers using
the AmpFLSTR™ Identifiler™ Plus PCR Amplification Kit, and the STR allelic profile of
each edited cell line is shown in Supplementary Figure S2. Based on 16 STR loci compar-
isons, we found 16 STR loci among edited cell lines, and SH-SY5Y wild-type (WT) cells
were concordant.

2.2. RNA-seq of the GRIK1-KO, GRIK2-KO, GRIK4-KO SH-SY5Y Cell Lines

Three cell clones with the homozygous frameshift mutations [GRIK1p.L25Pfs*?/p.L25Pfs*?

(GRIK1-KO), GRIK2p.L301Ffs*?/p.L301Ffs*? (GRIK2-KO), and GRIK4p.H343Afs*?/p.H343Afs*?

(GRIK4-KO)] and SH-SY5Y WT cells were obtained with RNA-seq in biological repli-
cates. The number of reads per sample varied between 38,279,594 and 53,728,068 among
the eight sequenced RNA samples (Supplementary Table S2). After the differential gene
expression analysis, 1653 DEGs (GRIK1-KO vs. WT), 2409 DEGs (GRIK2-KO vs. WT), and
2968 DEGs (GRIK4-KO vs. WT) were identified according to fold change criteria greater
than 2 and p.adjust less than 0.05 (Figure 2A, Supplementary Tables S3–S5). A hierarchical
clustered heatmap shows the expression patterns of significant (fold change ≤−2 or ≥2;
p < 0.05) DEGs in GRIK1-KO, GRIK2-KO, and GRIK4-KO cell lines (Figure 2B). GO contains
three ontologies that describe the molecular function (MF), cellular component (CC), and
biological process (BP) of the gene. After the GO enrichment analysis (p < 0.01), many
DEGs were involved in multiple pathways (Supplementary Tables S6–S8). Figure 2C–E
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summarize the top 30 GO enrichments of DEGs in GRIK1-KO, GRIK2-KO, and GRIK4-KO
cell lines, respectively. Notably, the GO enrichment analysis demonstrated that DEGs in
GRIK1-KO, GRIK2-KO, and GRIK4-KO cell lines were involved in a converging pathway,
the synaptic membrane (GO:0097060, Table 1). KEGG pathway analyses showed that DEGs
in the edited cell lines were associated with several pathways and diseases and the top
10 KEGG pathways were identified by analyzing significant DEGs shown as dot plots in
Supplementary Figure S3. The enrichment analysis of gene–disease associations indicates
that DEGs in the edited cell lines were significantly (p < 0.05) associated with several
neuropsychiatric disorders such as schizophrenia, bipolar disorder, depressive disorder,
manic disorder, and autism spectrum disorders (Table 2).
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Figure 1. Generation and characterization of GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y cell 
lines. (A) The schema of the gRNA target site of the GRIK1 gene (red arrow). Sanger sequencing 
analysis of wild-type (GRIK1WT/WT) and two edited cell lines (GRIK1p.L25Pfs*?/WT and 
GRIK1p.L25Pfs*?/p.L25Pfs*?). (B) The schema of the gRNA target site of the GRIK2 gene (red arrow). Sanger 
sequencing analysis of wild-type (GRIK2WT/WT) and two edited cell lines (GRIK2p.L301Ffs*?/WT and 
GRIK2p.L301Ffs*?/p.L301Ffs*). (C) The schema of the gRNA target site of the GRIK4 gene (red arrow). Sanger 
sequencing analysis of wild-type (GRIK4WT/WT) and one edited cell line (GRIK4 p.H343Afs*?/p.H343Afs*?). (D) 
RT-qPCR assay showing the expression of GRIK1, GRIK2, and GRIK4 genes in GRIK1p.L25Pfs*?/p.L25Pfs*? 

(GRIK1-KO), GRIK2p.L301Ffs*?/p.L301Ffs* (GRIK2-KO), and GRIK4 p.H343Afs*?/p.H343Afs*? (GRIK4-KO) SH-SY5Y 
cell lines, respectively, compared to WT cells. The GAPDH gene was used as the endogenous gene 
for normalization. The data are expressed as fold change to WT ± SD (* p < 0.05, n = 6). Arrowhead 
indicates the predicted double-strand break site. PAM means the protospacer adjacent motif. 

2.2. RNA-seq of the GRIK1-KO, GRIK2-KO, GRIK4-KO SH-SY5Y Cell Lines 
Three cell clones with the homozygous frameshift mutations [GRIK1p.L25Pfs*?/p.L25Pfs*? 

(GRIK1-KO), GRIK2p.L301Ffs*?/p.L301Ffs*? (GRIK2-KO), and GRIK4p.H343Afs*?/p.H343Afs*? (GRIK4-KO)] 
and SH-SY5Y WT cells were obtained with RNA-seq in biological replicates. The number 
of reads per sample varied between 38,279,594 and 53,728,068 among the eight sequenced 
RNA samples (Supplementary Table S2). After the differential gene expression analysis, 
1653 DEGs (GRIK1-KO vs. WT), 2409 DEGs (GRIK2-KO vs. WT), and 2968 DEGs (GRIK4-
KO vs. WT) were identified according to fold change criteria greater than 2 and p.adjust 
less than 0.05 (Figure 2A, Supplementary Tables S3–S5). A hierarchical clustered heatmap 
shows the expression patterns of significant (fold change ≤−2 or ≥2; p < 0.05) DEGs in 
GRIK1-KO, GRIK2-KO, and GRIK4-KO cell lines (Figure 2B). GO contains three ontologies 
that describe the molecular function (MF), cellular component (CC), and biological pro-
cess (BP) of the gene. After the GO enrichment analysis (p < 0.01), many DEGs were in-
volved in multiple pathways (Supplementary Tables S6–S8). Figure 2C–E summarize the 
top 30 GO enrichments of DEGs in GRIK1-KO, GRIK2-KO, and GRIK4-KO cell lines, re-
spectively. Notably, the GO enrichment analysis demonstrated that DEGs in GRIK1-KO, 
GRIK2-KO, and GRIK4-KO cell lines were involved in a converging pathway, the synaptic 
membrane (GO:0097060, Table 1). KEGG pathway analyses showed that DEGs in the ed-
ited cell lines were associated with several pathways and diseases and the top 10 KEGG 
pathways were identified by analyzing significant DEGs shown as dot plots in 

Figure 1. Generation and characterization of GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y
cell lines. (A) The schema of the gRNA target site of the GRIK1 gene (red arrow). Sanger se-
quencing analysis of wild-type (GRIK1WT/WT) and two edited cell lines (GRIK1p.L25Pfs*?/WT and
GRIK1p.L25Pfs*?/p.L25Pfs*?). (B) The schema of the gRNA target site of the GRIK2 gene (red arrow).
Sanger sequencing analysis of wild-type (GRIK2WT/WT) and two edited cell lines (GRIK2p.L301Ffs*?/WT

and GRIK2p.L301Ffs*?/p.L301Ffs*). (C) The schema of the gRNA target site of the GRIK4 gene (red ar-
row). Sanger sequencing analysis of wild-type (GRIK4WT/WT) and one edited cell line (GRIK4
p.H343Afs*?/p.H343Afs*?). (D) RT-qPCR assay showing the expression of GRIK1, GRIK2, and GRIK4
genes in GRIK1p.L25Pfs*?/p.L25Pfs*? (GRIK1-KO), GRIK2p.L301Ffs*?/p.L301Ffs* (GRIK2-KO), and GRIK4
p.H343Afs*?/p.H343Afs*? (GRIK4-KO) SH-SY5Y cell lines, respectively, compared to WT cells. The GAPDH
gene was used as the endogenous gene for normalization. The data are expressed as fold change to
WT ± SD (* p < 0.05, n = 6). Arrowhead indicates the predicted double-strand break site. PAM means
the protospacer adjacent motif.



SynBio 2024, 2 59SynBio 2024, 2, FOR PEER REVIEW 5 
 

 

Figure 2. RNA-seq analysis. (A) Volcano plot analysis of DEGs between GRIK1p.L25Pfs*?/p.L25Pfs*?

(GRIK1-KO), GRIK2p.L301Ffs*?/p.L301Ffs* (GRIK2-KO), and GRIK4 p.H343Afs*?/p.H343Afs*? (GRIK4-KO)
SH-SY5Y cell lines, respectively, compared to WT cells. (B) Hierarchical clustered heatmap showing
the expression patterns of significant (fold change ≤−2 or ≥2; p < 0.05) DEGs in each edited cell line.
(C) Top 30 GO terms enriched in GRIK1-KO SH-SY5Y cell lines. (D) Top 30 GO terms enriched in
GRIK2-KO SH-SY5Y cell lines. (E) Top 30 GO terms enriched in GRIK4-KO SH-SY5Y cell lines. BP is
the biological process; CC is the cell component; MF is the molecular function.
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Table 1. A summary of synaptic-membrane-associated genes in GRIK1-KO, GRIK2-KO, and GRIK4-
KO cell lines.

Group Gene Count Gene IDs Adjusted p Value

GRIK1-KO vs. WT 49

LRRC7, SNCAIP, ACTN2, CHRNA3, IGSF9B, ERC1, RPH3A, NRCAM, GABRP,
NRP1, SLC8A3, RIMS4, SLC6A2, APBA1, OPRD1, PCDH17, IQSEC3, GRIA3,
FLRT3, KCNC1, CHRM3, CNTN6, LRP4, ARRB1, DLG5, GRIA4, GRIP1, SORCS3,
LHFPL4, CACNA1D, CHRNB2, NTNG1, KCNJ9, LRRTM1, KCNJ3, ADORA1,
GPER1, PRRT2, NSG1, DAG1, GRM8, GRID1, CHRM5, DCC, INSYN2A, NTNG2,
ARC, DMD, GABBR1

0.00022

GRIK2-KO vs. WT 62

SNCAIP, ACTN2, IGSF9B, ERC1, LZTS3, RPH3A, NRCAM, GABRP, SLC8A3,
RIMS4, GLRA2, CBLN1, SLC6A2, GRIN2D, APBA1, GRM6, CSPG5, STRN,
OPRD1, DLGAP3, PCDH17, GRIA2, GRIA3, FLRT3, PRKCG, ADORA2A, KCNC1,
SYT11, CNTN6, ARRB1, KCNH1, LRRC4C, ITGB1, DLG5, PTPRO, GRIA4, GRIP1,
PSD3, SORCS3, CACNA1D, CLSTN2, CHRNB2, NTNG1, KCNJ3, ADORA1,
GRIK2, GPER1, RAPSN, PRRT2, CTNNB1, NSG1, CDH2, DAG1, ZNRF2, GRID1,
CHRM5, DCC, PCDHB13, PJA2, GABBR1, GRID2IP, GABRQ

6.32 × 10−5

GRIK4-KO vs. WT 116

ITGA3, ADAM22, SYT7, GABRA3, ANK1, ATP2B4, SNCAIP, SNAP91, SYT1,
ATP2B1, CACNG4, GPC4, ACTN2, ERC1, GABRP, NRP1, SLC8A3, SYP, DRP2,
CBLN1, SLC6A2, STX1A, DNM1, NEURL1, CNTNAP1, OPRM1, CSPG5,
ADAM23, OPRD1, DLGAP3, PLPPR4, PCDH17, GRIA2, IQSEC3, SLITRK3,
GRIA3, PRKCG, LRFN1, KCNC1, UNC13A, SYNE1, PRR7, SLC6A11, SNAP25,
SYT11, CHRM3, EPHB2, CNTN6, ANXA1, ARRB1, FXYD6, SLC16A3, KCNH1,
GRIP2, TMEM108, LRRTM2, NLGN4X, DRD2, HTR3B, GRIK4, ITGB1,
CACNA1C, DLG5, NRGN, GRIP1, PSD3, SORCS3, LRFN2, LHFPL4, ATP2B2,
CACNA1D, DGKI, KCNB1, CHRNB2, SHANK1, SHANK2, NTNG1, NCSTN,
KCNJ3, PDLIM5, ADORA1, GRIK2, FABP5, GPER1, GABRB3, CACNG2,
CTNNB1, NSG1, NLGN1, SLC30A1, CDH2, KCND3, CLSTN1, SYNPO, DAG1,
RIMS2, GRIN1, KCNA2, KCTD12, CHRM2, GABRG3, SLC8A1, KCTD16, CHRM5,
PCDHB13, ERC2, GABRD, NLGN3, NTNG2, SLC6A9, SIPA1L1, DNM3, DLGAP2,
ARC, PJA2, GABRQ

8.41 × 10−18

Table 2. Enrichment for the neuropsychiatric-disorder-associated genes among DEGs based on the
DisGeNET database.

Term Concept ID Gene Count Gene IDs p Value

GRIK1-KO vs. WT

Schizophrenia C0036341 40

GSK3B, BTG1, ABCB1, CHAT, GSTT2, ADARB1, THBS1, AGER, PCDH17, ERBB3,
CCND1, GRM8, PLXNA2, MAGEC1, ST3GAL1, GRIA3, GRIA4, JAG2, GSTM2, JUN,
GABBR1, GRID1, BCL11A, BDNF, ST8SIA2, PDE4D, PLEKHA6, GFRA3, MSS51,
ESR2, GNAO1, CACNB2, ALDH3A1, EML5, CALY, BCL2, ESAM, CHRFAM7A,
PDE7B, ASTN2

7.08 × 10−5

Mental Depression C0011570 13 GSK3B, ABCB1, GRID1, BDNF, DUSP1, PDE4D, CHAT, PER2, PER3, ERBB3, A2M,
GRIA3, ATF3 0.01597

Major Depressive
Disorder C1269683 12 GSK3B, ABCB1, TEF, ERBB3, CCND1, BDNF, NTM, PEA15, BDKRB2, RAPGEF5,

CD34, ESR2 0.02756

Bipolar Disorder C0005586 19
GSK3B, GRID1, BDNF, CNTN6, ST8SIA2, STARD9, CACNA1D, ADARB1, PER2,
CACNB2, PER3, ERBB3, BDKRB2, BCL2, CHRFAM7A, RAPGEF5, ASTN2, ST3GAL1,
GRIA3

0.03086

GRIK2-KO vs. WT

Unipolar Depression C0041696 17 GRIA2, GSK3B, ENPEP, OXTR, ABCB1, RAPH1, GJA1, PINK1, TEF, CCND1,
PEA15, GNB1, BDKRB2, GNB3, GHRL, RAPGEF5, CD34 0.00899

Major Depressive
Disorder C1269683 16 GRIA2, GSK3B, ENPEP, OXTR, ABCB1, RAPH1, NR4A1, GJA1, PINK1, TEF,

CCND1, PEA15, BDKRB2, GNB3, RAPGEF5, CD34 0.011333

Schizophrenia C0036341 41

GRIA2, GSK3B, OXTR, ABCB1, GSTT2, GRIK2, ADARB1, AGER, PCDH17, ALS2CL,
CCND1, CTSK, PLXNA2, ST3GAL1, GRIA3, GRIA4, JAG2, GABRQ, GSTM2,
GABBR1, GRID1, BCL11A, ST8SIA2, PDE4D, PLEKHA6, TAP1, GFRA3, GRIN2D,
GNAO1, CACNB2, EML5, PINK1, PITPNM1, SYT11, BCL2, GNB3, CSPG5, ESAM,
CHRFAM7A, PDE7B, ASTN2

0.01454

Depressive Disorder C0011581 16 DUSP4, GSK3B, OXTR, ABCB1, GRID1, PDE4D, BICC1, PER2, PER3, GNB1, BCL2,
GNB3, GHRL, A2M, GRIA3, ATF3 0.04467
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Table 2. Cont.

Term Concept ID Gene Count Gene IDs p Value

GRIK4-KO vs. WT

Schizophrenia C0036341 181

CHRM2, OXTR, VIPR2, MYT1L, CHRM5, DIXDC1, PLAT, CLU, RIMS2, RGS5,
HTR6, CCND1, ADORA1, PIP4K2A, TEKT5, SOX5, PDGFRB, CHRNB2, SLC30A3,
KCNH6, ACSL6, HLA-C, TAP1, LIFR, SLC6A11, UNC5C, PRKCA, PDZK1, HLA-E,
UHMK1, EML5, ARC, KCNQ2, KCNQ3, KCTD12, STX1A, GRIA2, ADCYAP1R1,
MAOB, CHAT, SLC1A1, CACNA1B, LPAR1, GSTT2, CACNA1C, CPLX2,
ADAMTS12, CPLX1, PCDH17, NPAS3, HRH1, TSPAN8, BLOC1S1, PLXNA2,
MAGEC1, KCNN3, DRD2, ST3GAL1, PAG1, GRIA3, ABCA1, NTNG1, NTNG2,
NGFR, JUN, ACE, TGFB1, JAG1, TNFSF13, HSPA12A, CP, PHOX2B, QKI, DCLK1,
GNAO1, SLC6A9, CALY, SP1, MYO5B, PAH, CSPG5, FXYD6, ESAM, CHRFAM7A,
FGFR2, FGFR1, GABRB3, DDR1, GSK3B, CNTNAP2, TENM4, MEGF10, NCAN,
MIR137HG, ARHGAP1, GRIK4, ATP2A2, GRIK2, STON2, SLC6A2, SIRPB1, ELAVL2,
NRGN, CALB1, ADAMTS3, SH3PXD2A, PSD3, CASP4, NOS1, DLGAP2, SLC18A1,
CGNL1, PSD, ARHGEF11, SREBF1, KREMEN1, NRG1, GFRA1, OPRM1, SYP,
HTR3B, GFRA3, ADRA2A, SYN1, DNM1, TNFRSF1A, VSNL1, NRG3, IL3RA,
NOS1AP, PPARA, PLCB1, TLR4, TLR3, SHANK1, GRN, NLGN1, LRP1, SEMA3D,
CCDC68, SEMA3A, PTGER3, CRMP1, NRXN2, LRP8, THBS1, FSTL1, PTGS1, RELN,
ERBB3, CBS, CCL2, SLIT3, IGF2BP2, PDLIM5, CACNG2, SNCB, GABRD, KCNJ3,
NTRK1, GABRQ, CHGA, SLC12A2, NTRK2, GCH1, KCNB1, GAD1, ZNF804A,
LSAMP, PLEKHA6, COL3A1, NFASC, PINK1, FABP5, PSAT1, SYT11, KCNS3, FAS,
CTNNB1, PDE7B, VIP

4.84 × 10−11

Bipolar Disorder C0005586 96

GABRB3, CHRM2, CNTNAP2, SNAP25, GSK3B, VIPR2, TENM4, DOCK9, NCAN,
BHLHE41, DIXDC1, GRIK4, GRIK2, DBH, SLC6A2, NRGN, SYNE1, RGS4, CSRP1,
BDKRB2, PIP4K2A, THSD7A, SLC18A1, SLC39A3, NRG1, HTR3B, SEZ6L, POU3F2,
DUSP6, HLA-E, SFRP1, NRG3, PACS1, SCN8A, KCNQ2, KCNQ3, KCTD12, MFGE8,
PLCB1, TLR4, SHANK2, GRIA2, GRN, NLGN1, DDC, MAOB, SLC1A1, CACNA1B,
ATP1A3, CACNA1D, CACNA1C, ATP1A1, CPLX2, ADD3, RASGRP1, HIF1A,
CPLX1, NPAS3, FSTL5, PROKR2, RELN, CUX2, ERBB3, TSPAN8, MAP2, CBS,
KCNN3, DRD2, PDLIM5, ST3GAL1, GRIA3, S100A10, NTRK1, NTNG1, NTNG2,
NTRK2, TGFB1, ACE, HSPA5, FZD4, WFS1, CNTN6, GAD1, GABRA3, ZNF804A,
NR1D1, AGT, DCLK1, GRIN1, PER2, PDE10A, PPP2R2C, CHRFAM7A, VIP, FGFR2,
FGFR1

7.70 × 10−6

Unipolar Depression C0041696 57

CNTNAP2, SNAP25, GSK3B, OXTR, PTPRR, MYT1L, SERPINE1, DIXDC1, GRIK4,
ARRB1, DBH, SLC6A2, GJA1, CCND1, FTH1, BDKRB2, SOX9, NOS1, CD34, HTR3B,
PLCB1, GRIA2, DDC, ENPEP, HLF, MAOB, LRP1, NTM, CACNA1C, HIF1A,
KALRN, LRP8, EGFR, NPAS3, PDE11A, RELN, ERBB3, TERT, MAP2, ABI3BP, CCL2,
SLIT3, DRD2, PDLIM5, S100A10, NTRK2, ACE, CDKN2A, GAD1, EDEM1, LSAMP,
BMP7, QKI, SOD1, PINK1, TEF, FGFR1

5.98 × 10−5

Major Depressive
Disorder C1269683 54

CNTNAP2, GSK3B, OXTR, PTPRR, MYT1L, SERPINE1, GRIK4, ARRB1, DBH,
SLC6A2, IFI44L, GJA1, CCND1, BDKRB2, SOX9, CD34, EDN1, HTR3B, PLCB1,
GRIA2, DDC, ENPEP, HLF, MAOB, LRP1, NTM, CACNA1C, HIF1A, KALRN, LRP8,
EGFR, NPAS3, PDE11A, RELN, ERBB3, TERT, MAP2, ABI3BP, CCL2, SLIT3, DRD2,
PDLIM5, S100A10, NTRK2, ACE, CDKN2A, GAD1, EDEM1, LSAMP, BMP7, QKI,
PINK1, TEF, FGFR1

7.35 × 10−5

Manic Disorder C0024713 22
NTNG1, NTRK1, NTRK2, GSK3B, NTNG2, SNAP25, TENM4, GAD1, NCAN,
DIXDC1, CACNA1D, CACNA1C, GRIK2, ADD3, CPLX2, POU3F2, CPLX1, FSTL5,
RELN, PACS1, THSD7A, SHANK2

1.70 × 10−4

Manic C0338831 23
NTNG1, NTRK1, NTRK2, GSK3B, NTNG2, SNAP25, TENM4, GAD1, NCAN,
DIXDC1, CACNA1D, CACNA1C, GRIK2, ADD3, CPLX2, POU3F2, CPLX1, FSTL5,
RELN, PACS1, CCL2, THSD7A, SHANK2

2.56 × 10−4

Depression, Bipolar C0005587 23
NTNG1, NTRK1, NTRK2, GSK3B, NTNG2, SNAP25, TENM4, GAD1, NCAN,
DIXDC1, GRIK4, CACNA1D, CACNA1C, GRIK2, ADD3, CPLX2, POU3F2, CPLX1,
FSTL5, RELN, PACS1, THSD7A, SHANK2

3.13 × 10−4

Psychotic Disorders C0033975 26
SNAP25, TENM4, GRIK4, CACNA1C, CPLX2, CPLX1, NPAS3, ST3GAL1, CD34,
SLC39A3, APOBEC3C, SLC12A2, NTRK1, TGFB1, KCNH6, GCH1, PRKCA, OPRM1,
GRIN1, HLA-E, PDE10A, SLC6A9, SP1, PAH, FGFR2, SHANK1

8.84 × 10−4

Autism Spectrum
Disorders C1510586 21

GABRB3, GABRQ, NLGN3, DPP10, RYR2, CNTNAP2, MEF2C, OXTR, NLGN4X,
PCDH9, LRRN3, MYT1L, SLC1A1, NRXN2, FOXP1, UNC80, RELN, PAH, SOX9,
TBL1X, SOX5

0.00518

Mental Depression C0011570 46

GABRB3, CHRM2, SNAP25, GSK3B, GRN, OXTR, MAOB, CHAT, SLC1A1, ATP1A3,
ATP2A2, CACNA1C, DBH, CPLX2, SLC6A2, HIF1A, CPLX1, RELN, ERBB3, DRD2,
SLC18A1, GRIA3, S100A10, NGFR, NTRK2, CDKN2A, WFS1, DUSP1, GAD1,
GABRA3, NRG1, HTR3B, OPRM1, SYN1, ADRA2A, BICC1, AGT, DUSP6,
TNFRSF1A, SOD1, PER2, SFRP1, ATF3, SLC29A3, FGFR2, FGFR1

0.01676

Depressive Disorder C0011581 50

GABRB3, CHRM2, SNAP25, GSK3B, OXTR, DIXDC1, ATP2A2, DBH, SLC6A2,
FTH1, NOS1, SLC18A1, DUSP1, NRG1, HTR3B, OPRM1, ADRA2A, DUSP6, SYN1,
TNFRSF1A, SFRP1, SLC29A3, ATF3, GRN, MAOB, CHAT, SLC1A1, ATP1A3,
CACNA1C, CPLX2, CPLX1, RELN, DRD2, GRIA3, S100A10, NTRK2, NGFR, TGFB1,
ACE, CDKN2A, WFS1, GAD1, GABRA3, NR1D1, AGT, BICC1, SOD1, PER2, FGFR2,
FGFR1

0.02753

2.3. Confirmation of Schizophrenia-Associated Genes in GRIK1-KO, GRIK2-KO, and GRIK4-KO
SH-SY5Y Cell Lines with RT-qPCR

For RNA-seq data verification, six schizophrenia-associated genes (ARC, GRIA2,
GRIA4, GABRB3, GRM8, and KCNJ3) in the synaptic membrane pathway were selected for
verification with biological replicated cells. We compared the mRNA expression levels of
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these six genes in biologically replicated cells with an RT-qPCR assay, and the fold changes
in these gene expressions between edited cells and WT cells are shown in Figure 3.
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GRIA4, GABRB3, GRM8, and KCNJ3) in edited SH-SY5Y cells (GRIK1-KO, GRIK2-KO, and GRIK4-KO)
and WT cells. The GAPDH gene was used as the endogenous gene for normalization. The data are
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2.4. Cell Morphology of GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y Differentiated Cell Lines

Studies demonstrate that glutamate receptors could regulate actin-based plasticity
in dendritic spines [21,22]. Here, we aimed to determine, with an assay, whether kainate
glutamate receptors regulate the actin-based cytoskeleton. Rhodamine-conjugated phal-
loidin was used to detect the F-actin cytoskeleton in differentiated edited cells. We induced
GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y cells into the differentiated forms by treat-
ing RA and BDNF sequentially. Images of phalloidin-labeled cells were collected, and the
different morphologies of GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y differentiated
cell lines compared with the wild type are shown in Figure 4.
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3. Discussion
3.1. Genetic Deletion of GRIK1, GRIK2, and GRIK4 Disturbed Several Signal Pathways and Was
Involved in Neuropsychiatric Disorders

CRISPR/Cas9, an emerging genome-editing technology, can cause mutation(s) in a
cell, and the effect of that change is studied to understand the function of that gene [23–25].
Several studies have used the CRISPR/Cas9-modified cell lines to investigate the rela-
tionship between the disease risk variant and the pathophysiology of psychiatry [26–29].
RNA-seq is a tool for a comprehensive transcriptome analysis [30]. The present study
used the CRISPR/Cas9 genome editing system to create the isogenic kainate-receptor-
gene-KO SH-SY5Y cells. Five edited cell lines (GRIK1p.L25Pfs*?/WT, GRIK1p.L25Pfs*?/p.L25Pfs*?,
GRIK2p.L301Ffs*?/WT, GRIK2p.L301Ffs*?/p.L301Ffs*?, and GRIK4p.H343Afs*?/p.H343Afs*?) were found
and three cell clones with the homozygous frameshift mutations (GRIK1p.L25Pfs*?/p.L25Pfs*?,
GRIK2p.L301Ffs*?/p.L301Ffs*?, and GRIK4p.H343Afs*?/p.H343Afs*?) were obtained with RNA-seq.
In the results, we presented a study of transcriptome expression profiles in the three
isogenic GRIK1p.L25Pfs*?/p.L25Pfs*? (GRIK1-KO), GRIK2p.L301Ffs*?/p.L301Ffs*? (GRIK2-KO), and
GRIK4p.H343Afs*?/p.H343Afs*? (GRIK4-KO) SH-SY5Y cell lines, and SH-SY5Y WT cells. No-
tably, the GO enrichment analysis of the edited cell lines showed that the genetic deletion
of GRIK1, GRIK2, or GRIK4 disturbs several signaling pathways, including a pathway
related to the synaptic membrane (GO:0097060). In addition, the enrichment analysis of
gene–disease associations demonstrated that DEGs in the edited cell lines were involved in
several neuropsychiatric disorders, especially schizophrenia. Thus, we suggest that kainate
receptor deficiency could disturb synaptic-membrane-associated genes, and elucidating
these genes should shed some light on the pathophysiology of schizophrenia.

3.2. Synaptic Membrane and Schizophrenia-Associated Genes in GRIK1-KO, GRIK2-KO, and
GRIK4-KO SH-SY5Y Cells

Given that the GO enrichment analysis demonstrated that the genetic deletion of the
GRIK1, GRIK2, or GRIK4 gene jointly disturbed a signal pathway, the synaptic membrane
(GO:0097060), we presumed that kainate-receptor-regulated synaptic membrane genes
could be involved in synaptic dysfunction in schizophrenia pathogenesis. The synap-
tic membrane is a specialized area on either the presynaptic or postsynaptic side of a
synapse, the space between a nerve fiber of one neuron and another, a muscle fiber, or a
glial cell [31]. The present study identified multiple DEGs associated with the synaptic
membrane in GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y cells. Interestingly, multiple
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identified DEGs associated with the synaptic membrane, such as ARC, GRIA2, GRIA4,
GABRB3, GRM8, and KCNJ3, have been implicated in the pathophysiology of schizophre-
nia. ARC dysregulation contributes to various neurological and cognitive disorders and
schizophrenia [14,32–34]. Recently, we generated an ARC-KO HEK293 cell line and con-
ducted a transcriptomic and proteomic analysis to identify the DEGs related to the synaptic
membrane [35]. Previous studies of schizophrenia have demonstrated the presence of
a different AMPA receptor expression in the thalamus [36]. We recently found that rare
pathogenic mutations of the GRIA1, GRIA2, and GRIA4 genes might contribute to the
pathogenesis of schizophrenia in some subjects [37]. The down-regulation of GABRB3 may
contribute to the pathophysiology and clinical manifestations of schizophrenia through
altered oscillation synchronization in the superior temporal gyrus [38]. An association
analysis revealed the genetic association of GRM8 and KCNJ3 with schizophrenia in the
Han Chinese population [39,40].

Studies indicate that kainate receptors are critical mediators of the pre- and postsy-
naptic actions of neurotransmitters, although the mechanisms underlying such effects
remain unclear [41]. Several synapse-associated proteins have been identified as interacting
components for the kainate receptors [42]. Kainate receptors have been linked to a number
of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, mental retardation,
and autism [43,44]. Identifying proteins interacting with kainate receptors is essential to
unravel kainate-receptor-mediated signaling in neuropsychic disorders. According to our
RNA-seq with an enrichment analysis of gene–disease associations, the DEGs in these
three edited cell lines were associated with several neuropsychiatric disorders, especially
schizophrenia. Thus, we hypothesize that kainate receptor deficiency may destroy the
formation and functional integrity of synapse-associated components for the neuronal
processes that are deficient in individuals with schizophrenia. These findings suggest
that kainate-receptor-regulated synaptic membrane genes could possibly be implicated in
synaptic dysfunction in the pathophysiology of schizophrenia.

3.3. F-Actin Abnormalities in GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y Cells

Evidence demonstrated that the schizophrenia brain reduced dendritic spine density
and altered synaptic plasticity [45,46]. Mounting evidence suggests that actin remodeling is
critical to synaptogenesis, synaptic plasticity, and the development of neurites in developing
neurons [47,48]. For example, dynamic actin filaments formed dendritic spines during de-
velopment and their structural plasticity at mature synapses [48]. Extensive studies describe
evidence for regulatory mechanisms of actin dynamics in dendritic spines [47,49]. Bhambh-
vani and colleagues identified a reduced protein expression of F-actin in the anterior cingulate
cortex of elderly patients with schizophrenia, consisting of reduced dendritic spine density and
altered synaptic plasticity in schizophrenia [50]. According to the reported RNA-seq data, Ki-
moto and colleagues found that levels of actin- and mitochondrial-oxidative-phosphorylation-
related transcripts were significantly altered in subjects with schizophrenia [51]. The above
evidence consisted of the altered dendritic spine morphology in schizophrenia, which may be
linked to abnormalities in the regulation of actin cytoskeletal dynamics [52]. Notably, a study
suggests how glutamate receptors regulate actin-based plasticity in dendritic spines [21]. An-
other study suggests that the glutamate receptor agonist kainate induces the rearrangement of
actin filaments in ameboid microglia [22]. Our previous genetic study demonstrated that rare
pathologic mutations of the GRIK gene family play a potential role in conferring susceptibility
to schizophrenia [19]. In the present study, the fluorescent images demonstrated less F-actin
expressed in differentiated SH-SY5Y cells with GRIK1, GRIK2, or GRIK4 deficiency than in
differentiated WT cells. Taken together, kainate glutamate receptors involved in the actin
cytoskeleton may be linked to the pathophysiology of schizophrenia. Our findings suggest
that kainate glutamate receptors could possibly regulate the actin-based cytoskeleton, which
is essential for maintaining dendritic spine morphology and density in the pathophysiology
of schizophrenia.
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4. Materials and Methods
4.1. CRISPR/Cas9-Directed Genome Editing of the Isogenic SH-SY5Y Cell Lines and a Single
Edited Cell Isolation

CRISPR/Cas9-directed genome editing and single-edited cell isolation were performed
following previously described methods [35]. In brief, the pCas-Guide vector carrying
the guide RNA (gRNA) guide sequence was generated using the method described in
the manufacturer’s protocols (Origene, Rockville, MD, USA). The SH-SY5Y cells (Sigma
catalog no. 94030304) were transfected with a pCas-Guide vector carrying gRNA using a
Neon electroporation transfection system (Invitrogen, Carlsbad, CA, USA). One week after
transfection, genomic DNA (gDNA) of harvested cells purified with the Gentra Genomic
DNA Purification kit (QIAGEN, Germantown, MD, USA) was subjected to genomic PCR
and a T7 endonuclease assay. The single-edited cell on a QIAscout array was isolated
with the QIAscout device according to the manufacturer’s protocols (QIAGEN), and the
isolated cells were processed for further cultivation and clonal expansion. The gDNA of
the clonally expanded cells, extracted using the PDQeX Nucleic Acid Extractor (MicroGEM,
Southampton, UK), was used for PCR reactions and fluorescence-based Sanger sequencing
to find correctly edited cells.

4.2. Human Cell Line Identification

The gDNA was purified from the isogenic cell line using a DNeasy Blood & Tissue
Kit according to the manufacturer’s protocols (QIAGEN). The gDNA was amplified using
an AmpFLSTR™ Identifiler™ Plus PCR Amplification Kit (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), and the short tandem repeat (STR) and PCR products were analyzed
with DNA Analyzer 3730XL (ThermoFisher Scientific Inc.). The calling of STR alleles by
aligning unknown fragments with a ladder of STR fragments of known allele sizes was
analyzed with GeneMapper Software v4.0 (ThermoFisher Scientific Inc.).

4.3. Total RNA Preparation, RNA-seq, DEG Identification, Bioinformatic Analysis, and Real-Time
Quantitative PCR (RT-qPCR)

Total RNA preparation, RNA-seq, and DEG identification were performed following
previously described methods [35]. A GO enrichment analysis of DEGs was conducted
using clusterProfiler (v3.10.1). DEGs associated with KEGG pathways were annotated
according to the KEGG database [53]. An enrichment analysis of gene–disease associations
was performed using the DisGeNET database [54]. RT-qPCR assays were performed
using the comparative ∆∆Ct method to validate the differential gene expression [55]. The
expression levels of GRIK1, GRIK2, GRIK3, GRIK4, GRIK5, GRIA2, GRIA4, GABRB3, GRM8,
and KCNJ3 were assayed using the QuantStudio 3 real-time PCR system in combination
with continuous SYBR Green detection (ThermoFisher Scientific Inc.). The primer sequences
for GRIK1, GRIK2, GRIK3, GRIK4, GRIK5, GRIA2, GRIA4, GABRB3, GRM8, and KCNJ3
are listed in Supplementary Table S9. The target gene ARC (Hs01045540_g1, FAM™ dye-
labeled TaqMan™ MGB probe) and the endogenous gene GAPDH (Hs02786624_g1, VIC™
dye-labeled TaqMan™ MGB probe) were measured using TaqMan™ gene expression
assays according to the manufacturer’s protocol (ThermoFisher Scientific Inc.). All tests
were performed six times. Statistically significant differences between edited and wild-type
(WT) cells were those with a p value < 0.05.

4.4. Differentiation of the SH-SY5Y Cells

The SH-SY5Y cells were seeded at an initial density of 104 cells/cm2 in culture
dishes previously coated with 0.05 mg/mL of collagen (Collaborative Biomedical Products,
Bedford, MA, USA). Retinoic acid (RA, Sigma-Aldrich, St. Louis, MO, USA) was added
the day after plating at a final concentration of 10 uM in DMEM with 10% fetal calf serum.
After five days in the presence of RA, cells were washed three times with DMEM and
incubated with 50 ng/mL of BDNF in DMEM without fetal calf serum for seven days.
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4.5. Immunocytochemistry

Cultured cells were fixed in 4% paraformaldehyde in PBS (pH 7.4) for 20 min at room
temperature, washed three times with PBS containing 0.1% Triton X-100, and blocked for
40 min with PBS containing 1% bovine serum albumin and 0.1% Triton X-100. The samples
were incubated with a primary antibody (anti-MAP) diluted at 1:250 in a blocking buffer
overnight at 4 ◦C, washed with PBST three times, and then incubated with secondary
antibodies conjugated with fluorescence diluted at 1:500 in a blocking buffer for 1 h at room
temperature. After that, the samples were washed with PBST three times, the cell nucleus
was labeled with DAPI, and the rhodamine phalloidin (R415, Invitrogen) detected F-actin.
Images were acquired with a fluorescence microscope, Axio Vert.A1 (Zeiss, Jena, Germany),
and analyzed with ZEN 2 software (Zeiss).

5. Conclusions

We identified several kainate-receptor-regulated genes involved in multiple signal
pathways, especially regarding the synaptic-membrane-associated genes and neuropsy-
chiatric disorders, especially schizophrenia. The association between kainate receptors
and DEGs we identified is a fascinating but enigmatic protein that warrants further study.
Therefore, the transcriptomic profiles for GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y
cells contribute to emerging evidence for the novel mechanisms underlying the effect of
kainate receptors and molecular pathways of the pathophysiology of schizophrenia. In
addition, we suggest that kainate-receptor-mediated F-actin remodeling may be a candidate
mechanism underlying schizophrenia.
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