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Abstract: Software testing and debugging are standard practices of software quality assurance since
they enable the identification and correction of failures. Benchmarks have been used in that context as
a group of programs to support the comparison of different techniques according to pre-established
parameters. However, the reasons that inspire researchers to propose novel benchmarks are not fully
understood. This article reports the investigation, identification, classification, and externalization of
the state of the art about the proposition of benchmarks on software testing and debugging domains.
The study was carried out using systematic mapping procedures according to the guidelines widely
followed by software engineering literature. The search identified 1674 studies, from which, 25 were
selected for analysis. A list of benchmarks is provided and descriptively mapped according to their
characteristics, motivations, and scope of use for their creation. The lack of data to support the
comparison between available and novel software testing and debugging techniques is the main
motivation for the proposition of benchmarks. Advancements in the standardization and prescription
of benchmark structure and composition are still required. Establishing such a standard could foster
benchmark reuse, thereby saving time and effort in the engineering of benchmarks for software
testing and debugging.

Keywords: testing; debugging; benchmark; software engineering

1. Introduction

The adoption of software has been progressively observed in the control of various
systems, including—but not limited to—automotive software [1], urban traffic manage-
ment [2], and disaster monitoring [3]. However, despite advancements, the occurrence of
coding errors leading to software bugs remains. Such software bugs can yield substantial
economic losses, pose threats, and even compromise the well-being of users’ integrity [4,5].
Consequently, both researchers and practitioners have invested efforts in the establishment
of mechanisms aimed at diminishing the frequency of bugs and enhancing the quality of
the delivered software product. In that context, the pivotal role of software testing and
debugging (STD) cannot be overstated. Software testing is the systematic process of evalu-
ating a software application to identify defects and ensure it meets specified requirements;
whilst debugging is the process of locating and fixing defects or errors in a software pro-
gram to restore its intended functionality [6]. These activities constitute fundamental steps
of software quality assurance, addressing the identification and rectification of software
faults [7–11]. Nonetheless, these activities are frequently labor-intensive, prone to errors,
and time-demanding, with their complexity escalating when undertaken manually and
as the scale of software projects amplifies [12]. In this vein, STD techniques have been
automated with the generation of test cases, pinpointing faults, and facilitating program
repair [10,13–15].
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Benchmarks recurrently support the evaluation of STD techniques [16]. In the context
of STD techniques, benchmarks comprise a set of programs, faulty versions of these
programs, a suite of test cases, and bug reports or logs of test case executions. They can
be used to evaluate the effectiveness of those techniques to achieve their aims, such as
finding a fault [17]. A remarkable and popular instance of a benchmark for that context
is Defects4J, which is made up of six Java programs with 438 real bugs and test cases that
cover the faulty code. Benchmarks are well-accepted means in the state of the practice to
support the evaluation of STD techniques [18,19]. Benchmarks can increase the reliability
of the results obtained from the evaluation of STD techniques because they (i) work as a
reference to compare the results delivered by different techniques, (ii) allow replication
of the evaluation so that other researchers can reproduce the experiment applied in the
evaluation and confirm (or refute) its results, and (iii) reduce threats to the validity of results
by bringing a more systematic evaluation and producing data for future evaluation. Indeed,
some recent literature reviews have included sections exclusively devoted to benchmarks
and have presented examples of studies that use benchmarks in their projects [18,19].
However, studies that discuss aspects that motivate or guide the proposition of benchmarks
are scarce.

The main contribution of this article is providing an overview of the reasons that
have led researchers and practitioners to propose new benchmarks over the years. We
analyze the state of the art by using the systematic mapping (SM) approach to collect
evidence on this topic [20]. A total of 25 out of the initially retrieved 1674 studies were
included and analyzed. The results reveal that (i) benchmarks have predominantly been
proposed for software testing, bug diagnosis, and program repair, with fewer allocations
for fault localization. (ii) Over a span of ten years, nine benchmarks were introduced,
while the subsequent five years witnessed a notable increase to sixteen, emphasizing
their pivotal role in technique evaluation. (iii) Approximately 50% of studies featured
benchmarks exclusive to C or Java, while the remainder spanned language diversity. (iv) A
substantial 92% of proposed benchmarks integrated real bugs sourced from controlled or
production environments. (v) Benchmarks primarily arose due to factors including data
absence, the imperative for authentic data, the scarcity of specialized data, incomplete bug
understanding, and spontaneous result data provision.

The remainder of the article is organized as follows: Section 2 establishes a common
vocabulary for our research by presenting useful definitions and a background; Section 3
presents the SM protocol and reporting. Section 4 presents a summary of contributions
and research opportunities extracted from our SM; Sections 5 and 6 conclude this study by
discussing threats to validity and final remarks, respectively.

2. Background

Software development is a costly and complex activity. The process involves humans
and it is subject to their interpretation, which can lead to mistakes (i.e., a misinterpretation
of the requirements). In turn, mistakes can lead to defects (faults) in the code, i.e., an
implementation that does not conform to the requirements; and defects in the code can
lead to failures, i.e., program executions that do not match the expected behavior and that
generate a perception of one or more defects [21].

Software testing plays an essential role in software quality [9]. Unlike static testing,
which focuses on reviewing software artifacts such as requirements documents, test plans,
and code, dynamic testing is mainly concerned with revealing failures by executing the
program. Benchmarks are used frequently in dynamic testing studies. Then, henceforth,
we use the term software testing to refer to dynamic testing. Software testing involves the
elaboration and execution of test cases [21]. Testing software, therefore, involves verifying
the behavior delivered during code execution in response to a finite set of test cases. The set
of test cases is made up of all possible inputs of a program (input domain) and its expected
outputs [22]. Software is tested in practice through two techniques: functional tests and
structural tests [11]. Functional tests deal with software code as a “black box” (that is,
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without the tester’s awareness of the internal logic of the software), where possible inputs
are provided and evaluated to detect whether the code is being developed in accordance
with the stakeholders’ aims. Structural tests, however, handle software as a “white box”,
highlighting the internal structure and operation from a developer’s perspective. Structural
tests are complementary to functional testing techniques and are used to establish and
contribute to software quality, both in internal aspects and to meet requirements [21,23].
When the test activities expose failures, the debugging process starts.

The debugging process may be structured into three steps, (i) defect localization, (ii) defect
understanding (bug diagnosis), and (iii) defect/program repair[24–26]. According to Hailpern
et al. [10], software debugging involves analyzing and modifying a program that does not
match its specifications. Thus, the primary goal is to establish a new version of the program
that is close enough to the original one but satisfies the previously violated requirements.
The first activity (defect localization), also called fault localization (FL), consists of the precise
determination of the location of the defect in the program; the second one (defect understanding)
is related to obtaining knowledge about the fault and its behavior; the last step (program repair)
consists of repairing the defect. Debugging is a time-consuming activity, which motivates the
adoption of automated methods to proceed with its inherent steps.

Automated fault localization (FL) techniques are those used in software development
to identify the locations or lines of code that are responsible for causing defects or errors in
a software program. These techniques aim to narrow down the search for the root cause
of a bug, making it easier for developers to locate and fix the issue. By automatically
pinpointing faulty code, FL techniques expedite the debugging process and improve the
efficiency of software maintenance. Some of the most popular automated fault localization
techniques include (i) spectrum-based techniques, which analyze the program’s execution
traces, such as test coverage information or execution frequencies, to identify code seg-
ments associated with failing test cases. Examples include Tarantula, Ochiai, and DStar;
(ii) statistical debugging, which analyzes historical debugging data to identify patterns or
correlations between code and defects. Examples include delta debugging and probabilistic
models; (iii) mutation-based techniques, which involve creating small changes (muta-
tions) in the code to simulate defects and assess the effectiveness of test cases; (iv) data
flow analysis, which tracks how data flows through the program to identify potential
error propagation paths and isolate faulty code; (v) constraint-solving techniques, which
formulate the debugging problem as a constraint satisfaction problem and use automated
solvers to narrow down the possible fault locations; (vi) search-based techniques, which
map fault localization to a search problem and explore the code space systematically to
find the most likely fault locations; (vii) machine learning-based techniques, which adopt
machine learning algorithms to predict potential fault locations in new code; and (viii) pro-
gram slicing, which involves extracting a subset of codes that directly influence a specific
program behavior, aiding in identifying the root cause of defects.

As the first part of the process of debugging, the FL activity aims to indicate the code
portions with a high probability of containing the defect. The most popular techniques
of automated FL use the information from the test case coverage provided by test case
executions. Heuristics are then applied to the coverage data to indicate suspicious code.
In addition to reducing costs and increasing the reliability of software, automated FL
techniques include a low degree of human intervention in the FL process. Subsequently,
once faults are located, the activity to diagnose the defect and understand its behavior starts.
The experience of previously known bugs may help the debugging expert to understand
the fault already found. Also, the reports generated by developers are an indication of the
bug type in some cases; such analysis may support fault correction.

The third step of debugging involves program repair. Program repair consists of the
replacement of faulty code by a corrected version of it. This activity is usually manual
and repetitive, which leads to the adoption of automated methods, the so-called automated
program repair (APR). APR proposes and adopts automated software bug fixes. APR uses
a set of tests to guide the repair process, thereby ensuring better code quality and lower
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maintenance costs, producing a variant of the program that meets the project specifications.
Traditional APR consists of the generation of corrections and validation. FL techniques are
performed to identify suspicious code fragments [27]. Once the fragment was identified,
APR techniques can generate corrections. Then, the created code is submitted again to
the same set of tests to ensure it is still conforming to them. Fail test cases (reproducing
failures), and success test cases (characterizing expected behaviors) are commonly used to
validate the correction of the candidate fix [27]. This procedure is repeatedly performed
until a valid variant of the buggy code is found.

Novel fault localization and APR techniques are often proposed. To be reliable, they
should be assessed and compared with the existing techniques in the state of the art. For this
purpose, a common code foundation and a set of test cases are required to yield results that
can serve as a comparison baseline among various techniques. The set of programs used
for this purpose is often referred to as benchmarks. The IBM Dictionary of Computing [17]
defines a benchmark as a reference point in which measures can be applied to evaluate
software or hardware. In STD, benchmarks are usually a group of programs with some
representation of real-world environments along with all the necessary instruments or
characteristics of the techniques under evaluation. For instance, these instruments may
be an available test case set, available source code, programs in a specific programming
language, or a specific number of lines of code (LoC).

The Siemens Suite (SS) [28] is an example of an artifact that was not built to be
specifically used as a benchmark but has become popular and frequently used for FL
activities [29]. It consists of a reduced set of small-sized programs in C formed by seven
programs and the largest one has less than 500 LoC. The bugs were artificially inserted in
the SS programs through code mutation techniques. These artificial bugs are useful for
simulating some real defects [30], although there are real bugs that are not reachable by
inserting single, small faults (first-order mutations), such as a replacement of logical or
arithmetic operators [31]. As the software FL improved, the programs used to demonstrate
FL methods also had to be changed, to show the benefits in industry-like environments [18].
When a novel FL technique is proposed, besides comparing its results to real buggy
programs, it is common to use SS as well as a comparison parameter.

The APR community maintains a website ([32]) where they suggest that the bench-
marks Defects4J [33], Codeflaws [34], and IntroClass and ManyBugs [35] be used in research
studies. These benchmarks contain real bugs and are often used to apply FL techniques.
Although several benchmarks exist, novel benchmarks are still being proposed, which
raises the following question: why are existing benchmarks not enough? The following section
presents the protocol developed to guide an investigation on this topic.

For the scope of this article, two terms are important: motivation and scope of use. The
motivation for creating a benchmark is understood as what lack has motivated the creation of
new benchmarks, such as lack of data or benchmarks composed of code excerpts/programs
to enable the testing of a specific platform, technology, or programming language; whilst
the scope of use of the creation of a novel benchmark should be understood as the final
target of application for the created benchmark, for instance, for an entire community or
a particular research group. An example of motivation for creating a new benchmark is
the multi-threaded Java programs [36]. Initially, there were no real programs to be used
as benchmarks. Then, artificial defects were seeded in multi-threaded codes to create the
preliminary benchmarks until codes with real bugs were provided to be used. Examples
of benchmarks for different scopes of use include Defects4J [33] and the benchmark by
Jooyong Yi et al. benchmark [34]. The former benchmark was created and delivered for the
entire community, whilst the latter was created for the specific scope of research.

3. Systematic Mapping Study

This SM was structured according to the guidelines of Kitchenham and Charters, and
Petersen et al. [20,37]. The main steps involved planning, conduction, and reporting,
as follows.
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3.1. Planning

In the planning step, the research questions were established, and the research proto-
col was defined.

The goal of this SM was to present the state of art on software testing and debugging
benchmarks along with a comprehensive analysis of the motivations behind their creation.
Hence, the studies of interest include those that introduce benchmarks in the context of
STD techniques.

From the established goal, the following research questions (RQ) were defined.

RQ1: What are the proposed benchmarks for STD and their target topics?
Rationale: By answering this RQ, we aim to provide a list of benchmarks to support
researchers in selecting the benchmarks that they could use to exercise their novel STD
techniques empirically. Moreover, answering RQ1 also provides a classification of the
reported benchmarks according to their target topics, i.e., the context for which it was
proposed. The target topics include software testing, bug diagnosis, program repair, and
fault localization.

RQ2: What are the languages used to write the programs that compose the proposed benchmarks?
Rationale: The program repair community website [32] points out existing benchmarks
that are highly restricted to Java and C code. The answer to this RQ may provide a broader
panorama about the benchmarks that are available and that are composed of programs
written in other diverse programming languages.

RQ3: Are the bugs that compose the proposed benchmarks real or artificial?
Rationale: The program debugging community often discusses whether or not bugs ar-
tificially introduced in a real program could represent real bugs [31]. Hence, providing
such information is an essential contribution to better support researchers when choosing
benchmarks for their studies. The proposed benchmarks can be characterized by the nature
(real or artificial) of the bugs.

RQ4: What were the identified motivations for proposing the benchmarks?
Rationale: Benchmarks are built to match a set of intentions. This RQ aims to reveal the
main motivations and needs that lead the community to create the benchmarks reported in
the included studies.

RQ5: What was the identified scope of use for the proposed benchmarks?
Rationale: The aim of answering this RQ is to map the scope of use that led researchers to
create benchmarks, as discussed at the beginning of this section.

3.1.1. Search Strategy

A control group was selected, a search string was elaborated, and online databases
were chosen to proceed with an automatic search.

Search databases. We conducted searches in the following databases by applying filters
on the titles, abstracts, and keywords. The databases were selected between the most
common publication databases used to conduct systematic literature studies in software
engineering [38,39]. The chosen databases comply with the recommendations made by
Kitchenham and Charters [37] and Petersen et al. [40].

• IEEExplore (http://ieeexplore.ieee.org) (accessed on 9 Ocotober 2023);
• ACM Digital Library (http://dl.acm.org) (accessed on 9 Ocotober 2023);
• Scopus (http://www.scopus.com) (accessed on 9 Ocotober 2023);
• Engineering Village (http://www.engineeringvillage.com) (accessed on 9 Ocotober 2023).

Control studies. The program repair community website provides a set of benchmarks
considered relevant for the area [32]. Apart from benchmarks, the website also provides the

http://ieeexplore.ieee.org
http://dl.acm.org
http://www.scopus.com
http://www.engineeringvillage.com
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corresponding study that reports each benchmark proposition. We used that set of studies
as a control group, i.e., a set of studies that should be retrieved by the elaborated search
string. The control group includes the following benchmarks.

• Defects4J [33];
• Manybugs and IntroClass [35];
• Codeflaws [34];
• DBGBENCH [26];
• QuixBugs [41].

Search string and calibration. For the search string elaboration, we adopted the key
terms used in the research questions, synonyms, and variations. Initially, the scope of
research focused on benchmarks for software debugging, once the use of the word “testing”
in the search string could retrieve an intractable number of studies. Then, this word was
avoided at the first moment. The search string in the first try was:

“benchmark” AND “software” AND (“fault localization” OR “repair”)

The result was 192 studies from Engineering Village, 248 from Scopus, 128 from
IEEE Xplore, and 176 from ACM DL; 744 studies is a reasonable number of studies, but
unfortunately, some of the control group elements (e.g., Defects4J [33]) were originally
proposed for software testing and were not retrieved using this string. So we had to
expand the scope with the term “testing”. Also, while the control group was retrieved, this
also resulted in more than 4000 results in each base. To narrow it down to only software
testing that looks for bugs, we added the term “buggy”, resulting in the final search string
presented previously. Hence, the words “benchmark”, “software”, and either “testing” or
“debugging” are expected to appear in the relevant primary studies. Since FL and software
repair studies might not explicitly use the word “debugging”, the terms “fault localization’’
and “repair” were also included. Furthermore, a term to represent bugs, such as “buggy”, is
expected; for instance, while referring to the number of buggy programs in one benchmark.
Thus, the following search string was built:

“benchmark” AND “software” AND (“fault localization” OR “repair” OR “testing”
OR “debugging”) AND “buggy”

After identifying relevant synonyms to each term, the string evolved into:

(“benchmark” OR “benchmarking” OR “dataset” OR “dataset” OR “database” OR
“datasets” OR “datasets” OR “benchmarks”) AND (“software” OR “program”) AND
((“fault localization” OR “error localization” OR “defect localization” OR “bug local-
ization” OR “error localisation” OR “defect localisation” OR “bug localisation” OR
“fault localisation”) OR (“software repair” OR “software fixing” OR “program repair”
OR “program fixing” OR “bug fixing” OR “bug-fixing” OR “automatic repair”) OR
(“software testing” OR “software test”) OR (“software debugging”)) AND (“bug” OR
“defect” OR “buggy” OR “faulty” OR “failing” OR “failed” OR “bugs” OR “defects”)

3.1.2. Selection Criteria

We consider that a study proposes a benchmark when it exposes the obtainment of a
new dataset or the grouping of information from different benchmarks. The study should
also provide a URL to a repository with this novel dataset. If a study only describes other
(existing) benchmarks and offers a link to each of them, we do not consider it as a study
that proposes a benchmark, thereby justifying their exclusion.

These criteria are aimed at supporting a proper selection of the relevant studies for
this SM, i.e., studies that answer the presented research questions. The following inclusion
criteria are defined:

IC: The study proposes a benchmark and makes it available as a single project in a URL link.

Conversely, for eliminating non-relevant studies, the following exclusion criteria
are defined:
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EC1: The study is not related to software testing or debugging.
EC2: The study does not propose a new benchmark specific to software testing or debug-

ging techniques.
EC3: The study is not written in English.
EC4: The study is not a full article or is not available for access.
EC5: The study does not provide the proposed benchmark for access as a single project in

a unique URL.

3.1.3. Data Extraction and Synthesis Method

We defined a form to guide the data extraction process. This data extraction form
consists of a set of questions aimed at gathering sufficient data to classify the benchmarks,
measure the quality of the studies, and answer all research questions. The form is presented
in Appendix A.

3.2. Conduction and Data Extraction

This search process was initially conducted in September 2018 and updated in January
2019, so studies published after January 2019 were not included. During the search, we did
not limit the initial year. Figure 1 shows the number of studies obtained by applying the
search string in the selected databases. Initially, the search string retrieved 1674 studies.
Some of the retrieved studies did not present even a title, and others were replicated in
the same database. After removing them, 1614 studies remained. The study involved
five researchers. Two of them were master’s students at that time, and the others were
professors holding PhDs, with substantial experience in the software testing area. The
professors supervised the students during the activity and contributed to data extraction
and synthesis, in addition to resolving conflicts about the selection of studies.

ACM DL IEEE Xplore Scopus Engineering 
Village

All retrieved studies 
1674

259 270 558 587

1614 studies

Studies without title or 
replicated in the same 

database were removed
60

773 unique studies

Duplicate studies 
removed 

841

25 included studies

Studies removed applying 
the selection criteria

748

Figure 1. Number of studies in each phase of the selection.

In the third step, duplicated studies were eliminated, i.e., the studies that were re-
trieved in more than one database search. After that, 773 studies remained to be analyzed.
We included 47 studies to be entirely analyzed. After applying the inclusion and exclusion
criteria in this set, 25 studies were included (22 only mentioned benchmarks, but did not
propose them).
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3.3. Reporting

In this section, we report the findings of our SM. We report the quality of the in-
cluded studies and we answer the research questions and provide data plots and tables to
summarize the collected data.

All included studies are listed in Table 1.

Table 1. Primary studies included.

Study Ref Title Year

S1 [36] Compiling a benchmark of documented multi-threaded bugs 2004

S2 [42] Extraction of Bug Localization Benchmarks from History 2007

S3 [43] Clash of the Titans: Tools and Techniques for Hunting Bugs in Concurrent Programs 2009

S4 [44] (Un-)Covering Equivalent Mutants 2010

S5 [45] Empirical Evaluation of Bug Linking 2013

S6 [46] The Eclipse and Mozilla Defect Tracking Dataset: A Genuine Dataset for Mining
Bug Information

2013

S7 [47] 42 Variability Bugs in the Linux Kernel: A Qualitative Analysis 2014

S8 [33] Defects4J: A Database of Existing Faults to Enable Controlled Testing Studies for
Java Programs

2014

S9 [48] On the Effectiveness of Information Retrieval Based Bug Localization for C Programs 2014

S10 [49] Automated Bug Finding in Video Games: A Case Study for Runtime Monitoring 2014

S11 [50] A Dataset of High Impact Bugs: Manually-Classified Issue Reports 2015

S12 [35] The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs 2015

S13 [51] TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Data Center Dis-
tributed Systems

2016

S14 [52] A Feasibility Study of Using Automated Program Repair for Introductory Program-
ming Assignments

2017

S15 [53] Automatic detection and demonstrator generation for information flow leaks in
object-oriented programs

2017

S16 [34] Codeflaws: A Programming Competition Benchmark for Evaluating Automated
Program Repair Tools

2017

S17 [54] ELIXIR: Effective Object-Oriented Program Repair 2017

S18 [26] How Developers Debug Software The DBGBENCH Dataset 2017

S19 [41] QuixBugs: a multi-lingual program repair benchmark set based on the Quixey challenge 2017

S20 [55] Secbench: A Database of Real Security Vulnerabilities 2017

S21 [56] Crashing Simulated Planes is Cheap: Can Simulation Detect Robotics Bugs Early? 2018

S22 [57] Large-Scale Analysis of Framework-Specific Exceptions in Android Apps 2018

S23 [58] Mining repair model for exception-related bug 2018

S24 [59] Pairika-A Failure Diagnosis Benchmark for C++ Programs 2018

S25 [60] Repairing Crashes in Android Apps 2018

Distribution over the years. Figure 2 shows the distribution of studies that reported
the proposition of a benchmark over the years. The first identified benchmark was pub-
lished in 2004 [36]. None of the studies included any proposed benchmarks in 2005 and
2006. In 2007, a study on iBugs was published. iBugs comprised the first benchmark with
semiautomatic methods to search faulty programs using the GitHub repository [42]. No
relevant studies published in 2008 were found. In 2009, the first identified benchmark for
two different languages (Java and C#) was published [43]. A benchmark created from a
mutated code was proposed in 2010 [44]. During 2011 and 2012, benchmarks were not
proposed from the included studies.
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Figure 2. Studies per year.

From 2013 onward, new benchmarks began to be proposed and were published at least
once a year. We observed that the number of proposed benchmarks oscillated throughout
the years; from the information plotted in Figure 2, the data present a waveform with
increasing maxima over the years. Moreover, 25 benchmarks were proposed and published
during the investigated 15 years, resulting in a publication rate of around 1.6 benchmarks
per year. However, the wave amplitude and wavelength subsequently increased over the
years, from one benchmark per biennium (one every two years from 2004 to 2011), the
number increased over this decade (two benchmarks in 2012 and 2013 (S5 and S6); six
benchmarks in 2014 (S7, S8, S9, and S10) and 2015 (S11 and S12); eight from 2016 (S13)
to 2017 (S14, S15, S16, S17, S18, S19, and S20); and five in 2018 (S21, S22, S23, S24, and
S25)). Hence, the frequency of publication increased, as well as the number of benchmarks
proposed. The first decade of analysis produced 9 different benchmarks, while the last five
years alone accounted for 16 different benchmarks.

The term ‘Benchmark’ is quite a recent term, which might explain why our search did
not find any benchmark before 2004, despite using the term dataset in the search string to
alleviate the impact of a single term to denote our research focus. We only considered—as
a benchmark proposition—the studies that provided a URL to the dataset, which is also a
recent practice. Reference [49] was published in 2014 at a conference and was expanded in
a journal article in 2017. In this case, we only considered the earlier version.

Publication venues and affiliation data. Studies that propose benchmarks for soft-
ware testing and debugging are mainly published in well-known conferences. Five were
published in each of the ICSE, ASE, and ICSTV conferences, with these hosting three studies
of benchmark proposals each, as shown in Figure 3. The four conferences (ICSE, ASE,
ICSTV, MSR) represent 48% (12 studies) of the venues used to publish the included studies.
However, some of them were not published in the main track. From the 25 included studies,
only 4 (S10, S11, S15, S23) were published in journals. From these data, we interpret and
conjecture that most of the studies that only propose benchmarks have been published
at conferences. Conversely, all the studies published in journals not only propose bench-
marks but also use them to support the evaluation of novel techniques for software testing
and debugging.

We analyzed the authors’ affiliations to discover the more representative countries
related to benchmark proposals in software testing and debugging. Moreover, 8 out of
25 studies included authors from the USA; 6 studies included authors from Singapore;
5 studies involved authors from Germany; 3 studies were authored by researchers from
China; and authors from Belgium, Canada, Denmark, France, India, Israel, Japan, Mexico,
Portugal, and Russia were included in (up to) two studies. Some of the selected studies are
the results of international collaborations. Figure 4 represents the collaboration network.
Notably, Singapore and the USA boast the highest numbers of international collaborators,
yet they do not collaborate with each other. Both China and France have developed research
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with cooperation from Singapore and the USA. Belgium, Canada, Denmark, Israel, Japan,
and Portugal do not exhibit international collaboration in our analysis.
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Figure 3. Publication venues of studies.
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Figure 4. Collaboration between authors from different countries.

Studies Quality. A set of quality questions (QQs) based on previous mapping stud-
ies [61,62] was incorporated into the form to allow measurement of the studies’ quality.
They can be answered with “Yes”, “To some extent”, or “No”, and enable the assessment
of the included studies according to the following parameters. Table 2 summarizes the
answers to the QQs. Most of the studies received “Yes” to the quality questions, which
indicates an overall good quality of the included studies. For each QQ, except for QQ6 and
QQ7, at least 76% of all articles scored “Yes”. Overall, studies that propose benchmarks do
not discuss threats to validity and limitations (QQ6) or future work (QQ7).

QQ1: There is a rationale for the study to be undertaken.
QQ2: The authors present an overview of the related works and background of the area in

which the study is developed.
QQ3: There is an adequate description of the context (industry, laboratory setting, products

used, etc.) in which the work was carried out.
QQ4: The study provides a clear justification of the methods used during the study.
QQ5: There is a clear statement of contributions and sufficient data have been presented to

support them.
QQ6: The authors explicitly discuss the credibility and limitations of their findings.
QQ7: The authors discuss perspectives of future works based on the contributions of

the study.

Studies S2, S3, S8, S14, S15, S16, S18, S19, S24 received a “no” as the answer to QQ6
(credibility analysis and limitations). For QQ7 (discussion on future work), studies S6, S13,
S18 received “no” as the answer, and studies S2, S7, S11, S15, S16, S19, S24 were assessed as
“To some extent”.
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Table 2. Quality question results.

Quality Question Yes To Some Extent No

QQ1 25 0 0
QQ2 20 4 1
QQ3 21 4 0
QQ4 22 3 0
QQ5 19 5 1
QQ6 13 3 9
QQ7 15 7 3

3.3.1. RQ1: What Are the Benchmarks Proposed in the Software Testing and Debugging
Context and Their Target Topics?

As mentioned in Section 2, benchmarks consist of a group of programs with some
representations of real-world environments, along with all the necessary instruments or
characteristics for the techniques under evaluation. For instance, these instruments may
be available test case sets, available source codes, programs in a specific programming
language, or a specific number of lines of code (LoC).

Table 3 presents 25 benchmarks reported in the selected studies. Each benchmark is
addressed by only one study once this MS considers studies on benchmark propositions,
regardless of their subsequent use. All selected studies provide an external URL link to
access the reported benchmark. However, in some cases, the presented link is not accessible.
The included studies were grouped into four categories according to the target domain for
which the benchmark was proposed. The benchmarks were proposed for applying and
evaluating techniques in the following categories: software testing, fault localization, bug
diagnosis, and program repair. The categorization of the studies in the four aforementioned
categories was performed using a set of items extracted from the studies, including the
keywords and classification of the aims of application of each benchmark mentioned by
the authors in the study. In studies where the benchmark is related to more than one target
topic, we considered only the most mentioned term in the article. Studies S1, S3, S4, S8,
S13, S15, S20, S22 report the proposition of benchmarks for software testing. Studies S2,
S9, and S24 report the proposition of benchmarks for fault localization. Studies S5, S6, S7,
S10, S11, S21, S18 report the proposition of benchmarks for bug diagnosis. Studies S12,
S14, S16, S17, S19, S23, S25 report the proposition of benchmarks for program repair. It
is also possible to observe that there is a slight dominance from benchmarks proposed
for software testing (eight benchmarks, 32% of the total number of proposed benchmarks
found) over the other categories. Bug diagnosis and program repair have the same number
of benchmarks (seven benchmarks, 28% of the total number of proposed benchmarks found
for each topic), and fault localization only has three benchmarks (12% of the total number
of proposed benchmarks found).

Figure 5 presents a cumulative view of the benchmarks proposed over the years in
regard to their target topics (software testing, fault localization, bug diagnosis, and program
repair). For exemplification purposes, considering software testing, one benchmark was
proposed in 2004, and there was a break of new propositions until 2009 when the cumulative
number of benchmarks proposed for software testing increased to two. The same pattern is
followed in the other categories, showing the cumulative number of existing benchmarks
over the years and none for the other categories. During the first five years (2004 to
2008), only one benchmark for software testing was recovered. From 2009 to 2010, two
new benchmarks were proposed, remaining the same until 2013. From 2014 to 2018, the
number of different benchmarks proposed for software testing over the years reached
eight benchmarks. The same rationale was applied to the other categories. One important
finding from this plot is that benchmarks for software testing, fault localization, and bug
diagnosis have experienced progressive growth in number over the years. In addition, the
program repair category experienced rapid growth, increasing the number of benchmarks
from one to seven in just three years.
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Table 3. Benchmarks and their target topics obtained from the included studies.

Benchmark Name or Author Study Topic

[Eytani et al.] S1

Software Testing

[Rungta et al.] S3

JAVALANCHE Subject Programs S4

Defects4J S8

TaxDC S13

KEG Experiments S15

Secbench S20

Dataset Crash Analysis S22

iBugs S2
Fault Localization[Saha et al.] S9

Pairika S24

[Bissyandé et al.] S5

Bug Diagnosis

Eclipse and Mozilla Defect Tracking Dataset S6

The Variability Bugs Database S7

[Varvaressos et al.] S10

High Impact Bug Dataset S11

DBGBENCH S18

ArduBugs S21

ManyBugs and IntroClass S12

Program Repair

[Yi et al.] S14

Codeflaws S16

Bugs.jar S17

QuixBugs S19

Exception-related bugs S23

Droixbench S25

A likely explanation for the behavior of the plot displayed in Figure 5 is that the domain
of software testing is characterized by its historical precedence, with the progression of
associated benchmarks unfolding gradually in parallel with the dissemination of research
within this area. Notably, one of the studies included in the mapping reports the first
benchmark developed for the software testing domain. For the program repair area, the
influence of the study S12 (published in 2015) in the results plotted in Figure 5 is clear,
which is a study published by one of the “creators” of the program repair area, which, in
addition to proposing the benchmark, already uses it to empirically validate it. Another
factor that may justify the rapid rise in the creation of benchmarks for program repair and
bug diagnosis is that these areas are novel and on the rise, but such a conclusion cannot be
made definitively and demands further investigation into other mappings.

3.3.2. RQ2: What Are the Languages Used to Write the Programs That Compose the
Proposed Benchmarks?

Benchmarks are often composed of programs written in a specific programming
language (or platform). Figure 6 depicts the distribution of the languages over the bench-
marks. The most common languages found in the included studies are Java and C. Seven
benchmarks were proposed exclusively for Java (S1, S2, S4, S8, S15, S17, S23). In turn, six
benchmarks were exclusively proposed for C (S7, S9, S12, S14, S16, S18). It is important
to remark that 6 out of the 25 benchmarks are not composed of source code (S5, S6, S11,
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S10, S13, S21), e.g., the benchmark proposed by Bissyandé et al. [45] comprises a set of bug
reports that can be used in language-independent contexts.
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Figure 5. Benchmarks available per year, and their target topics.

A relevant finding refers to the benchmarks dedicated to the Android platform (S22
and S25). Although these benchmarks involve Java code, different coding libraries and
tools are needed to deal with this specific platform, which motivates the creation of those
new benchmarks and restricts the use of Java’s existing ones.

Then some benchmarks are specific to a programming language, whilst some of them
target a specific platform, such as Android. A remarkable benchmark reported by one of
the included studies (S20) deals with a specific type of software fault, i.e., this benchmark
brings a set of test cases on security vulnerabilities. Furthermore, such a benchmark is not
focused on a specific programming language but covers several of them (PHP, C, Ruby, and
others). Table 4 complements Figure 6 by explicitly showing the programming languages
and their respective included studies. A single benchmark was proposed for C++ (S24). It
is also important to remark that 10 out of 25 (40% of the studies) report benchmarks for
Java, being exclusive or also applicable to other languages (C# in S3 and Python in S19).

Figure 6 shows a clear predominance of C and Java datasets. Moreover, 52% of the
benchmarks (13 of them) are exclusively for Java or C techniques. A likely explanation for
C and Java having the highest values is that these are popular languages that ended up
becoming mainstream in the areas of testing and debugging, which could be considered
an expected/predictable result. This results corroborate prior studies, with the status of
data being preserved. In particular, in 2015, a systematic mapping study showed that these
languages were already the most present in testing activities, with 50% of the included
studies reporting the use of JUnit as the main framework [63]. This information highlights
the point that researchers, who wish to explore aspects not provided by certain languages
(such as bugs related to functional languages), may not be able to use existing datasets,
and need to create new benchmarks to evaluate their research studies. Table 4 shows the
programming language related to each study.

3.3.3. RQ3: Are the Bugs That Compose the Proposed Benchmarks Real or Artificial?

The origin of bugs was divided between real and artificial bugs. However, during
the review, we noticed that the real bugs originate from two different contexts: a controlled
environment and a production environment. The former comprises situations where code
and bugs are derived from student exercises or programming competitions. The latter
involves most of the benchmarks and contains programs in production with real defects,
e.g., Defects4J [33], compiled from large-scale open-source projects.
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Figure 6. Programming language or OS dependency of the benchmarks.

Table 4. Benchmarks grouped by programming language or technology dependency.

Programming Language or OS Studies

Android S22, S25

C S7, S9, S12, S14, S16, S18

C++ S24

Language Independent S5, S6, S10, S11, S13, S21

Java S1, S2, S4, S8, S15, S17, S23

Java and C# S3

PHP, C, Ruby, Python, Java, JavaScript,
ObjC, C++, ObjC++, Scala, Groovy, Swift.

S20

Python and Java S19

It is important to highlight that before access to open-source projects was widely
provided through a development platform such as GitHub (https://github.com/ (accessed
on 9 Ocotober 2023)), the most used bug benchmarks had artificial bugs or were based on
student-made programs. Figure 7 shows that except for S4, which proposes a benchmark for
mutant evaluation (purely artificial bugs), and S1, which contains bugs that are intentionally
but artificially provided by students in a controlled environment, all the benchmarks
present real bugs. Three studies report benchmarks exclusively elaborated with bugs from
a controlled environment (S14, S16, and S19). S16 and S19 were obtained from programming
competitions. S14, in turn, comprises a dataset with 661 programs obtained from students
of an undergraduate course on programming foundations. S12 is the study that combines
two different sets of programs for the same benchmark: one set with programs obtained
from students, and another set with programs provided from a production environment.
The remaining 19 benchmarks correspond to a production environment or are provided as
bug reports of existing tools.

https://github.com/
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Figure 7. The origin of bugs in the benchmarks reported from the 25 studies.

3.3.4. RQ4: What Were the Identified Motivations for Proposing the Benchmarks?

From the data extracted regarding motivations, it was possible to categorize the
motivations for the benchmarks into five types, as follows.

1. Absence of data: This motivation comprises the situation where a testing or de-
bugging technique exists, and an expert intends to assess the technique. Once the
evaluation of those techniques requires a dataset, the absence of data motivates the
creation of a new benchmark. In this scenario, even simple datasets with synthetic
data are useful. For instance, Eytani et al. show that concurrency defects are difficult
to cover and analyze without a standard dataset. To evaluate and compare tech-
niques developed to deal with these types of defects, Eytani et al. proposed the first
benchmark of multi-thread programs in 2004 [36]. Only study S1 falls into this class.

2. Lack of real data: This motivation targets techniques whose evaluations overcome
artificial data or are restricted to real data. With this motivation, iBugs was proposed
in 2007 [42]. The authors highlight that until that moment, the benchmarks available
for debugging only had artificially seeded defects. Due to the difficulty of validating
whether artificial bugs represent reality, it was necessary to create a new benchmark
with real defects in large programs. Studies S2, S3, S6, S8, S13, and S23 fit into
this class.

3. Lack of specialized data: Some methods need specific information to be evaluated.
For instance, the evaluation of crashes in a mobile platform inherently requires code
and data that are specific to that platform. Hence, highly specialized data are de-
manded in some categories of software, which motivates the creation of new bench-
marks. This motivation is related to benchmarks that aim to fulfill this lack and to
make the specialized data available. For instance, in 2013, Bissyandé et al. [45] pro-
posed a benchmark that contains bug reports. Until that moment, techniques of bug
localization that use such information could not be evaluated or straightforwardly
compared to other techniques due to the lack of specialized data. Android crash
automated repair techniques also match this category, since it exposed the need for
specialized data available in benchmarks, as reported in S25 (Droixbench benchmark).
Benchmarks that fall into this type of motivation often require much attention to avoid
biased data, since a technique can be beneficial when the same people create both the
benchmark and the technique under evaluation. This is actually a recurrent threat to
the validity reported by the included studies themselves as they address the need to
develop new benchmarks to evaluate a technique also created by the same authors
(e.g., [48,52]). Studies S5, S9, S12, S14, S15, S16, S17, S19, S21, S24, and S26 belong to
this class of motivation.

4. Lack of bug understanding: This motivation refers to structuring data and providing
additional data aiming to support the understanding of classes and origins of bugs.
For instance, Reis and Abreu [55] propose a set of security bugs, created specifically
to support the analysis of such a defect type. Apart from the previous types of
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motivation, this one comprises the lack of more in-depth information about bugs.
Studies S7, S11, S18, S20, S23 belong to this class.

5. Spontaneously providing results data: This motivation refers to a spontaneous con-
tribution by creating a basis for the evaluation of further techniques; i.e., the authors
made their results available as benchmark data. Studies S4 and S10 made their study
results (respectively, mutated code and run-time log) available for community use
to compare other techniques in the same context. Only studies S4 and S10 belong to
this class.

Figure 8 shows the accumulated evolution of motivation for the proposition of bench-
marks over the years. One interesting finding is related to the accelerated increase in the
diversity of motivations for proposing benchmarks over the years. For instance, bench-
marks proposed due to the lack of specialized data increased in the last three years. Those
benchmarks were proposed to support the evaluation of specific characteristics of a soft-
ware testing or debugging techniques that have not been exploited by existent benchmarks
yet according to the authors. One example is S19, which was created to enable researchers
to analyze the same defect in programs written in different languages. Then the authors
proposed a benchmark with equivalent programs with the same defect but written in two
different languages (Java and Python). This was a different motivation when compared to
the previous ones. Another example is S24, which reported a benchmark for techniques to
be applied in C++ since none of the previous benchmarks could be used for that purpose.

2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018

Absence of data

Lackof real data

Lack of specialized data

Lack of bug understanding

Spontaneously provide results data

External Internal
1 2 3

Figure 8. The motivation behind the selected primary studies, classified as the absence of data,
lack of real data, lack of specialized data, lack of bug understanding, and spontaneously providing
results data.

Benchmarks motivated by the lack of real data have emerged over the years. They were
motivated by the lack of real data and were created to be applied in techniques where
artificial data were not enough. One example of a lack of real data was the dataset crash
analysis [57], created for Android crash repair techniques. This was the first benchmark of
the area that supported the evaluation of techniques with real data for that context.

3.3.5. RQ5: What Were the Identified Scopes of Use for the Proposed Benchmarks?

Multiple objectives can guide the designing of benchmarks. However, those purposes
can be classified into two general categories, which are:

1. External: This is the case where benchmarks are made available to supply the com-
munity needs. For instance, Pairika (S24) is a benchmark proposed for the bug
diagnosis of C++ programs, i.e., it was not created for a specific technique, but an
open-accessed use of an entire programming community. Several research studies can
use the datasets provided by benchmarks of this category. We identified 17 studies
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that are addressed to this category: S1, S2, S3, S5, S6, S8, S11, S12, S13, S16, S18, S19,
S20, S21, S22, S23, and S24.

2. Internal: This class of objectives represents the benchmarks built to evaluate the
technique of a particular research group. In general, they may be used in other related
studies but the main objective was to provide a benchmark because no other existing
one could be used in the study. In those cases, the included study actually presents
testing or debugging techniques, and the benchmark is jointly proposed to introduce
the technique being reported. Eight studies are addressed to this category, S4, S7, S9,
S10, S14, S15, S17, and S25.

Figure 9 shows the predominance of the external scope of use among the reported
benchmarks. This shows that most of the proposed benchmarks are available for the entire
community, not being specific to a particular technique or method.
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Figure 9. The scope-of-use distribution (external or internal) over the years.

3.4. Synthesis

This section provides synthesis results obtained from (i) additional findings that are not
directly related to the answers to the research questions (Section 3.4.1), and (ii) information
extracted from crossing two or more research questions (Section 3.4.2). Also, Appendix B
presents a table that compiles the information obtained by answering each RQ, which
allows the reader to confirm the findings reported here and obtain more useful data from
them. We provide a repository with a complete list of the studies and the URL link to
their reported benchmarks (https://github.com/I4Soft/Testing_and_Debugging_Benchs
(accessed on 9 Ocotober 2023)).

3.4.1. Additional Findings

The additional findings refer to the information obtained from the included studies
as a subjective perception that may be relevant to testing and debugging practitioners,
as follows.

Create benchmarks regardless of software testing and debugging techniques. New
techniques may have no data in the literature that support their assessment in regard
to other techniques (for instance, study S9 proposes a dataset with bug reports and
codes and uses it to validate a novel bug localization technique), which require the
creation of new benchmarks. Then a recurrent threat reported in the included studies
is the creation of benchmarks along with the creation and evaluation of techniques:
a benchmark was created ‘for’ that technique, and the benchmark is suitable for the
technique, not evaluating it at large. To avoid such excessive fit, benchmarks should be
unbiased, i.e., when comparing different techniques on the same dataset, the dataset

https://github.com/I4Soft/Testing_and_Debugging_Benchs
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should not positively or negatively influence the results of the techniques. Thus, from
the review of the included studies, a possible perception is that benchmarks should be
proposed independently of the techniques they are used to evaluate.
Benchmarks are often surpassed. A motivational example comprises the use of
benchmarks composed of programs with artificial bugs. The proposition of iBugs [42],
for instance, was motivated by the lack of real data. Specifically, they report that the
existent benchmarks, such as Siemens Suite [28], were wholly composed of programs
with artificial bugs. Then, at some moment, the techniques were well-succeeded to
deal with artificial bugs but not validated with real bugs. In turn, the iBugs was not
exhaustive about real bugs since it was only one program with multiple versions of real
bugs. This characteristic raised the need to create Defects4J (initially composed of five
programs) [33], superseding iBugs since novel techniques demanded benchmarks with
a larger number of programs with real bugs to deliver a better evaluation of testing
techniques. In line with this perspective, in Section 3.3, we observed a tendency for
benchmarks to be created in a wave pattern, i.e., in regular periods (about every two
years, and increasing). We conjecture that this pattern will be repeated in forthcoming
years, as novel techniques can be created in future years due to similar motivations:
lack of data, novel techniques, and existing benchmarks being deprecated.
Out-of-the-box use. Another interesting finding is the fact that benchmarks can be
used in other areas—even if they are not explicitly created for that purpose. An
instance is Defects4J, which is recurrently used in program repair [64] and fault
localization [65], despite the fact that software testing was its original target topic.
Other benchmarks exhibit this same phenomenon, reinforcing the out-of-the-box
usage of them. For instance, ‘Codeflaws’, which was proposed for program repair, has
also been utilized in fault localization [14].

3.4.2. Triangulation

Triangulation is a procedure that combines results obtained from answering the elab-
orated individual research questions, but that could not be found by analyzing them
in isolation.

Figure 10 shows a bubble plot that combines results obtained from RQ4 and RQ5
over the years, i.e., the plot shows how the motivation type (absence of data, lack of real
data, lack of specialized data, lack of bug understanding, and spontaneously providing
results data) impacts the scope of use of the benchmark proposition (internal and external)
over time.

From the data, it is possible to observe that, throughout the years, all the benchmarks
motivated by a wish to spontaneously provide results data were conceived for an internal
scope of use, which means that the benchmarks were created in association with a par-
ticular technique and it was used to support the evaluation of the associated technique.
However, they were made available to the community. On the other hand, all the proposed
benchmarks motivated by the absence of data and lack of real data have an external scope
of use, i.e., the main aim of their creation was to make them available to the community.
Among the seven benchmark propositions in 2017, three were motivated by the lack of
specialized data and with an internal scope of use.

We also exploited the relationship between RQ1 and RQ4, respectively, related to the
target topic and motivation. Figure 11 presents a formal concept analysis (FCA) of the
literature on benchmark proposals. FCA [66] is an analysis technique that can be applied
to data that report objects, attributes, and binary relationships between them. Ellipses
represent the objects, and rectangles illustrate the attributes.

A concept is illustrated as a node, and it is not associated with a name. However,
it links a set of objects (target topics) to a set of attributes (motivations). An additional
recommendation for reading such a plot is as follows: if the plot is read from top to bottom,
a motivation was applied (in the included studies) to all the target topics underneath it in
the diagram and all of them that could be reached through some edge from it. For instance,
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reading the plot, we can infer that the motivation ‘lack of specialized data’ was a motivation
for all four target topics (program repair, fault localization, bug diagnosis, and software
testing). In turn, the motivation ‘spontaneously provides results data’ was used in studies that
report bug diagnosis and software testing, but not for fault localization and program repair.
From this plot, we can also infer that the ‘lack of real data’ was used for all target topics,
except program repair. Conversely, ‘lack of bug understanding’ was used for all target topics,
except for fault localization. In turn, the ‘absence of data’ was found as a motivation in the
included studies only in benchmarks proposed for software testing.
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Figure 10. The benchmarks classified per motivation and scope of use.
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Figure 11. Concept analysis about motivation and target topics.

Figure 12 shows the relationship between RQ2 (programming language) and RQ5
(scope of use). The aim of combining those answers was to understand the relationship
between the programming language communities and the benchmark’s scope of use.
Among the seven benchmarks exclusively proposed for Java, three (43% of them) are
for the internal scope of use, and four (57% of them) for the external scope of use. Six
benchmarks were proposed for C: three (50%) for internal and three (50%) for external
scope of use. In turn, among the six benchmarks proposed for programming languages
that are not only Java and C, such as C++, Python, and C#, five of them (83% of them)
are proposed for external scope of use. The same happens for language-independent (or
technology-independent) benchmarks. We noticed that benchmarks that are not exclusively
proposed for Java or C languages were mostly created to supply the needs of particular
communities that did not have so many possible benchmarks as Java and C.
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Figure 13 uses data from RQ1 (target topic) and RQ2 (programming languages). Bubble
sizes represent the number of studies for each target topic (rows) displayed according
to their respective programming language colors (columns). We can observe that bug
diagnosis is the main target topic for benchmarks proposed for language-independent
contexts. An example of this is bug reports, which do not require specific code, but only
information about the bug. Other important findings are that (i) benchmarks with only Java
programs (four studies) are tightly related to software testing, and Benchmarks in the class
Others (three studies) are also highly related to software testing, likely attempting to offer
an alternative for software testing beyond Java. (ii) C is closely related to programming
repair (three studies).
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Figure 12. Programming languages related to the scope of use.
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Figure 13. Programming languages related to target topics.

4. Summary of Contributions and Research Opportunities

This section summarizes the main results and contributions obtained from this study
and the research opportunities raised from this mapping.

The contributions of this article include:

• Mapping of the area: This study provides an overview of the proposition of bench-
marks for software testing and debugging, including several dimensions of the area,
such as (i) research topics for which benchmarks were proposed, (ii) programming
languages contained in the dataset associated with the benchmark, (iii) sources of
defects in the programs contained in the benchmark, and (iv) information related to
the intention of the proposition of a new benchmark, as motivation and scope of use.

• A list of proposed benchmarks for software testing and debugging: A significant
contribution from this study is a list of 25 proposed benchmarks for testing and de-
bugging software in the period 2004–2018. This set of benchmarks can be adopted and
used by researchers and practitioners who create novel software testing and debug-
ging techniques. Professionals can adopt or adapt an existing benchmark that matches
the requirements (programming languages, research topics, or origin of bugs) of their
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novel techniques to support the evaluation of their techniques instead of creating new
benchmarks. This contribution can increase the level of reusability of benchmarks and
reduce the efforts frequently undertaken to elaborate new benchmarks. Moreover, the
adoption of the same benchmark can also increase the level of reproducibility of the
studies and assessments performed on testing and debugging techniques.

This mapping was focused on studies that reported the proposition of benchmarks.
However, another important gap to be exploited is related to the use of benchmarks. So we
envision the following research opportunities related to benchmark proposals and usages,
as follows.

• Guidelines for proposing benchmarks: During the analysis of the included studies,
we do not extract some characteristics due to the lack of uniformity of the provided
data about the benchmarks and how they are structured. For instance, QuixBugs [41]
has 40 Python and Java programs; the study that presented Defects4J [33] had five
programs, but currently, Defects4J is composed of six programs. iBugs initially only
had one program, but currently, it has three programs with different versions. S10
only has runtime data from program execution, and S11, in turn, only has bug reports
that are manually classified. The material that composes a proposed benchmark is
often presented in different sizes (the number of versions and lines of code), but
some studies do not even have descriptions of these aspects. From these data, we
observe that a lack of standard description and format exists among the benchmarks,
potentially hindering a more in-depth analysis of other characteristics not covered
herein. By defining guidelines on how to propose benchmarks, a list of requirements
could be presented and should be considered for creating and reporting new datasets,
which could foster standardization for the area, enabling an even more solid analysis,
apart from the selection and use of benchmarks.

• Suitability of a benchmark according to the evaluation interests: Benchmarks are
often used for the assessment of testing and debugging techniques, revealing the
potential of benchmark characteristics to impact the evaluation results. Hence, it is
best to be aware of how a benchmark could influence the evaluation results regarding
some attributes, such as efficacy, type of faults, and efficiency, among others. In this
sense, more development is required to create a framework to conduct a benchmark
analysis in the context of testing and debugging target topics. For instance, the results
of such a study could help one to evaluate whether a benchmark is suitable to be used
in the evaluation procedures of different techniques in specific research fields. Such a
framework could also contribute to comparing several benchmarks and evaluating
whether one of them is more effective for a research topic.

• Benchmark usage by research field: Benchmark usage refers to the search for studies
in order to analyze how a benchmark has been applied by addressing target topics,
methods (or method categories) under evaluation, evaluation metrics, and research
questions. More review studies about benchmarks are also needed, especially from the
point of view of different research topics (for example, those used in Section 3.3.1) seeks
to expose which benchmarks have been and are being used during the evaluation of
new approaches in that particular research area, as well as map the evaluation metrics
and methods that are commonly used as baselines. This type of mapping may be one
more artifact-used to support researchers in selecting which benchmarks to use, but
also in providing guidance on how to use them.

• Interchangeability/Customization of benchmarks between different domains: Some
benchmarks have been used in topics other than their initial aim, as seen in Section 3.4.1.
After analyzing the selected studies, we noticed that not all benchmarks suggested by
the program repair community were proposed for this purpose; however, this did not
prevent them from being used for a different context. Hence, a study about the inter-
changeability of benchmarks between areas such as fault localization and program repair
may expand the suite of programs that researchers in both areas may use.
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• Definition of guidelines for benchmark selection: In this mapping, we reported the
potential bias that can emerge from the use of a benchmark jointly proposed with
the technique that uses it to be evaluated. Another potentially biased context is the
selection of benchmarks, i.e., when a researcher chooses a benchmark to use in his/her
study. Studies often present evaluations obtained by using only some parts of a dataset
offered by a benchmark. For instance, not all programs contained in Defects4J have
been used during the analysis and evaluation of some techniques, which can bring
about some imprecision to the obtained results. For reliability purposes, benchmark-
based technique evaluations should be conducted according to guidelines. These
guidelines could advise researchers on how to select benchmarks to reduce bias, and
maximize the empirical value of the results since the most popular benchmark is not
necessarily the most suitable for a context.

5. Threats to Validity

The results presented by this systematic mapping may have been affected by some
factors that we discuss in this section. We identified the main threats regarding the omission
of important primary studies, selection reliability, data extraction, and quality assessment. We
seek to minimize them by employing some mitigation actions.

The omission of important primary studies: Important studies can also be missed
during the automated search in the selected databases. To alleviate this threat, we
(i) adopted the set of bibliographic bases recommended by Dyba et al. [67], which
could return a more significant number of relevant studies of the area, (ii) did not de-
limit a time period in order to obtain the maximum of relevant studies, (iii) considered
keywords suggested by software testing and debugging experts, (iv) performed trial
searches to calibrate the search string, and (v) used a set of studies as a control group
to confirm that our search string retrieved the main studies of the area.
Selection reliability: The inclusion and exclusion processes can also be critical since
a misunderstanding could cause the exclusion of relevant studies or the inclusion of
irrelevant studies. At least two researchers were involved in each step of the study,
aiming to mitigate this problem and others related to the interpretation during the
selection process. If a conflict emerged, a consensus meeting was used to reduce the
possibility of misinterpretation in this step.
Data extraction: A recurrent threat to this systematic mapping refers to how the data
were extracted from the primary studies. To alleviate this threat, we performed the
extraction and synthesis of data in a cooperative way with two reviewers working
together to reach an agreement on possible conflicts caused by the extracted data and
their classification. Furthermore, when disagreement occurred, consensus meetings
were conducted to ensure a full agreement between the reviewers.
Quality assessment: We elaborated a set of quality questions to assess the quality of
each selected study. A possible threat that emerges is that the results of the quality
questions can be influenced by the interpretation of the reviewers. However, quality
questions were also performed in a double-check procedure so that both reviewers
involved in the extraction answered the same quality questions for the same studies in
order to obtain a reliable opinion about the quality of that study, which reduces the threat
to the validity of the conclusions obtained about the quality of the included studies.

6. Final Remarks and Future Work

This article reported the results of a systematic mapping carried out to offer a broad
panorama on the proposition of benchmarks to support the evaluation of software testing
and debugging techniques. Twenty-five primary studies were selected and analyzed.
From the analysis, we extracted important lessons that can be used to support testing and
debugging techniques. We bring the following conclusions:
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• Benchmarks are mainly proposed for software testing, bug diagnosis, and program
repair, rather than fault localization (only three studies reported the proposition of
benchmarks for this domain);

• The first decade of analysis produced nine different benchmarks, whilst the period
2013–2018 was responsible for 16 different benchmarks, showing a significant increase
in the number of benchmarks being proposed. This result endorses the importance
of benchmarks for supporting the evaluation of software testing and debugging
techniques and an increase in the interest over the years;

• Approximately 50% of the retrieved studies report benchmarks proposed for ex-
clusively C or Java. The other half refers to language-independent benchmarks or
benchmarks proposed for other languages;

• Most of the proposed benchmarks (92% of the studies, 23 out of 25) are composed of
real bugs from a controlled environment (we understand a controlled environment
as a non-commercial situation in which software testing activities are carried out,
such as in academic environments and competitions) or a production environment (a
production environment comprises the software testing environment for commercial
software in production);

• The motivation for a proposition of benchmarks could be classified into five different
categories: (i) absence of data, representing benchmarks proposed because there are
no available data (such as a set of buggy programs or execution logs) until that
moment to support the proper evaluation of a testing or debugging technique; (ii) lack
of real data, revealing that several techniques demanded real data and the use of
programs with real defects; (iii) Lack of specialized data, which indicates that while
some benchmarks do exist, they may not be composed of programs in a specific
programming language or contain descriptive data about bug fixes, revealing a lack
of specialized data that motivates the proposition of novel benchmarks; (iv) lack of
bug understanding, since some benchmarks exist, but their data are not structured
or provided in a way that supports understanding the classes and origins of bugs,
thereby motivating the proposition of new ones, and (v) spontaneously providing results
data, as some benchmarks are obtained through the execution of techniques and are
provided to the community as a public dataset.

• The scope of use for the creation of benchmarks can be split into two classes: inter-
nal and external. The former refers to an inner evaluation of particular testing or
debugging techniques, which demand the creation of a benchmark. The latter refers
to benchmarks created to be available for community needs.

Although new benchmarks have recently been proposed, the field still demands
the proposition and consolidation of guidelines to support the introduction of further
benchmarks. Our investigation revealed that, in numerous instances, new benchmarks
were developed due to the deficiencies of existing ones; however, the newly created
benchmarks neither exhibited a high degree of quality nor showed substantial potential for
reuse or adaptability. Hence, a more in-depth understanding of customization, quality, and
reuse of benchmarks is also needed.

Nevertheless, this study contributed through an analysis of the recent history of bench-
mark propositions and unveiled several vital characteristics of existing ones. Moreover, a
list of numerous benchmarks, along with their characteristics, was made available to the
community. This availability enables researchers and practitioners to identify benchmarks
that align with the requirements of their testing or debugging techniques, thereby fostering
evaluation activities within that domain, and preventing professionals from developing
novel benchmarks instead of using existing ones.

From the results obtained in this mapping, we could also raise some important future
work in the field. We observed a latent need to define standards and guidelines for the
creation of new benchmarks in testing and debugging, reinforcing the need for them to
be reusable in different contexts in order to allow the comparison between the results
obtained in each case. In parallel, it is also important to ensure the neutrality of the datasets
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used so that bias is not inserted, in order to favor metrics (such as accuracy) or better
performance for specific methods. In addition, strategies to measure these biases should
also be investigated and proposed.

We hope that the results of this research not only present consistent information and
provide a panorama of available benchmarks for supporting the evaluation of software
testing and debugging techniques, but also support researchers and practitioners to un-
derstand the characteristics of those benchmarks better to foster reuse, customization, and
productivity by avoiding unnecessary efforts, saving both time and costs for real projects.
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Appendix A

RQ1 is addressed by the following form questions: “What is the study title?”, “What
is the benchmark link?”, and “What is the classification of the techniques to which the
benchmark was intended to be used?”; RQ2 is addressed by the following question: “Does
a programming language or platform apply to the benchmark? If so, which one?”; RQ3
is addressed by the following: “As for the origin of defects (or behaviors), are they real,
artificial or both?”; RQ4 is addressed the following questions: “What are the motivations
described in the article? Why was the benchmark built?”; and RQ5 is addressed by the
following question: “What are the objectives to the benchmark described in the article?
What was the benchmark built for?”.

The following questions make up the data extraction form used.

1. What is the study title?
2. What is the publication vehicle name? Is it a conference or a journal?
3. What are the authors’ affiliation?
4. What is a benchmarks’ name?
5. What is a benchmarks’ link?
6. Does a programming language or platform apply to a benchmark? If so, which one?
7. As for the origin of defects (or behaviors), are they real, artificial or both?
8. What are the motivations described in the study? Why was the benchmark built?
9. What are the objectives described in the study? What was the benchmark built for?
10. What is the classification of the techniques to which the benchmark was intended to

be used? If fault localization, automated program repair, bug analysis, etc.
11. Other important notes.
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Appendix B

Table A1. All studies and their classifications—Part 1.

Study Title Year Bench. Name Topic PL or Technology Bugs Origins Motivation Purpose Vehicle

S1 Compiling a benchmark of documented
multi-threaded bugs

2004 [Eytani et al.] Software
Testing Java Artificial and

Controlled Environment
Absence of data External Conference

S2 Extraction of Bug Localization Bench-
marks from History 2007 iBugs Fault

Localization Java Production
Environment Lack of real data External Conference

S3
Clash of the Titans: Tools and Tech-
niques for Hunting Bugs in Concurrent
Programs

2009 [Rungta et al.] Software Test-
ing Java and C# Production

Environment Lack of real data External Conference

S4 (Un-)Covering Equivalent Mutants 2010 JAVALANCHE
Subject Programs

Software Test-
ing Java Artificial

Spontaneously-
provided results
data

Internal Conference

S5 Empirical Evaluation of Bug Linking 2013 [Bissyandé et al.] Bug Diagnosis Language
Independent

Production
Environment

Lack of special-
ized data External Conference

S6
The Eclipse and Mozilla Defect Track-
ing Dataset: A Genuine Dataset for
Mining Bug Information

2013
Eclipse and Mozilla
Defect Tracking
Dataset

Bug Diagnosis Language
Independent

Production
Environment Lack of real data External Conference

S7 42 Variability Bugs in the Linux Kernel:
A Qualitative Analysis 2014 The Variability

Bugs Database Bug Diagnosis C Production
Environment

Lack of bug un-
derstanding Internal Conference

S8
Defects4J: A Database of Existing
Faults to Enable Controlled Testing
Studies for Java Programs

2014 Defects4J Software Test-
ing Java Production

Environment Lack of real data External Conference

S9
On the Effectiveness of Information Re-
trieval Based Bug Localization for C
Programs

2014 [Saha et al.] Fault Localiza-
tion C Production

Environment
Lack of special-
ized data Internal Conference

S10
Automated Bug Finding in Video
Games: A Case Study for Runtime
Monitoring

2014 [Varvaressos et al.] Bug Diagnosis Language
Independent

Production
Environment

Spontaneously-
provided results
data

Internal Conference

S11 A Dataset of High Impact Bugs:
Manually-Classified Issue Reports 2015 High Impact Bug

Dataset Bug Diagnosis Language
Independent

Production
Environment

Lack of bug un-
derstanding External Conference

S12
The ManyBugs and IntroClass Bench-
marks for Automated Repair of C Pro-
grams

2015 ManyBugs and In-
troClass

Program
Repair C Production and

Controlled Environment
Lack of special-
ized data External Journal

S13
TaxDC: A Taxonomy of Non-
Deterministic Concurrency Bugs
in Data Center Distributed Systems

2016 TaxDC Software Test-
ing

Language
Independent

Production
Environment Lack of real data External Conference
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Table A2. All studies and their classifications—Part 2.

Study Title Year Bench. Name Topic PL or Technology Bugs Origins Motivation Purpose Vehicle

S14
A Feasibility Study of Using Auto-
mated Program Repair for Introduc-
tory Programming Assignments

2017 [Yi et al.] Program Repair C Controlled
Environment Lack of specialized data Internal Conference

S15
Automatic detection and demonstra-
tor generation for information flow
leaks in object-oriented programs

2017 KEG Experiments Software Testing Java Production
Environment Lack of specialized data Internal Journal

S16
Codeflaws: A Programming Compe-
tition Benchmark for Evaluating Au-
tomated Program Repair Tools

2017 Codeflaws Program Repair C Controlled
Environment Lack of specialized data External Conference

S17 ELIXIR: Effective Object-Oriented
Program Repair 2017 Bugs.jar Program Repair Java Production

Environment Lack of specialized data Internal Conference

S18 How Developers Debug Software
The DBGBENCH Dataset 2017 DBGBENCH Bug Diagnosis C Production

Environment Lack of bug understanding External Conference

S19
QuixBugs: a multi-lingual program
repair benchmark set based on the
Quixey challenge

2017 QuixBugs Program Repair Python and Java Controlled
Environment Lack of specialized data External Conference

S20 SECBENCH: A Database of Real Se-
curity Vulnerabilities 2017 Secbench Software Testing

PHP, C, Ruby, Python,
Java, JavaScript, ObjC,
C++, ObjC++, Scala,
Groovy, Swift

Production
Environment Lack of bug understanding External Conference

S21
Crashing Simulated Planes is Cheap:
Can Simulation Detect Robotics Bugs
Early?

2018 ArduBugs Bug Diagnosis Language
Independent

Production
Environment Lack of specialized data External Conference

S22 Large-Scale Analysis of Framework-
Specific Exceptions in Android Apps 2018 Dataset Crash

Analysis
Software Testing Android Production

Environment Lack of real data External Conference

S23 Mining repair model for exception-
related bug 2018 Exception-related

bugs Program Repair Java Production
Environment Lack of bug understanding External Journal

S24 Pairika-A Failure Diagnosis Bench-
mark for C++ Programs 2018 Pairika Fault Localization C++ Production

Environment Lack of specialized data External Conference

S25 Repairing Crashes in Android Apps 2018 Droixbench Program Repair Android Production
Environment Lack of specialized data Internal Conference
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